""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ import torch from typing import Type, Callable from captum.attr import Attribution from captum.attr import NoiseTunnel def with_norm(func: Callable[[torch.Tensor], torch.Tensor], x: torch.Tensor, square: bool = False): x = func(x) x = torch.norm(x.flatten(1), dim=1, p=2) if square: x = torch.pow(x, 2) return x def attribution_map( func: Callable[[torch.Tensor], torch.Tensor], attribution_type: Type, with_noise: bool, probe_data: torch.Tensor, norm_square: bool = False, **attribution_kwargs ) -> torch.Tensor: """ Calculate attribution map with given attribution type(algorithm). Args: model: pytorch module attribution_type: attribution algorithm, e.g. IntegratedGradients, InputXGradient, ... with_noise: whether to add noise tunnel probe_data: input data to model device: torch.device("cuda: 0") attribution_kwargs: other kwargs for attribution method Return: attribution map """ attribution: Attribution = attribution_type(lambda x: with_norm(func, x, norm_square)) if with_noise: attribution = NoiseTunnel(attribution) attr_map = attribution.attribute( inputs=probe_data, target=None, **attribution_kwargs ) return attr_map.detach() def attr_map_distance(map_1: torch.Tensor, map_2: torch.Tensor): if map_1.shape != map_2.shape: map_1 = torch.nn.functional.interpolate( map_1, size=map_2.shape[-2:] ) #dist = torch.dist(map_1.flatten(1), map_2.flatten(1), p=2).mean() dist = 1 - torch.cosine_similarity(map_1.flatten(1), map_2.flatten(1)).mean() return dist.item() def attr_map_similarity(map_1: torch.Tensor, map_2: torch.Tensor): assert(map_1.shape == map_2.shape) dist = torch.cosine_similarity(map_1.flatten(1), map_2.flatten(1)).mean() return dist.item() if __name__ == "__main__": import captum def ff(x): return x ** 2 m = attribution_map( ff, captum.attr.InputXGradient, with_noise=False, probe_data=torch.tensor([[1, 2, 3, 4]], dtype=torch.float, requires_grad=True), norm_square=True ) print(m)