""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ import torch import torch.nn as nn from kamal.core.engine.engine import Engine, Event, DefaultEvents, State from kamal.core import tasks from kamal.utils import set_mode, move_to_device, get_logger, split_batch from typing import Callable, Mapping, Any, Sequence import time import weakref class BasicTrainer(Engine): def __init__( self, logger=None, tb_writer=None): super(BasicTrainer, self).__init__(logger=logger, tb_writer=tb_writer) def setup(self, model: torch.nn.Module, task: tasks.Task, dataloader: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, device: torch.device=None): if device is None: device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) self.device = device if isinstance(task, Sequence): task = tasks.TaskCompose(task) self.task = task self.model = model self.dataloader = dataloader self.optimizer = optimizer return self def run( self, max_iter, start_iter=0, epoch_length=None): self.model.to(self.device) with set_mode(self.model, training=True): super( BasicTrainer, self ).run( self.step_fn, self.dataloader, start_iter=start_iter, max_iter=max_iter, epoch_length=epoch_length) def step_fn(self, engine, batch): model = self.model start_time = time.perf_counter() batch = move_to_device(batch, self.device) inputs, targets = split_batch(batch) outputs = model(inputs) loss_dict = self.task.get_loss(outputs, targets) # get loss loss = sum( loss_dict.values() ) self.optimizer.zero_grad() loss.backward() self.optimizer.step() step_time = time.perf_counter() - start_time metrics = { loss_name: loss_value.item() for (loss_name, loss_value) in loss_dict.items() } metrics.update({ 'total_loss': loss.item(), 'step_time': step_time, 'lr': float( self.optimizer.param_groups[0]['lr'] ) }) return metrics class KDTrainer(BasicTrainer): def setup(self, student: torch.nn.Module, teacher: torch.nn.Module, task: tasks.Task, dataloader: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, device: torch.device=None): super(KDTrainer, self).setup( model=student, task=task, dataloader=dataloader, optimizer=optimizer, device=device) if isinstance(teacher, (list, tuple)): if len(teacher)==1: teacher=teacher[0] else: teacher = nn.ModuleList(teacher) self.student = self.model self.teacher = teacher return self def run( self, max_iter, start_iter=0, epoch_length=None): self.student.to(self.device) self.teacher.to(self.device) with set_mode(self.student, training=True), \ set_mode(self.teacher, training=False): super( BasicTrainer, self ).run( self.step_fn, self.dataloader, start_iter=start_iter, max_iter=max_iter, epoch_length=epoch_length) def step_fn(self, engine, batch): model = self.model start_time = time.perf_counter() batch = move_to_device(batch, self.device) inputs, targets = split_batch(batch) outputs = model(inputs) if isinstance(self.teacher, nn.ModuleList): soft_targets = [ t(inputs) for t in self.teacher ] else: soft_targets = self.teacher(inputs) loss_dict = self.task.get_loss(outputs, soft_targets) # get loss loss = sum( loss_dict.values() ) self.optimizer.zero_grad() loss.backward() self.optimizer.step() step_time = time.perf_counter() - start_time metrics = { loss_name: loss_value.item() for (loss_name, loss_value) in loss_dict.items() } metrics.update({ 'total_loss': loss.item(), 'step_time': step_time, 'lr': float( self.optimizer.param_groups[0]['lr'] ) }) return metrics