""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ import numpy as np import torch from kamal.core.metrics.stream_metrics import Metric from typing import Callable __all__=['Accuracy', 'TopkAccuracy'] class Accuracy(Metric): def __init__(self, attach_to=None): super(Accuracy, self).__init__(attach_to=attach_to) self.reset() @torch.no_grad() def update(self, outputs, targets): outputs, targets = self._attach(outputs, targets) outputs = outputs.max(1)[1] self._correct += ( outputs.view(-1)==targets.view(-1) ).sum() self._cnt += torch.numel( targets ) def get_results(self): return (self._correct / self._cnt).detach().cpu() def reset(self): self._correct = self._cnt = 0.0 class TopkAccuracy(Metric): def __init__(self, topk=5, attach_to=None): super(TopkAccuracy, self).__init__(attach_to=attach_to) self._topk = topk self.reset() @torch.no_grad() def update(self, outputs, targets): outputs, targets = self._attach(outputs, targets) _, outputs = outputs.topk(self._topk, dim=1, largest=True, sorted=True) correct = outputs.eq( targets.view(-1, 1).expand_as(outputs) ) self._correct += correct[:, :self._topk].view(-1).float().sum(0).item() self._cnt += len(targets) def get_results(self): return self._correct / self._cnt def reset(self): self._correct = 0.0 self._cnt = 0.0 class StreamCEMAPMetrics(): @property def PRIMARY_METRIC(self): return "eap" def __init__(self): self.reset() def update(self, logits, targets): preds = logits.max(1)[1] # targets: -1 negative, 0 difficult, 1 positive if isinstance(preds, torch.Tensor): preds = preds.cpu().numpy() targets = targets.cpu().numpy() self.preds = preds if self.preds is None else np.append(self.preds, preds, axis=0) self.targets = targets if self.targets is None else np.append(self.targets, targets, axis=0) def get_results(self): nTest = self.targets.shape[0] nLabel = self.targets.shape[1] eap = np.zeros(nTest) for i in range(0,nTest): R = np.sum(self.targets[i,:]==1) for j in range(0,nLabel): if self.targets[i,j]==1: r = np.sum(self.preds[i,np.nonzero(self.targets[i,:]!=0)]>=self.preds[i,j]) rb = np.sum(self.preds[i,np.nonzero(self.targets[i,:]==1)] >= self.preds[i,j]) eap[i] = eap[i] + rb/(r*1.0) eap[i] = eap[i]/R # emap = np.nanmean(ap) cap = np.zeros(nLabel) for i in range(0,nLabel): R = np.sum(self.targets[:,i]==1) for j in range(0,nTest): if self.targets[j,i]==1: r = np.sum(self.preds[np.nonzero(self.targets[:,i]!=0),i] >= self.preds[j,i]) rb = np.sum(self.preds[np.nonzero(self.targets[:,i]==1),i] >= self.preds[j,i]) cap[i] = cap[i] + rb/(r*1.0) cap[i] = cap[i]/R # cmap = np.nanmean(ap) return { 'eap': eap, 'emap': np.nanmean(eap), 'cap': cap, 'cmap': np.nanmean(cap), } def reset(self): self.preds = None self.targets = None