# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import torch import torch.distributed as dist def accuracy(output, target, topk=(1,)): """ Computes the precision@k for the specified values of k """ maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() # one-hot case if target.ndimension() > 1: target = target.max(1)[1] correct = pred.eq(target.reshape(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0) res.append(correct_k.mul_(1.0 / batch_size)) return res def reduce_metrics(metrics): return {k: reduce_tensor(v).item() for k, v in metrics.items()} def reduce_tensor(tensor): rt = torch.sum(tensor) # rt = tensor.clone() # dist.all_reduce(rt, op=dist.ReduceOp.SUM) # rt /= float(os.environ["WORLD_SIZE"]) return rt