""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ from .kd import KDDistiller from kamal.core.tasks.loss import KDLoss import torch.nn as nn import torch._ops import time class HintDistiller(KDDistiller): def __init__(self, logger=None, tb_writer=None ): super(HintDistiller, self).__init__( logger, tb_writer ) def setup(self, student, teacher, regressor, dataloader, optimizer, hint_layer=2, T=1.0, alpha=1.0, beta=1.0, gamma=1.0, stu_hooks=[], tea_hooks=[], out_flags=[], device=None): super( HintDistiller, self ).setup( student, teacher, dataloader, optimizer, T=T, alpha=alpha, beta=beta, gamma=gamma, device=device ) self.regressor = regressor self._hint_layer = hint_layer self._beta = beta self.stu_hooks = stu_hooks self.tea_hooks = tea_hooks self.out_flags = out_flags self.regressor.to(device) def additional_kd_loss(self, engine, batch): feat_s = [f.feat_out if flag else f.feat_in for (f, flag) in zip(self.stu_hooks, self.out_flags)] feat_t = [f.feat_out.detach() if flag else f.feat_in for (f, flag) in zip(self.tea_hooks, self.out_flags)] f_s = self.regressor(feat_s[self._hint_layer]) f_t = feat_t[self._hint_layer] return nn.functional.mse_loss(f_s, f_t) class Regressor(nn.Module): """ Convolutional regression for FitNet @inproceedings{tian2019crd, title={Contrastive Representation Distillation}, author={Yonglong Tian and Dilip Krishnan and Phillip Isola}, booktitle={International Conference on Learning Representations}, year={2020} } """ def __init__(self, s_shape, t_shape, is_relu=True): super(Regressor, self).__init__() self.is_relu = is_relu _, s_C, s_H, s_W = s_shape _, t_C, t_H, t_W = t_shape if s_H == 2 * t_H: self.conv = nn.Conv2d(s_C, t_C, kernel_size=3, stride=2, padding=1) elif s_H * 2 == t_H: self.conv = nn.ConvTranspose2d( s_C, t_C, kernel_size=4, stride=2, padding=1) elif s_H >= t_H: self.conv = nn.Conv2d(s_C, t_C, kernel_size=(1+s_H-t_H, 1+s_W-t_W)) else: raise NotImplemented( 'student size {}, teacher size {}'.format(s_H, t_H)) self.bn = nn.BatchNorm2d(t_C) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) if self.is_relu: return self.relu(self.bn(x)) else: return self.bn(x)