""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ import torch import time import torch.nn.functional as F from kamal.slim.distillation.kd import KDDistiller from kamal.utils import set_mode from kamal.core.tasks.loss import kldiv class ZSKTDistiller(KDDistiller): def __init__( self, student, teacher, generator, z_dim, logger=None, viz=None): super(ZSKTDistiller, self).__init__(logger, viz) self.teacher = teacher self.model = self.student = student self.generator = generator self.z_dim = z_dim def train(self, start_iter, max_iter, optim_s, optim_g, device=None): if device is None: device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) self.device = device self.optim_s, self.optim_g = optim_s, optim_g self.model.to(self.device) self.teacher.to(self.device) self.generator.to(self.device) self.train_loader = [0, ] with set_mode(self.student, training=True), \ set_mode(self.teacher, training=False), \ set_mode(self.generator, training=True): super( ZSKTDistiller, self ).train( start_iter, max_iter ) def search_optimizer(self, evaluator, train_loader, hpo_space=None, mode='min', max_evals=20, max_iters=400): optimizer = hpo.search_optimizer(self, train_loader, evaluator=evaluator, hpo_space=hpo_space, mode=mode, max_evals=max_evals, max_iters=max_iters) return optimizer def step(self): start_time = time.perf_counter() # Adv z = torch.randn( self.z_dim ).to(self.device) fake = self.generator( z ) self.optim_g.zero_grad() t_out = self.teacher( fake ) s_out = self.student( fake ) loss_g = -kldiv( s_out, t_out ) loss_g.backward() self.optim_g.step() with torch.no_grad(): fake = self.generator( z ) t_out = self.teacher( fake.detach() ) for _ in range(10): self.optim_s.zero_grad() s_out = self.student( fake.detach() ) loss_s = kldiv( s_out, t_out ) loss_s.backward() self.optim_s.step() loss_dict = { 'loss_g': loss_g, 'loss_s': loss_s, } step_time = time.perf_counter() - start_time # record training info info = loss_dict info['step_time'] = step_time info['lr_s'] = float( self.optim_s.param_groups[0]['lr'] ) info['lr_g'] = float( self.optim_g.param_groups[0]['lr'] ) self.history.put_scalars( **info ) def reset(self): self.history = None self._train_loader_iter = iter(train_loader) self.iter = self.start_iter