# Network Morphism The implementation of the Network Morphism algorithm is based on [Auto-Keras: An Efficient Neural Architecture Search System](https://arxiv.org/pdf/1806.10282.pdf) Train stage ``` python network_morphism_train.py --trial_id 0 --experiment_dir 'tadl' --log_path 'tadl/train/0/log' --data_dir '../data/' --result_path 'trial_id/result.json' --log_path 'trial_id/log' --search_space_path 'experiment_id/search_space.json' --best_selected_space_path 'experiment_id/best_selected_space.json' --lr 0.001 --epochs 100 --batch_size 32 --opt 'SGD' ``` select stage ``` python network_morphism_select.py ``` retrain stage ``` python network_morphism_retrain.py --data_dir '../data/' --experiment_dir 'tadl' --result_path 'trial_id/result.json' --log_path 'trial_id/log' --best_selected_space_path 'experiment_id/best_selected_space.json' --best_checkpoint_dir 'experiment_id/' --trial_id 0 --batch_size 32 --opt 'SGD' --epochs 100 --lr 0.001 ``` The best model searched achieved 88.1% on CIFAR-10 dataset after 100 trials. Dependencies: ``` Python = 3.6.13 pytorch = 1.8.0 torchvision = 0.9.0 scipy = 1.5.2 scikit-learn = 0.24.1 ```