@@ -1,155 +0,0 @@ | |||
#coding=utf-8 | |||
import cv2 | |||
import numpy as np | |||
from keras import backend as K | |||
from keras.models import * | |||
from keras.layers import * | |||
chars = [u"京", u"沪", u"津", u"渝", u"冀", u"晋", u"蒙", u"辽", u"吉", u"黑", u"苏", u"浙", u"皖", u"闽", u"赣", u"鲁", u"豫", u"鄂", u"湘", u"粤", u"桂", | |||
u"琼", u"川", u"贵", u"云", u"藏", u"陕", u"甘", u"青", u"宁", u"新", u"0", u"1", u"2", u"3", u"4", u"5", u"6", u"7", u"8", u"9", u"A", | |||
u"B", u"C", u"D", u"E", u"F", u"G", u"H", u"J", u"K", u"L", u"M", u"N", u"P", u"Q", u"R", u"S", u"T", u"U", u"V", u"W", u"X", | |||
u"Y", u"Z",u"港",u"学",u"使",u"警",u"澳",u"挂",u"军",u"北",u"南",u"广",u"沈",u"兰",u"成",u"济",u"海",u"民",u"航",u"空" | |||
] | |||
class LPR(): | |||
def __init__(self,model_detection,model_finemapping,model_seq_rec): | |||
self.watch_cascade = cv2.CascadeClassifier(model_detection) | |||
self.modelFineMapping = self.model_finemapping() | |||
self.modelFineMapping.load_weights(model_finemapping) | |||
self.modelSeqRec = self.model_seq_rec(model_seq_rec) | |||
def computeSafeRegion(self,shape,bounding_rect): | |||
top = bounding_rect[1] # y | |||
bottom = bounding_rect[1] + bounding_rect[3] # y + h | |||
left = bounding_rect[0] # x | |||
right = bounding_rect[0] + bounding_rect[2] # x + w | |||
min_top = 0 | |||
max_bottom = shape[0] | |||
min_left = 0 | |||
max_right = shape[1] | |||
if top < min_top: | |||
top = min_top | |||
if left < min_left: | |||
left = min_left | |||
if bottom > max_bottom: | |||
bottom = max_bottom | |||
if right > max_right: | |||
right = max_right | |||
return [left,top,right-left,bottom-top] | |||
def cropImage(self,image,rect): | |||
x, y, w, h = self.computeSafeRegion(image.shape,rect) | |||
return image[y:y+h,x:x+w] | |||
def detectPlateRough(self,image_gray,resize_h = 720,en_scale =1.08 ,top_bottom_padding_rate = 0.05): | |||
if top_bottom_padding_rate>0.2: | |||
print("error:top_bottom_padding_rate > 0.2:",top_bottom_padding_rate) | |||
exit(1) | |||
height = image_gray.shape[0] | |||
padding = int(height*top_bottom_padding_rate) | |||
scale = image_gray.shape[1]/float(image_gray.shape[0]) | |||
image = cv2.resize(image_gray, (int(scale*resize_h), resize_h)) | |||
image_color_cropped = image[padding:resize_h-padding,0:image_gray.shape[1]] | |||
image_gray = cv2.cvtColor(image_color_cropped,cv2.COLOR_RGB2GRAY) | |||
watches = self.watch_cascade.detectMultiScale(image_gray, en_scale, 2, minSize=(36, 9),maxSize=(36*40, 9*40)) | |||
cropped_images = [] | |||
for (x, y, w, h) in watches: | |||
x -= w * 0.14 | |||
w += w * 0.28 | |||
y -= h * 0.15 | |||
h += h * 0.3 | |||
cropped = self.cropImage(image_color_cropped, (int(x), int(y), int(w), int(h))) | |||
cropped_images.append([cropped,[x, y+padding, w, h]]) | |||
return cropped_images | |||
def fastdecode(self,y_pred): | |||
results = "" | |||
confidence = 0.0 | |||
table_pred = y_pred.reshape(-1, len(chars)+1) | |||
res = table_pred.argmax(axis=1) | |||
for i,one in enumerate(res): | |||
if one<len(chars) and (i==0 or (one!=res[i-1])): | |||
results+= chars[one] | |||
confidence+=table_pred[i][one] | |||
confidence/= len(results) | |||
return results,confidence | |||
def model_seq_rec(self,model_path): | |||
width, height, n_len, n_class = 164, 48, 7, len(chars)+ 1 | |||
rnn_size = 256 | |||
input_tensor = Input((164, 48, 3)) | |||
x = input_tensor | |||
base_conv = 32 | |||
for i in range(3): | |||
x = Conv2D(base_conv * (2 ** (i)), (3, 3))(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
x = MaxPooling2D(pool_size=(2, 2))(x) | |||
conv_shape = x.get_shape() | |||
x = Reshape(target_shape=(int(conv_shape[1]), int(conv_shape[2] * conv_shape[3])))(x) | |||
x = Dense(32)(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(x) | |||
gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(x) | |||
gru1_merged = add([gru_1, gru_1b]) | |||
gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged) | |||
gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged) | |||
x = concatenate([gru_2, gru_2b]) | |||
x = Dropout(0.25)(x) | |||
x = Dense(n_class, kernel_initializer='he_normal', activation='softmax')(x) | |||
base_model = Model(inputs=input_tensor, outputs=x) | |||
base_model.load_weights(model_path) | |||
return base_model | |||
def model_finemapping(self): | |||
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input | |||
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) | |||
x = Activation("relu", name='relu1')(x) | |||
x = MaxPool2D(pool_size=2)(x) | |||
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) | |||
x = Activation("relu", name='relu2')(x) | |||
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) | |||
x = Activation("relu", name='relu3')(x) | |||
x = Flatten()(x) | |||
output = Dense(2,name = "dense")(x) | |||
output = Activation("relu", name='relu4')(output) | |||
model = Model([input], [output]) | |||
return model | |||
def finemappingVertical(self,image,rect): | |||
resized = cv2.resize(image,(66,16)) | |||
resized = resized.astype(np.float)/255 | |||
res_raw= self.modelFineMapping.predict(np.array([resized]))[0] | |||
res =res_raw*image.shape[1] | |||
res = res.astype(np.int) | |||
H,T = res | |||
H-=3 | |||
if H<0: | |||
H=0 | |||
T+=2; | |||
if T>= image.shape[1]-1: | |||
T= image.shape[1]-1 | |||
rect[2] -= rect[2]*(1-res_raw[1] + res_raw[0]) | |||
rect[0]+=res[0] | |||
image = image[:,H:T+2] | |||
image = cv2.resize(image, (int(136), int(36))) | |||
return image,rect | |||
def recognizeOne(self,src): | |||
x_tempx = src | |||
x_temp = cv2.resize(x_tempx,( 164,48)) | |||
x_temp = x_temp.transpose(1, 0, 2) | |||
y_pred = self.modelSeqRec.predict(np.array([x_temp])) | |||
y_pred = y_pred[:,2:,:] | |||
return self.fastdecode(y_pred) | |||
def SimpleRecognizePlateByE2E(self,image): | |||
images = self.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
res_set = [] | |||
for j,plate in enumerate(images): | |||
plate, rect =plate | |||
image_rgb,rect_refine = self.finemappingVertical(plate,rect) | |||
res,confidence = self.recognizeOne(image_rgb) | |||
res_set.append([res,confidence,rect_refine]) | |||
return res_set |
@@ -1,794 +0,0 @@ | |||
""" | |||
Author: youngorsu | |||
Email : zhiyongsu@qq.com | |||
Last edited: 2018.1.29 | |||
""" | |||
# coding=utf-8 | |||
import sys | |||
import os | |||
from PyQt5.QtWidgets import ( | |||
QMainWindow, | |||
QLabel, | |||
QLineEdit, | |||
QPushButton, | |||
QHBoxLayout, | |||
QVBoxLayout, | |||
QGridLayout, | |||
QTableWidget, | |||
QWidget, | |||
QAbstractItemView, | |||
QHeaderView, | |||
QGraphicsView, | |||
QGraphicsScene, | |||
QGraphicsPixmapItem, | |||
QSplitter, | |||
QFileDialog, | |||
QTableWidgetItem, | |||
QGraphicsRectItem, | |||
QCheckBox, | |||
QMessageBox, | |||
QGroupBox, | |||
QGraphicsSimpleTextItem, | |||
qApp, | |||
QAction, | |||
QApplication) | |||
from PyQt5.QtGui import QIcon, QColor, QPainter, QImage, QPixmap, QPen, QBrush, QFont, QPalette, QKeySequence | |||
from PyQt5.QtCore import Qt, QDir, QSize, QEventLoop, QThread, pyqtSignal | |||
from hyperlpr_py3 import pipline as pp | |||
import cv2 | |||
import numpy as np | |||
import time | |||
import shutil | |||
draw_plate_in_image_enable = 1 | |||
plateTypeName = ["蓝", "黄", "绿", "白", "黑 "] | |||
def SimpleRecognizePlateWithGui(image): | |||
t0 = time.time() | |||
images = pp.detect.detectPlateRough( | |||
image, image.shape[0], top_bottom_padding_rate=0.1) | |||
res_set = [] | |||
y_offset = 32 | |||
for j, plate in enumerate(images): | |||
plate, rect, origin_plate = plate | |||
plate = cv2.resize(plate, (136, 36 * 2)) | |||
t1 = time.time() | |||
plate_type = pp.td.SimplePredict(plate) | |||
plate_color = plateTypeName[plate_type] | |||
if (plate_type > 0) and (plate_type < 5): | |||
plate = cv2.bitwise_not(plate) | |||
if draw_plate_in_image_enable == 1: | |||
image[y_offset:y_offset + plate.shape[0], 0:plate.shape[1]] = plate | |||
y_offset = y_offset + plate.shape[0] + 4 | |||
image_rgb = pp.fm.findContoursAndDrawBoundingBox(plate) | |||
if draw_plate_in_image_enable == 1: | |||
image[y_offset:y_offset + image_rgb.shape[0], | |||
0:image_rgb.shape[1]] = image_rgb | |||
y_offset = y_offset + image_rgb.shape[0] + 4 | |||
image_rgb = pp.fv.finemappingVertical(image_rgb) | |||
if draw_plate_in_image_enable == 1: | |||
image[y_offset:y_offset + image_rgb.shape[0], | |||
0:image_rgb.shape[1]] = image_rgb | |||
y_offset = y_offset + image_rgb.shape[0] + 4 | |||
pp.cache.verticalMappingToFolder(image_rgb) | |||
if draw_plate_in_image_enable == 1: | |||
image[y_offset:y_offset + image_rgb.shape[0], | |||
0:image_rgb.shape[1]] = image_rgb | |||
y_offset = y_offset + image_rgb.shape[0] + 4 | |||
e2e_plate, e2e_confidence = pp.e2e.recognizeOne(image_rgb) | |||
print("e2e:", e2e_plate, e2e_confidence) | |||
image_gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY) | |||
#print("校正", time.time() - t1, "s") | |||
t2 = time.time() | |||
val = pp.segmentation.slidingWindowsEval(image_gray) | |||
# print val | |||
#print("分割和识别", time.time() - t2, "s") | |||
res="" | |||
confidence = 0 | |||
if len(val) == 3: | |||
blocks, res, confidence = val | |||
if confidence / 7 > 0.7: | |||
if draw_plate_in_image_enable == 1: | |||
image = pp.drawRectBox(image, rect, res) | |||
for i, block in enumerate(blocks): | |||
block_ = cv2.resize(block, (24, 24)) | |||
block_ = cv2.cvtColor(block_, cv2.COLOR_GRAY2BGR) | |||
image[j * 24:(j * 24) + 24, i * | |||
24:(i * 24) + 24] = block_ | |||
if image[j * 24:(j * 24) + 24, | |||
i * 24:(i * 24) + 24].shape == block_.shape: | |||
pass | |||
res_set.append([res, | |||
confidence / 7, | |||
rect, | |||
plate_color, | |||
e2e_plate, | |||
e2e_confidence, | |||
len(blocks)]) | |||
print("seg:",res,confidence/7) | |||
#print(time.time() - t0, "s") | |||
print("---------------------------------") | |||
return image, res_set | |||
class LicenseRecognizationThread(QThread): | |||
recognization_done_signal = pyqtSignal(list) | |||
def __init__(self, parent=None): | |||
super().__init__(parent) | |||
self.hyperlpr_dir_path = "" | |||
self.filenames = [] | |||
def set_parameter(self, filename_list, path): | |||
self.hyperlpr_dir_path = path | |||
self.filenames = filename_list | |||
def run(self): | |||
while True: | |||
time.sleep(1) | |||
if len(self.hyperlpr_dir_path) > 0: | |||
for i in range(0, len(self.filenames)): | |||
path = os.path.join( | |||
self.hyperlpr_dir_path, self.filenames[i]) | |||
image = cv2.imdecode(np.fromfile(path, dtype=np.uint8), -1) | |||
image, res_set = SimpleRecognizePlateWithGui(image) | |||
self.recognization_done_signal.emit([i, res_set]) | |||
self.hyperlpr_dir_path = "" | |||
class HyperLprImageView(QGraphicsView): | |||
def __init__(self): | |||
super().__init__() | |||
self.init_ui() | |||
def init_ui(self): | |||
scene = QGraphicsScene() | |||
scene.setBackgroundBrush(QColor(100, 100, 100)) | |||
scene.setItemIndexMethod(QGraphicsScene.BspTreeIndex) | |||
scene.setSceneRect(scene.itemsBoundingRect()) | |||
self.setDragMode(QGraphicsView.RubberBandDrag) | |||
self.setViewportUpdateMode(QGraphicsView.FullViewportUpdate) | |||
self.setRenderHints(QPainter.Antialiasing | QPainter.TextAntialiasing) | |||
self.frame_item = QGraphicsPixmapItem() | |||
self.text_item_offset = 0 | |||
self.rect_item_array = [] | |||
self.text_item_array = [] | |||
for i in range(0, 5): | |||
rect_item = QGraphicsRectItem() | |||
rect_item.setVisible(False) | |||
rect_item.setZValue(20.0) | |||
rect_item.setPen(QPen(Qt.red, 5)) | |||
rect_item.setRect(20, 20, 20, 20) | |||
scene.addItem(rect_item) | |||
self.rect_item_array.append(rect_item) | |||
text_item = QGraphicsSimpleTextItem("") | |||
text_item.setBrush(QBrush(Qt.red)) | |||
text_item.setZValue(20.0) | |||
text_item.setPos(10, 50) | |||
text_item.setFont(QFont("黑体", 24)) | |||
text_item.setVisible(False) | |||
scene.addItem(text_item) | |||
self.text_item_array.append(text_item) | |||
scene.addItem(self.frame_item) | |||
self.curr_factor = 1.0 | |||
self.setScene(scene) | |||
def resetRectText(self, res_set): | |||
max_no = len(res_set) | |||
if max_no > 5: | |||
max_no = 5 | |||
for i in range(0, 5): | |||
if i < max_no: | |||
curr_rect = res_set[i][2] | |||
self.rect_item_array[i].setRect(int(curr_rect[0]), int( | |||
curr_rect[1]), int(curr_rect[2]), int(curr_rect[3])) | |||
self.rect_item_array[i].setVisible(True) | |||
self.text_item_array[i].setText( | |||
res_set[i][4] + " " + res_set[i][3]) | |||
self.text_item_array[i].setPos( | |||
int(curr_rect[0]), int(curr_rect[1]) - 48) | |||
self.text_item_array[i].setVisible(True) | |||
else: | |||
self.text_item_array[i].setVisible(False) | |||
self.rect_item_array[i].setVisible(False) | |||
def wheelEvent(self, event): | |||
factor = event.angleDelta().y() / 120.0 | |||
if event.angleDelta().y() / 120.0 > 0: | |||
factor = 1.08 | |||
else: | |||
factor = 0.92 | |||
if self.curr_factor > 0.1 and self.curr_factor < 10: | |||
self.curr_factor = self.curr_factor * factor | |||
self.scale(factor, factor) | |||
def resetPixmap(self, image): | |||
self.frame_item.setPixmap(QPixmap.fromImage(image)) | |||
class HyperLprWindow(QMainWindow): | |||
start_init_signal = pyqtSignal() | |||
def __init__(self): | |||
super().__init__() | |||
self.initUI() | |||
def initUI(self): | |||
self.statusBar().showMessage('Ready') | |||
self.left_action = QAction('上一个', self) | |||
self.left_action.setShortcut(QKeySequence.MoveToPreviousChar) | |||
self.left_action.triggered.connect(self.analyze_last_one_image) | |||
self.right_action = QAction('下一个', self) | |||
self.right_action.setShortcut(QKeySequence.MoveToNextChar) | |||
self.right_action.triggered.connect(self.analyze_next_one_image) | |||
self.rename_image_action = QAction('保存e2e文件名', self) | |||
self.rename_image_action.setShortcut(QKeySequence.MoveToPreviousLine) | |||
self.rename_image_action.triggered.connect(self.rename_current_image_with_info) | |||
self.statusBar() | |||
menubar = self.menuBar() | |||
fileMenu = menubar.addMenu('&Function') | |||
fileMenu.addAction(self.left_action) | |||
fileMenu.addAction(self.right_action) | |||
fileMenu.addAction(self.rename_image_action) | |||
self.image_window_view = HyperLprImageView() | |||
table_widget_header_labels = [ | |||
"文件名", | |||
"分割识别", | |||
"置信度", | |||
"颜色", | |||
"E2E识别", | |||
"E2E置信度"] | |||
self.hyperlpr_tableview = QTableWidget( | |||
0, len(table_widget_header_labels)) | |||
self.hyperlpr_tableview.setHorizontalHeaderLabels( | |||
table_widget_header_labels) | |||
self.hyperlpr_tableview.setSelectionBehavior( | |||
QAbstractItemView.SelectItems) | |||
self.hyperlpr_tableview.setSelectionMode( | |||
QAbstractItemView.SingleSelection) | |||
self.hyperlpr_tableview.setEditTriggers( | |||
QAbstractItemView.NoEditTriggers) | |||
self.hyperlpr_tableview.horizontalHeader().setSectionResizeMode( | |||
QHeaderView.ResizeToContents) | |||
self.hyperlpr_tableview.setEditTriggers( | |||
QAbstractItemView.NoEditTriggers) | |||
self.hyperlpr_tableview.cellClicked.connect( | |||
self.recognize_one_license_plate) | |||
self.left_button = QPushButton("<") | |||
self.left_button.setFixedWidth(60) | |||
self.right_button = QPushButton(">") | |||
self.right_button.setFixedWidth(60) | |||
self.left_button.setEnabled(False) | |||
self.right_button.setEnabled(False) | |||
self.left_button.clicked.connect(self.analyze_last_one_image) | |||
self.right_button.clicked.connect(self.analyze_next_one_image) | |||
left_right_layout = QHBoxLayout() | |||
left_right_layout.addStretch() | |||
left_right_layout.addWidget(self.left_button) | |||
left_right_layout.addStretch() | |||
left_right_layout.addWidget(self.right_button) | |||
left_right_layout.addStretch() | |||
self.location_label = QLabel("车牌目录", self) | |||
self.location_text = QLineEdit(self) | |||
self.location_text.setEnabled(False) | |||
#self.location_text.setFixedWidth(300) | |||
self.location_button = QPushButton("...") | |||
self.location_button.clicked.connect(self.select_new_dir) | |||
self.location_layout = QHBoxLayout() | |||
self.location_layout.addWidget(self.location_label) | |||
self.location_layout.addWidget(self.location_text) | |||
self.location_layout.addWidget(self.location_button) | |||
self.location_layout.addStretch() | |||
self.check_box = QCheckBox("与文件名比较车牌") | |||
self.check_box.setChecked(True) | |||
self.update_file_path_button = QPushButton('批量识别') | |||
self.update_file_path_button.clicked.connect( | |||
self.batch_recognize_all_images) | |||
self.update_file_path_layout = QHBoxLayout() | |||
self.update_file_path_layout.addWidget(self.check_box) | |||
self.update_file_path_layout.addWidget(self.update_file_path_button) | |||
self.update_file_path_layout.addStretch() | |||
self.save_as_e2e_filename_button = QPushButton("保存e2e文件名") | |||
self.save_as_e2e_filename_button.setEnabled(False) | |||
self.save_as_e2e_filename_button.clicked.connect(self.rename_current_image_with_info) | |||
self.save_layout = QHBoxLayout() | |||
self.save_layout.addWidget(self.save_as_e2e_filename_button) | |||
self.save_layout.addStretch() | |||
self.top_layout = QVBoxLayout() | |||
self.top_layout.addLayout(left_right_layout) | |||
self.top_layout.addLayout(self.location_layout) | |||
self.top_layout.addLayout(self.update_file_path_layout) | |||
self.top_layout.addLayout(self.save_layout) | |||
function_groupbox = QGroupBox("功能区") | |||
function_groupbox.setLayout(self.top_layout) | |||
license_plate_image_label = QLabel("车牌图") | |||
self.license_plate_widget = QLabel("") | |||
block_image_label = QLabel("分割图") | |||
self.block_plate_widget = QLabel("") | |||
filename_label = QLabel("文件名:") | |||
self.filename_edit = QLineEdit() | |||
segmentation_recognition_label = QLabel("分割识别:") | |||
self.segmentation_recognition_edit = QLineEdit() | |||
self.segmentation_recognition_edit.setFont(QFont("黑体", 24, QFont.Bold)) | |||
# self.segmentation_recognition_edit.setStyleSheet("color:red") | |||
confidence_label = QLabel("分割识别\n置信度") | |||
self.confidence_edit = QLineEdit() | |||
#self.confidence_edit.setFont(QFont("黑体", 24, QFont.Bold)) | |||
# self.confidence_edit.setStyleSheet("color:red") | |||
plate_color_label = QLabel("车牌颜色") | |||
self.plate_color_edit = QLineEdit() | |||
self.plate_color_edit.setFont(QFont("黑体", 24, QFont.Bold)) | |||
# self.plate_color_edit.setStyleSheet("color:red") | |||
e2e_recognization_label = QLabel("e2e识别:") | |||
self.e2e_recognization_edit = QLineEdit() | |||
self.e2e_recognization_edit.setFont(QFont("黑体", 24, QFont.Bold)) | |||
# self.e2e_recognization_edit.setStyleSheet("color:red") | |||
e2e_confidence_label = QLabel("e2e置信度") | |||
self.e2e_confidence_edit = QLineEdit() | |||
#self.e2e_confidence_edit.setFont(QFont("黑体", 24, QFont.Bold)) | |||
# self.e2e_confidence_edit.setStyleSheet("color:red") | |||
info_gridlayout = QGridLayout() | |||
line_index = 0 | |||
info_gridlayout.addWidget(filename_label, line_index, 0) | |||
info_gridlayout.addWidget(self.filename_edit, line_index, 1) | |||
line_index += 1 | |||
info_gridlayout.addWidget(license_plate_image_label, line_index, 0) | |||
info_gridlayout.addWidget(self.license_plate_widget, line_index, 1) | |||
line_index += 1 | |||
info_gridlayout.addWidget(e2e_recognization_label, line_index, 0) | |||
info_gridlayout.addWidget(self.e2e_recognization_edit, line_index, 1) | |||
line_index += 1 | |||
info_gridlayout.addWidget( | |||
segmentation_recognition_label, line_index, 0) | |||
info_gridlayout.addWidget( | |||
self.segmentation_recognition_edit, line_index, 1) | |||
line_index += 1 | |||
info_gridlayout.addWidget(plate_color_label, line_index, 0) | |||
info_gridlayout.addWidget(self.plate_color_edit, line_index, 1) | |||
line_index += 1 | |||
info_gridlayout.addWidget(block_image_label, line_index, 0) | |||
info_gridlayout.addWidget(self.block_plate_widget, line_index, 1) | |||
line_index += 1 | |||
info_gridlayout.addWidget(confidence_label, line_index, 0) | |||
info_gridlayout.addWidget(self.confidence_edit, line_index, 1) | |||
line_index += 1 | |||
info_gridlayout.addWidget(e2e_confidence_label, line_index, 0) | |||
info_gridlayout.addWidget(self.e2e_confidence_edit, line_index, 1) | |||
info_widget = QGroupBox("分割识别&e2e") | |||
info_widget.setLayout(info_gridlayout) | |||
right_splitter = QSplitter(Qt.Vertical) | |||
right_splitter.addWidget(self.hyperlpr_tableview) | |||
right_splitter.addWidget(function_groupbox) | |||
right_splitter.addWidget(info_widget) | |||
right_splitter.setStretchFactor(0, 2) | |||
right_splitter.setStretchFactor(2, 1) | |||
main_splitter = QSplitter(Qt.Horizontal) | |||
main_splitter.addWidget(self.image_window_view) | |||
main_splitter.addWidget(right_splitter) | |||
main_splitter.setStretchFactor(0, 1) | |||
self.image_filename_list = [] | |||
self.hyperlpr_dir_path = "" | |||
self.segmentation_recognition_correct_number = 0 | |||
self.color_correct_number = 0 | |||
self.e2e_recognization_correct_number = 0 | |||
self.current_row = 0 | |||
self.batch_recognization_thread = LicenseRecognizationThread() | |||
self.batch_recognization_thread.recognization_done_signal.connect( | |||
self.recognization_done_slot) | |||
self.batch_recognization_thread.start() | |||
self.start_init_signal.connect(self.read_path_and_show_one_image) | |||
self.setCentralWidget(main_splitter) | |||
self.setWindowTitle("HyperLPR车牌识别软件v1.0") | |||
self.start_init_signal.emit() | |||
def read_path_and_show_one_image(self): | |||
hyperlpr_dir_info_filepath = QDir.homePath() + "/hyperlpr_dir_file" | |||
if os.path.exists(hyperlpr_dir_info_filepath): | |||
with open(hyperlpr_dir_info_filepath, 'r') as f: | |||
self.hyperlpr_dir_path = f.read() | |||
if len(self.hyperlpr_dir_path) > 0: | |||
self.reset_info_gui() | |||
if len(self.image_filename_list) > 0: | |||
self.recognize_and_show_one_image(self.image_filename_list[0], 0) | |||
def select_new_dir(self): | |||
self.hyperlpr_dir_path = QFileDialog.getExistingDirectory( | |||
self, "读取文件夹", QDir.currentPath()) | |||
if len(self.hyperlpr_dir_path) > 0: | |||
hyperlpr_dir_info_filepath = QDir.homePath() + "/hyperlpr_dir_file" | |||
with open(hyperlpr_dir_info_filepath, 'w') as f: | |||
f.write(self.hyperlpr_dir_path) | |||
self.reset_info_gui() | |||
def rename_current_image_with_info(self): | |||
if len(self.hyperlpr_dir_path) > 0: | |||
target_dir_path = self.hyperlpr_dir_path + "/result" | |||
if not os.path.exists(target_dir_path): | |||
os.makedirs(target_dir_path) | |||
if len(self.plate_color_edit.text())>0 and len(self.e2e_recognization_edit.text())>0: | |||
orign_path = os.path.join(self.hyperlpr_dir_path, self.filename_edit.text()) | |||
target_path = os.path.join(target_dir_path,self.plate_color_edit.text()+"-"+self.e2e_recognization_edit.text()+".jpg") | |||
shutil.copyfile(orign_path, target_path) | |||
def reset_info_gui(self): | |||
self.location_text.setText(self.hyperlpr_dir_path) | |||
self.scan_files_with_new_dir(self.hyperlpr_dir_path) | |||
self.fill_table_with_new_info() | |||
def scan_files_with_new_dir(self, path): | |||
name_list = os.listdir(path) # 列出文件夹下所有的目录与文件 | |||
self.image_filename_list.clear() | |||
for i in range(0, len(name_list)): | |||
if name_list[i].endswith( | |||
".jpg") or name_list[i].endswith(".png"): | |||
self.image_filename_list.append(name_list[i]) | |||
def fill_table_with_new_info(self): | |||
self.hyperlpr_tableview.clearContents() | |||
row_count = self.hyperlpr_tableview.rowCount() | |||
for i in range(row_count, -1, -1): | |||
self.hyperlpr_tableview.removeRow(i) | |||
for i in range(0, len(self.image_filename_list)): | |||
row = self.hyperlpr_tableview.rowCount() | |||
self.hyperlpr_tableview.insertRow(row) | |||
item0 = QTableWidgetItem() | |||
item0.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(row, 0, item0) | |||
self.hyperlpr_tableview.item( | |||
row, 0).setText( | |||
self.image_filename_list[i]) | |||
item1 = QTableWidgetItem() | |||
item1.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(row, 1, item1) | |||
item2 = QTableWidgetItem() | |||
item2.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(row, 2, item2) | |||
item3 = QTableWidgetItem() | |||
item3.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(row, 3, item3) | |||
item4 = QTableWidgetItem() | |||
item4.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(row, 4, item4) | |||
item5 = QTableWidgetItem() | |||
item5.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(row, 5, item5) | |||
if len(self.image_filename_list) > 0: | |||
self.left_button.setEnabled(True) | |||
self.right_button.setEnabled(True) | |||
self.save_as_e2e_filename_button.setEnabled(True) | |||
def analyze_last_one_image(self): | |||
if self.current_row > 0: | |||
self.recognize_one_license_plate(self.current_row-1, 0) | |||
def analyze_next_one_image(self): | |||
if self.current_row < (len(self.image_filename_list)-1): | |||
self.recognize_one_license_plate(self.current_row + 1, 0) | |||
def recognize_one_license_plate(self, row, col): | |||
if col == 0 and row < len(self.image_filename_list): | |||
self.current_row = row | |||
self.recognize_and_show_one_image( | |||
self.image_filename_list[row], row) | |||
def recognize_and_show_one_image(self, image_filename_text, row): | |||
if image_filename_text.endswith(".jpg"): | |||
print(image_filename_text) | |||
path = os.path.join(self.hyperlpr_dir_path, image_filename_text) | |||
image = cv2.imdecode(np.fromfile(path, dtype=np.uint8), -1) | |||
image, res_set = SimpleRecognizePlateWithGui(image) | |||
img = QImage( | |||
image.data, | |||
image.shape[1], | |||
image.shape[0], | |||
image.shape[1] * image.shape[2], | |||
QImage.Format_RGB888) | |||
self.image_window_view.resetPixmap(img.rgbSwapped()) | |||
self.image_window_view.resetRectText(res_set) | |||
if len(res_set) > 0: | |||
curr_rect = res_set[0][2] | |||
image_crop = image[int(curr_rect[1]):int( | |||
curr_rect[1] + curr_rect[3]), int(curr_rect[0]):int(curr_rect[0] + curr_rect[2])] | |||
curr_plate = cv2.resize(image_crop, (204, 108)) | |||
plate_img = QImage( | |||
curr_plate.data, | |||
curr_plate.shape[1], | |||
curr_plate.shape[0], | |||
curr_plate.shape[1] * | |||
curr_plate.shape[2], | |||
QImage.Format_RGB888) | |||
self.license_plate_widget.setPixmap( | |||
QPixmap.fromImage(plate_img.rgbSwapped())) | |||
# print(res_set[0][6]) | |||
block_crop = image[0:24, 0:(24 * int(res_set[0][6]))] | |||
curr_block = cv2.resize( | |||
block_crop, (24 * int(res_set[0][6]), 24)) | |||
block_image = QImage( | |||
curr_block.data, | |||
curr_block.shape[1], | |||
curr_block.shape[0], | |||
curr_block.shape[1] * | |||
curr_block.shape[2], | |||
QImage.Format_RGB888) | |||
self.block_plate_widget.setPixmap( | |||
QPixmap.fromImage(block_image.rgbSwapped())) | |||
self.segmentation_recognition_edit.setText(res_set[0][0]) | |||
if res_set[0][0] in image_filename_text: | |||
self.segmentation_recognition_edit.setStyleSheet("color:black") | |||
else: | |||
self.segmentation_recognition_edit.setStyleSheet("color:red") | |||
self.filename_edit.setText(image_filename_text) | |||
self.confidence_edit.setText("%.3f" % (float(res_set[0][1]))) | |||
self.plate_color_edit.setText(res_set[0][3]) | |||
if res_set[0][3] in image_filename_text: | |||
self.plate_color_edit.setStyleSheet("color:black") | |||
else: | |||
self.plate_color_edit.setStyleSheet("color:red") | |||
self.e2e_recognization_edit.setText(res_set[0][4]) | |||
if res_set[0][4] in image_filename_text: | |||
self.e2e_recognization_edit.setStyleSheet("color:black") | |||
else: | |||
self.e2e_recognization_edit.setStyleSheet("color:red") | |||
self.e2e_confidence_edit.setText( | |||
"%.3f" % (float(res_set[0][5]))) | |||
else: | |||
self.license_plate_widget.clear() | |||
self.block_plate_widget.clear() | |||
self.segmentation_recognition_edit.setText("") | |||
self.filename_edit.setText(image_filename_text) | |||
self.confidence_edit.setText("") | |||
self.plate_color_edit.setText("") | |||
self.e2e_recognization_edit.setText("") | |||
self.e2e_confidence_edit.setText("") | |||
self.fill_table_widget_with_res_info(res_set, row) | |||
def batch_recognize_all_images(self): | |||
self.segmentation_recognition_correct_number = 0 | |||
self.color_correct_number = 0 | |||
self.e2e_recognization_correct_number = 0 | |||
self.batch_recognization_thread.set_parameter( | |||
self.image_filename_list, self.hyperlpr_dir_path) | |||
def recognization_done_slot(self, result_list): | |||
row = result_list[0] | |||
res_set = result_list[1] | |||
self.fill_table_widget_with_res_info(res_set, row) | |||
if row == len(self.image_filename_list) - 1: | |||
total_number = len(self.image_filename_list) | |||
row_count = self.hyperlpr_tableview.rowCount() | |||
if row_count > total_number: | |||
self.hyperlpr_tableview.removeRow(total_number) | |||
self.hyperlpr_tableview.insertRow(total_number) | |||
item0 = QTableWidgetItem() | |||
item0.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(total_number, 0, item0) | |||
self.hyperlpr_tableview.item( | |||
total_number, 0).setText( | |||
"统计结果") | |||
item1 = QTableWidgetItem() | |||
item1.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(total_number, 1, item1) | |||
self.hyperlpr_tableview.item( | |||
total_number, | |||
1).setText( | |||
"{0} / {1} = {2: .3f}".format( | |||
self.segmentation_recognition_correct_number, | |||
total_number, | |||
self.segmentation_recognition_correct_number / | |||
total_number)) | |||
item2 = QTableWidgetItem() | |||
item2.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(total_number, 2, item2) | |||
item3 = QTableWidgetItem() | |||
item3.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(total_number, 3, item3) | |||
self.hyperlpr_tableview.item( | |||
total_number, 3).setText( | |||
"{0} / {1} = {2: .3f}".format(self.e2e_recognization_correct_number, total_number, | |||
self.e2e_recognization_correct_number / total_number)) | |||
item4 = QTableWidgetItem() | |||
item4.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(total_number, 4, item4) | |||
self.hyperlpr_tableview.item( | |||
total_number, 4).setText( | |||
"{0} / {1} = {2: .3f}".format(self.color_correct_number, total_number, | |||
self.color_correct_number / total_number)) | |||
item5 = QTableWidgetItem() | |||
item5.setTextAlignment(Qt.AlignCenter) | |||
self.hyperlpr_tableview.setItem(total_number, 5, item5) | |||
def fill_table_widget_with_res_info(self, res_set, row): | |||
image_filename_text = self.image_filename_list[row] | |||
if len(res_set) > 0: | |||
self.hyperlpr_tableview.item(row, 1).setText(res_set[0][0]) | |||
if res_set[0][0] in image_filename_text: | |||
self.hyperlpr_tableview.item( | |||
row, 1).setForeground( | |||
QBrush( | |||
QColor( | |||
0, 0, 255))) | |||
self.segmentation_recognition_correct_number += 1 | |||
else: | |||
self.hyperlpr_tableview.item( | |||
row, 1).setForeground( | |||
QBrush( | |||
QColor( | |||
255, 0, 0))) | |||
self.hyperlpr_tableview.item( | |||
row, 2).setText( | |||
"%.3f" % | |||
(float( | |||
res_set[0][1]))) | |||
self.hyperlpr_tableview.item(row, 3).setText(res_set[0][3]) | |||
if res_set[0][3] in image_filename_text: | |||
self.hyperlpr_tableview.item( | |||
row, 3).setForeground( | |||
QBrush( | |||
QColor( | |||
0, 0, 255))) | |||
self.color_correct_number += 1 | |||
else: | |||
self.hyperlpr_tableview.item( | |||
row, 3).setForeground( | |||
QBrush( | |||
QColor( | |||
255, 0, 0))) | |||
self.hyperlpr_tableview.item(row, 4).setText(res_set[0][4]) | |||
if res_set[0][4] in image_filename_text: | |||
self.hyperlpr_tableview.item( | |||
row, 4).setForeground( | |||
QBrush( | |||
QColor( | |||
0, 0, 255))) | |||
self.e2e_recognization_correct_number += 1 | |||
else: | |||
self.hyperlpr_tableview.item( | |||
row, 4).setForeground( | |||
QBrush( | |||
QColor( | |||
255, 0, 0))) | |||
self.hyperlpr_tableview.item( | |||
row, 5).setText( | |||
"%.3f" % | |||
(float( | |||
res_set[0][5]))) | |||
if __name__ == '__main__': | |||
app = QApplication(sys.argv) | |||
hyper_lpr_widow = HyperLprWindow() | |||
hyper_lpr_widow.showMaximized() | |||
sys.exit(app.exec_()) |
@@ -1,3 +1,3 @@ | |||
cmake_minimum_required(VERSION 3.6) | |||
project(SwiftPR) | |||
add_subdirectory(lpr) | |||
project(HyperLPR) | |||
add_subdirectory(hyperlpr) |
@@ -0,0 +1,3 @@ | |||
<component name="ProjectDictionaryState"> | |||
<dictionary name="yujinke" /> | |||
</component> |
@@ -0,0 +1,6 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<project version="4"> | |||
<component name="Encoding"> | |||
<file url="PROJECT" charset="UTF-8" /> | |||
</component> | |||
</project> |
@@ -0,0 +1,408 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<module type="CPP_MODULE" version="4"> | |||
<component name="NewModuleRootManager"> | |||
<content url="file://$MODULE_DIR$"> | |||
<sourceFolder url="file://$MODULE_DIR$/src/util.h" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/Recognizer.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/PlateSegmentation.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/CNNRecognizer.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/FastDeskew.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/FineMapping.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/Pipeline.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/PlateDetection.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/src/SegmentationFreeRecognizer.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/include/PlateDetection.h" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/CMakeLists.txt" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/tests/test_segmentationFree.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/tests/test_recognization.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/tests/test_finemapping.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/tests/test_fastdeskew.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/tests/test_segmentation.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/tests/test_detection.cpp" isTestSource="false" /> | |||
<sourceFolder url="file://$MODULE_DIR$/tests/test_pipeline.cpp" isTestSource="false" /> | |||
</content> | |||
<orderEntry type="sourceFolder" forTests="false" /> | |||
<orderEntry type="module-library"> | |||
<library name="Header Search Paths"> | |||
<CLASSES> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Intents.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/HIToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/SpeechRecognition.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/NavigationServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/CommonPanels.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/Help.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/SecurityHI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/OpenScripting.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/Print.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/Ink.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/CarbonSound.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/ImageCapture.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/InstantMessage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MapKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DirectoryService.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SafariServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/InstallerPlugins.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ForceFeedback.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreMediaIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreWLAN.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaVM.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaVM.framework/Frameworks/JavaRuntimeSupport.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaVM.framework/Frameworks/JavaNativeFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Metal.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SpriteKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Security.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AdSupport.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Kerberos.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/QuartzCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaAccessibility.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AddressBook.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/FWAUserLib.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/EventKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/PrintCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/LangAnalysis.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/ATS.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/HIServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/QD.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/ImageIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/ColorSync.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/SpeechSynthesis.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreText.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Cocoa.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/vmnet.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreMedia.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GSS.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ExceptionHandling.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Tcl.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SystemConfiguration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreAudioKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NaturalLanguage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenCL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Python.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Contacts.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/VideoSubscriberAccount.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreVideo.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GameKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenGL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenAL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CalendarStore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AVKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/FinderSync.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/WebKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/iTunesLibrary.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/StoreKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSImage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSNeuralNetwork.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSRayIntersector.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSMatrix.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accounts.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SyncServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AVFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AVFoundation.framework/Frameworks/AVFAudio.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Kernel.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AppKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/InputMethodKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SecurityInterface.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreImage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GLUT.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/OSServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/SearchKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/LaunchServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/SharedFileList.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/AE.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/FSEvents.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/CarbonCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/DictionaryServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenDirectory.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenDirectory.framework/Frameworks/CFOpenDirectory.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOBluetooth.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ScriptingBridge.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreAudio.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DiskArbitration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreBluetooth.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Photos.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DVDPlayback.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AudioVideoBridging.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/QTKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GameController.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ModelIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaLibrary.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OSAKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOBluetoothUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreMIDI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/LocalAuthentication.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NetFS.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/PreferencePanes.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ScreenSaver.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ImageCaptureCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ExternalAccessory.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ImageIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Automator.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Vision.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaPlayer.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreData.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Social.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreText.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NetworkExtension.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SceneKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/PhotosUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/QuickLook.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Tk.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaScriptCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IMServicePlugIn.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AudioUnit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Foundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOSurface.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreML.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Hypervisor.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GLKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/BusinessChat.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ColorSync.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/QuickLookUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/QuartzFilters.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/ImageKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/PDFKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CloudKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GameplayKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AppleScriptObjC.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CFNetwork.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CryptoTokenKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Ruby.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DiscRecordingUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Collaboration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreGraphics.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreTelephony.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AGL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/VideoDecodeAcceleration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ContactsUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Network.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/VideoToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NotificationCenter.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreSpotlight.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/UserNotifications.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreLocation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DiscRecording.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/TWAIN.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/PCSC.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SecurityFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/LatentSemanticMapping.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AppleScriptKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MultipeerConnectivity.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/LDAP.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaFrameEmbedding.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ServiceManagement.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ICADevices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AudioToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accelerate.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accelerate.framework/Frameworks/vImage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accelerate.framework/Frameworks/vecLib.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/usr/include" /> | |||
<root url="file:///Library/Developer/CommandLineTools/usr/include" /> | |||
<root url="file:///Library/Developer/CommandLineTools/usr/lib/clang/10.0.1/include" /> | |||
<root url="file:///usr/local/include" /> | |||
</CLASSES> | |||
<SOURCES> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Intents.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/HIToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/SpeechRecognition.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/NavigationServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/CommonPanels.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/Help.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/SecurityHI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/OpenScripting.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/Print.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/Ink.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/CarbonSound.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Carbon.framework/Frameworks/ImageCapture.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/InstantMessage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MapKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DirectoryService.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SafariServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/InstallerPlugins.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ForceFeedback.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreMediaIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreWLAN.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaVM.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaVM.framework/Frameworks/JavaRuntimeSupport.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaVM.framework/Frameworks/JavaNativeFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Metal.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SpriteKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Security.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AdSupport.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Kerberos.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/QuartzCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaAccessibility.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AddressBook.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/FWAUserLib.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/EventKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/PrintCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/LangAnalysis.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/ATS.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/HIServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/QD.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/ImageIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/ColorSync.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/SpeechSynthesis.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreText.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Cocoa.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/vmnet.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreMedia.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GSS.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ExceptionHandling.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Tcl.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SystemConfiguration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreAudioKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NaturalLanguage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenCL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Python.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Contacts.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/VideoSubscriberAccount.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreVideo.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GameKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenGL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenAL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CalendarStore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AVKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/FinderSync.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/WebKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/iTunesLibrary.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/StoreKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSImage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSNeuralNetwork.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSRayIntersector.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MetalPerformanceShaders.framework/Frameworks/MPSMatrix.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accounts.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SyncServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AVFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AVFoundation.framework/Frameworks/AVFAudio.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Kernel.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AppKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/InputMethodKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SecurityInterface.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreImage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GLUT.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/OSServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/SearchKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/LaunchServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/SharedFileList.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/AE.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/FSEvents.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/CarbonCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreServices.framework/Frameworks/DictionaryServices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenDirectory.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OpenDirectory.framework/Frameworks/CFOpenDirectory.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOBluetooth.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ScriptingBridge.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreAudio.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DiskArbitration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreBluetooth.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Photos.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DVDPlayback.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AudioVideoBridging.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/QTKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GameController.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ModelIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaLibrary.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/OSAKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOBluetoothUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreMIDI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/LocalAuthentication.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NetFS.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/PreferencePanes.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ScreenSaver.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ImageCaptureCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ExternalAccessory.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ImageIO.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Automator.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Vision.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaPlayer.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreData.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Social.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreText.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NetworkExtension.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SceneKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/PhotosUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/QuickLook.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Tk.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaScriptCore.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IMServicePlugIn.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AudioUnit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Foundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/IOSurface.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreML.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Hypervisor.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GLKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/BusinessChat.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ColorSync.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/QuickLookUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/QuartzFilters.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/ImageKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/QuartzComposer.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Quartz.framework/Frameworks/PDFKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CloudKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/GameplayKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AppleScriptObjC.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CFNetwork.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CryptoTokenKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Ruby.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DiscRecordingUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Collaboration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MediaToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreGraphics.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreTelephony.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AGL.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/VideoDecodeAcceleration.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ContactsUI.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Network.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/VideoToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/NotificationCenter.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreSpotlight.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/UserNotifications.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/CoreLocation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/DiscRecording.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/TWAIN.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/PCSC.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/SecurityFoundation.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/LatentSemanticMapping.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AppleScriptKit.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/MultipeerConnectivity.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/LDAP.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/JavaFrameEmbedding.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ServiceManagement.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/ICADevices.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/AudioToolbox.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accelerate.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accelerate.framework/Frameworks/vImage.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/System/Library/Frameworks/Accelerate.framework/Frameworks/vecLib.framework/Headers" /> | |||
<root url="file:///Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/usr/include" /> | |||
<root url="file:///Library/Developer/CommandLineTools/usr/include" /> | |||
<root url="file:///Library/Developer/CommandLineTools/usr/lib/clang/10.0.1/include" /> | |||
<root url="file:///usr/local/include" /> | |||
</SOURCES> | |||
</library> | |||
</orderEntry> | |||
</component> | |||
</module> |
@@ -0,0 +1,51 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<project version="4"> | |||
<component name="CMakeWorkspace" PROJECT_DIR="$PROJECT_DIR$" /> | |||
<component name="ProjectInspectionProfilesVisibleTreeState"> | |||
<entry key="Project Default"> | |||
<profile-state> | |||
<expanded-state> | |||
<State> | |||
<id /> | |||
</State> | |||
<State> | |||
<id>C/C++</id> | |||
</State> | |||
</expanded-state> | |||
<selected-state> | |||
<State> | |||
<id>Declaration orderC/C++</id> | |||
</State> | |||
</selected-state> | |||
</profile-state> | |||
</entry> | |||
</component> | |||
<component name="ProjectLevelVcsManager" settingsEditedManually="false"> | |||
<OptionsSetting value="true" id="Add" /> | |||
<OptionsSetting value="true" id="Remove" /> | |||
<OptionsSetting value="true" id="Checkout" /> | |||
<OptionsSetting value="true" id="Update" /> | |||
<OptionsSetting value="true" id="Status" /> | |||
<OptionsSetting value="true" id="Edit" /> | |||
<ConfirmationsSetting value="0" id="Add" /> | |||
<ConfirmationsSetting value="0" id="Remove" /> | |||
</component> | |||
<component name="SvnConfiguration"> | |||
<configuration>$USER_HOME$/.subversion</configuration> | |||
</component> | |||
<component name="masterDetails"> | |||
<states> | |||
<state key="ScopeChooserConfigurable.UI"> | |||
<settings> | |||
<splitter-proportions> | |||
<option name="proportions"> | |||
<list> | |||
<option value="0.2" /> | |||
</list> | |||
</option> | |||
</splitter-proportions> | |||
</settings> | |||
</state> | |||
</states> | |||
</component> | |||
</project> |
@@ -0,0 +1,8 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<project version="4"> | |||
<component name="ProjectModuleManager"> | |||
<modules> | |||
<module fileurl="file://$PROJECT_DIR$/.idea/lpr.iml" filepath="$PROJECT_DIR$/.idea/lpr.iml" /> | |||
</modules> | |||
</component> | |||
</project> |
@@ -0,0 +1,355 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<project version="4"> | |||
<component name="CMakeRunConfigurationManager" shouldGenerate="true" assignedExecutableTargets="true" buildAllGenerated="true"> | |||
<generated> | |||
<config projectName="SwiftPR" targetName="TEST_PIPLINE" /> | |||
<config projectName="SwiftPR" targetName="TEST_SEGMENTATIONFREE" /> | |||
<config projectName="SwiftPR" targetName="TEST_FINEMAPPING" /> | |||
<config projectName="SwiftPR" targetName="TEST_RECOGNIZATION" /> | |||
<config projectName="SwiftPR" targetName="TEST_SEGMENTATION" /> | |||
<config projectName="SwiftPR" targetName="TEST_Detection" /> | |||
<config projectName="SwiftPR" targetName="TEST_FASTDESKEW" /> | |||
</generated> | |||
</component> | |||
<component name="CMakeSettings" AUTO_RELOAD="false" GENERATION_PASS_SYSTEM_ENVIRONMENT="true"> | |||
<ADDITIONAL_GENERATION_ENVIRONMENT> | |||
<envs /> | |||
</ADDITIONAL_GENERATION_ENVIRONMENT> | |||
</component> | |||
<component name="ChangeListManager"> | |||
<list default="true" id="36bab71f-7b8b-4c17-ae93-a4dc42ab475f" name="Default" comment="" /> | |||
<ignored path="lpr.iws" /> | |||
<ignored path=".idea/workspace.xml" /> | |||
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" /> | |||
<option name="TRACKING_ENABLED" value="true" /> | |||
<option name="SHOW_DIALOG" value="false" /> | |||
<option name="HIGHLIGHT_CONFLICTS" value="true" /> | |||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" /> | |||
<option name="LAST_RESOLUTION" value="IGNORE" /> | |||
</component> | |||
<component name="CreatePatchCommitExecutor"> | |||
<option name="PATCH_PATH" value="" /> | |||
</component> | |||
<component name="ExecutionTargetManager" SELECTED_TARGET="default_target" /> | |||
<component name="FavoritesManager"> | |||
<favorites_list name="lpr" /> | |||
</component> | |||
<component name="FileEditorManager"> | |||
<leaf> | |||
<file leaf-file-name="util.h" pinned="false" current-in-tab="false"> | |||
<entry file="file://$PROJECT_DIR$/src/util.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="288"> | |||
<caret line="12" column="17" selection-start-line="12" selection-start-column="17" selection-end-line="12" selection-end-column="17" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
</file> | |||
<file leaf-file-name="PlateSegmentation.h" pinned="false" current-in-tab="false"> | |||
<entry file="file://$PROJECT_DIR$/include/PlateSegmentation.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="0"> | |||
<caret line="0" column="0" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
</file> | |||
<file leaf-file-name="Pipeline.h" pinned="false" current-in-tab="false"> | |||
<entry file="file://$PROJECT_DIR$/include/Pipeline.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="255"> | |||
<caret line="24" column="0" selection-start-line="24" selection-start-column="0" selection-end-line="24" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
</file> | |||
<file leaf-file-name="niBlackThreshold.h" pinned="false" current-in-tab="false"> | |||
<entry file="file://$PROJECT_DIR$/include/niBlackThreshold.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="0"> | |||
<caret line="0" column="0" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
</file> | |||
<file leaf-file-name="PlateDetection.h" pinned="false" current-in-tab="false"> | |||
<entry file="file://$PROJECT_DIR$/include/PlateDetection.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="165"> | |||
<caret line="13" column="52" selection-start-line="13" selection-start-column="52" selection-end-line="13" selection-end-column="52" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
</file> | |||
<file leaf-file-name="PlateInfo.h" pinned="false" current-in-tab="true"> | |||
<entry file="file://$PROJECT_DIR$/include/PlateInfo.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="2450"> | |||
<caret line="98" column="0" selection-start-line="98" selection-start-column="0" selection-end-line="98" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
</file> | |||
</leaf> | |||
</component> | |||
<component name="IdeDocumentHistory"> | |||
<option name="CHANGED_PATHS"> | |||
<list> | |||
<option value="$PROJECT_DIR$/include/niBlackThreshold.h" /> | |||
<option value="$PROJECT_DIR$/include/Pipeline.h" /> | |||
<option value="$PROJECT_DIR$/include/PlateDetection.h" /> | |||
<option value="$PROJECT_DIR$/include/PlateInfo.h" /> | |||
</list> | |||
</option> | |||
</component> | |||
<component name="JsBuildToolGruntFileManager" detection-done="true" sorting="DEFINITION_ORDER" /> | |||
<component name="JsBuildToolPackageJson" detection-done="true" sorting="DEFINITION_ORDER" /> | |||
<component name="JsGulpfileManager"> | |||
<detection-done>true</detection-done> | |||
<sorting>DEFINITION_ORDER</sorting> | |||
</component> | |||
<component name="ProjectFrameBounds"> | |||
<option name="width" value="1696" /> | |||
<option name="height" value="1440" /> | |||
</component> | |||
<component name="ProjectLevelVcsManager" settingsEditedManually="false"> | |||
<OptionsSetting value="true" id="Add" /> | |||
<OptionsSetting value="true" id="Remove" /> | |||
<OptionsSetting value="true" id="Checkout" /> | |||
<OptionsSetting value="true" id="Update" /> | |||
<OptionsSetting value="true" id="Status" /> | |||
<OptionsSetting value="true" id="Edit" /> | |||
<ConfirmationsSetting value="0" id="Add" /> | |||
<ConfirmationsSetting value="0" id="Remove" /> | |||
</component> | |||
<component name="ProjectView"> | |||
<navigator currentView="ProjectPane" proportions="" version="1"> | |||
<flattenPackages /> | |||
<showMembers /> | |||
<showModules /> | |||
<showLibraryContents /> | |||
<hideEmptyPackages /> | |||
<abbreviatePackageNames /> | |||
<autoscrollToSource /> | |||
<autoscrollFromSource /> | |||
<sortByType /> | |||
<manualOrder /> | |||
<foldersAlwaysOnTop value="true" /> | |||
</navigator> | |||
<panes> | |||
<pane id="ProjectPane"> | |||
<subPane> | |||
<PATH> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="lpr" /> | |||
<option name="myItemType" value="com.jetbrains.cidr.projectView.CidrFilesViewHelper$MyProjectTreeStructure$1" /> | |||
</PATH_ELEMENT> | |||
</PATH> | |||
<PATH> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="lpr" /> | |||
<option name="myItemType" value="com.jetbrains.cidr.projectView.CidrFilesViewHelper$MyProjectTreeStructure$1" /> | |||
</PATH_ELEMENT> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="lpr" /> | |||
<option name="myItemType" value="com.intellij.ide.projectView.impl.nodes.PsiDirectoryNode" /> | |||
</PATH_ELEMENT> | |||
</PATH> | |||
<PATH> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="lpr" /> | |||
<option name="myItemType" value="com.jetbrains.cidr.projectView.CidrFilesViewHelper$MyProjectTreeStructure$1" /> | |||
</PATH_ELEMENT> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="lpr" /> | |||
<option name="myItemType" value="com.intellij.ide.projectView.impl.nodes.PsiDirectoryNode" /> | |||
</PATH_ELEMENT> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="tests" /> | |||
<option name="myItemType" value="com.intellij.ide.projectView.impl.nodes.PsiDirectoryNode" /> | |||
</PATH_ELEMENT> | |||
</PATH> | |||
<PATH> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="lpr" /> | |||
<option name="myItemType" value="com.jetbrains.cidr.projectView.CidrFilesViewHelper$MyProjectTreeStructure$1" /> | |||
</PATH_ELEMENT> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="lpr" /> | |||
<option name="myItemType" value="com.intellij.ide.projectView.impl.nodes.PsiDirectoryNode" /> | |||
</PATH_ELEMENT> | |||
<PATH_ELEMENT> | |||
<option name="myItemId" value="include" /> | |||
<option name="myItemType" value="com.intellij.ide.projectView.impl.nodes.PsiDirectoryNode" /> | |||
</PATH_ELEMENT> | |||
</PATH> | |||
</subPane> | |||
</pane> | |||
</panes> | |||
</component> | |||
<component name="PropertiesComponent"> | |||
<property name="settings.editor.selected.configurable" value="configurable.group.language" /> | |||
<property name="settings.editor.splitter.proportion" value="0.2" /> | |||
<property name="WebServerToolWindowFactoryState" value="false" /> | |||
<property name="FullScreen" value="true" /> | |||
</component> | |||
<component name="RunManager" selected="Application.Build All"> | |||
<configuration default="true" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_Detection" CONFIG_NAME="Debug"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="Build All" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" CONFIG_NAME="Debug" EXPLICIT_BUILD_TARGET_NAME="all"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="TEST_Detection" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_Detection" CONFIG_NAME="Debug" RUN_TARGET_PROJECT_NAME="SwiftPR" RUN_TARGET_NAME="TEST_Detection"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="TEST_FASTDESKEW" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_FASTDESKEW" CONFIG_NAME="Debug" RUN_TARGET_PROJECT_NAME="SwiftPR" RUN_TARGET_NAME="TEST_FASTDESKEW"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="TEST_FINEMAPPING" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_FINEMAPPING" CONFIG_NAME="Debug" RUN_TARGET_PROJECT_NAME="SwiftPR" RUN_TARGET_NAME="TEST_FINEMAPPING"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="TEST_PIPLINE" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_PIPLINE" CONFIG_NAME="Debug" RUN_TARGET_PROJECT_NAME="SwiftPR" RUN_TARGET_NAME="TEST_PIPLINE"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="TEST_RECOGNIZATION" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_RECOGNIZATION" CONFIG_NAME="Debug" RUN_TARGET_PROJECT_NAME="SwiftPR" RUN_TARGET_NAME="TEST_RECOGNIZATION"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="TEST_SEGMENTATION" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_SEGMENTATION" CONFIG_NAME="Debug" RUN_TARGET_PROJECT_NAME="SwiftPR" RUN_TARGET_NAME="TEST_SEGMENTATION"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<configuration default="false" name="TEST_SEGMENTATIONFREE" type="CMakeRunConfiguration" factoryName="Application" PASS_PARENT_ENVS_2="true" PROJECT_NAME="SwiftPR" TARGET_NAME="TEST_SEGMENTATIONFREE" CONFIG_NAME="Debug" RUN_TARGET_PROJECT_NAME="SwiftPR" RUN_TARGET_NAME="TEST_SEGMENTATIONFREE"> | |||
<envs /> | |||
<method /> | |||
</configuration> | |||
<list size="8"> | |||
<item index="0" class="java.lang.String" itemvalue="Application.Build All" /> | |||
<item index="1" class="java.lang.String" itemvalue="Application.TEST_Detection" /> | |||
<item index="2" class="java.lang.String" itemvalue="Application.TEST_FASTDESKEW" /> | |||
<item index="3" class="java.lang.String" itemvalue="Application.TEST_FINEMAPPING" /> | |||
<item index="4" class="java.lang.String" itemvalue="Application.TEST_PIPLINE" /> | |||
<item index="5" class="java.lang.String" itemvalue="Application.TEST_RECOGNIZATION" /> | |||
<item index="6" class="java.lang.String" itemvalue="Application.TEST_SEGMENTATION" /> | |||
<item index="7" class="java.lang.String" itemvalue="Application.TEST_SEGMENTATIONFREE" /> | |||
</list> | |||
</component> | |||
<component name="ShelveChangesManager" show_recycled="false"> | |||
<option name="remove_strategy" value="false" /> | |||
</component> | |||
<component name="TaskManager"> | |||
<task active="true" id="Default" summary="Default task"> | |||
<changelist id="36bab71f-7b8b-4c17-ae93-a4dc42ab475f" name="Default" comment="" /> | |||
<created>1575735616184</created> | |||
<option name="number" value="Default" /> | |||
<option name="presentableId" value="Default" /> | |||
<updated>1575735616184</updated> | |||
<workItem from="1575735618080" duration="1037000" /> | |||
</task> | |||
<servers /> | |||
</component> | |||
<component name="TimeTrackingManager"> | |||
<option name="totallyTimeSpent" value="1037000" /> | |||
</component> | |||
<component name="ToolWindowManager"> | |||
<frame x="0" y="0" width="1696" height="1440" extended-state="6" /> | |||
<editor active="true" /> | |||
<layout> | |||
<window_info id="Project" active="false" anchor="left" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="true" show_stripe_button="true" weight="0.21134329" sideWeight="0.5" order="0" side_tool="false" content_ui="combo" /> | |||
<window_info id="TODO" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="6" side_tool="false" content_ui="tabs" /> | |||
<window_info id="CMake" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="-1" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Event Log" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="-1" side_tool="true" content_ui="tabs" /> | |||
<window_info id="Version Control" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="-1" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Structure" active="false" anchor="left" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.25" sideWeight="0.5" order="1" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Terminal" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="-1" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Favorites" active="false" anchor="left" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="-1" side_tool="true" content_ui="tabs" /> | |||
<window_info id="Cvs" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.25" sideWeight="0.5" order="4" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Hierarchy" active="false" anchor="right" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.25" sideWeight="0.5" order="2" side_tool="false" content_ui="combo" /> | |||
<window_info id="Message" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="0" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Commander" active="false" anchor="right" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.4" sideWeight="0.5" order="0" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Find" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="1" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Inspection" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.4" sideWeight="0.5" order="5" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Run" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.33" sideWeight="0.5" order="2" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Ant Build" active="false" anchor="right" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.25" sideWeight="0.5" order="1" side_tool="false" content_ui="tabs" /> | |||
<window_info id="Debug" active="false" anchor="bottom" auto_hide="false" internal_type="DOCKED" type="DOCKED" visible="false" show_stripe_button="true" weight="0.4" sideWeight="0.5" order="3" side_tool="false" content_ui="tabs" /> | |||
</layout> | |||
</component> | |||
<component name="Vcs.Log.UiProperties"> | |||
<option name="RECENTLY_FILTERED_USER_GROUPS"> | |||
<collection /> | |||
</option> | |||
<option name="RECENTLY_FILTERED_BRANCH_GROUPS"> | |||
<collection /> | |||
</option> | |||
</component> | |||
<component name="VcsContentAnnotationSettings"> | |||
<option name="myLimit" value="2678400000" /> | |||
</component> | |||
<component name="XDebuggerManager"> | |||
<breakpoint-manager /> | |||
<watches-manager /> | |||
</component> | |||
<component name="editorHistoryManager"> | |||
<entry file="file://$PROJECT_DIR$/src/util.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="288"> | |||
<caret line="12" column="17" selection-start-line="12" selection-start-column="17" selection-end-line="12" selection-end-column="17" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
<entry file="file://$PROJECT_DIR$/include/PlateSegmentation.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="0"> | |||
<caret line="0" column="0" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
<entry file="file://$PROJECT_DIR$/include/niBlackThreshold.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="0"> | |||
<caret line="0" column="0" selection-start-line="0" selection-start-column="0" selection-end-line="0" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
<entry file="file://$PROJECT_DIR$/include/Pipeline.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="255"> | |||
<caret line="24" column="0" selection-start-line="24" selection-start-column="0" selection-end-line="24" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
<entry file="file://$PROJECT_DIR$/include/PlateDetection.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="165"> | |||
<caret line="13" column="52" selection-start-line="13" selection-start-column="52" selection-end-line="13" selection-end-column="52" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
<entry file="file://$PROJECT_DIR$/include/PlateInfo.h"> | |||
<provider selected="true" editor-type-id="text-editor"> | |||
<state relative-caret-position="2450"> | |||
<caret line="98" column="0" selection-start-line="98" selection-start-column="0" selection-end-line="98" selection-end-column="0" /> | |||
<folding /> | |||
</state> | |||
</provider> | |||
</entry> | |||
</component> | |||
</project> |
@@ -8,17 +8,11 @@ include_directories( ${OpenCV_INCLUDE_DIRS}) | |||
include_directories(include) | |||
set(SRC_DETECTION src/PlateDetection.cpp src/util.h include/PlateDetection.h) | |||
set(SRC_FINEMAPPING src/FineMapping.cpp ) | |||
set(SRC_FASTDESKEW src/FastDeskew.cpp ) | |||
set(SRC_SEGMENTATION src/PlateSegmentation.cpp ) | |||
set(SRC_RECOGNIZE src/Recognizer.cpp src/CNNRecognizer.cpp) | |||
set(SRC_PIPLINE src/Pipeline.cpp) | |||
set(SRC_SEGMENTATIONFREE src/SegmentationFreeRecognizer.cpp ) | |||
#set(SOURCE_FILES main.cpp) | |||
@@ -15,19 +15,11 @@ namespace pr{ | |||
PlateDetection(); | |||
void LoadModel(std::string filename_cascade); | |||
void plateDetectionRough(cv::Mat InputImage,std::vector<pr::PlateInfo> &plateInfos,int min_w=36,int max_w=800); | |||
// std::vector<pr::PlateInfo> plateDetectionRough(cv::Mat InputImage,int min_w= 60,int max_h = 400); | |||
// std::vector<pr::PlateInfo> plateDetectionRoughByMultiScaleEdge(cv::Mat InputImage); | |||
private: | |||
cv::CascadeClassifier cascade; | |||
}; | |||
}// namespace pr | |||
#endif //SWIFTPR_PLATEDETECTION_H | |||
@@ -6,13 +6,9 @@ | |||
#define SWIFTPR_PLATEINFO_H | |||
#include <opencv2/opencv.hpp> | |||
namespace pr { | |||
typedef std::vector<cv::Mat> Character; | |||
enum PlateColor { BLUE, YELLOW, WHITE, GREEN, BLACK,UNKNOWN}; | |||
enum CharType {CHINESE,LETTER,LETTER_NUMS,INVALID}; | |||
class PlateInfo { | |||
public: | |||
std::vector<std::pair<CharType,cv::Mat>> plateChars; | |||
@@ -72,10 +68,6 @@ namespace pr { | |||
plateCoding.push_back(charProb); | |||
} | |||
// cv::Mat getPlateChars(int id) { | |||
// if(id<PlateChars.size()) | |||
// return PlateChars[id]; | |||
// } | |||
std::string decodePlateNormal(std::vector<std::string> mappingTable) { | |||
std::string decode; | |||
for(auto plate:plateCoding) { | |||
@@ -84,10 +76,6 @@ namespace pr { | |||
decode += mappingTable[std::max_element(prob,prob+31) - prob]; | |||
confidence+=*std::max_element(prob,prob+31); | |||
// std::cout<<*std::max_element(prob,prob+31)<<std::endl; | |||
} | |||
else if(plate.first == LETTER) { | |||
@@ -98,22 +86,16 @@ namespace pr { | |||
else if(plate.first == LETTER_NUMS) { | |||
decode += mappingTable[std::max_element(prob+31,prob+65)- prob]; | |||
confidence+=*std::max_element(prob+31,prob+65); | |||
// std::cout<<*std::max_element(prob+31,prob+65)<<std::endl; | |||
} | |||
else if(plate.first == INVALID) | |||
{ | |||
decode+='*'; | |||
} | |||
} | |||
name = decode; | |||
confidence/=7; | |||
return decode; | |||
} | |||
private: | |||
cv::Mat licensePlate; | |||
cv::Rect ROI; | |||
@@ -68,10 +68,6 @@ void niBlackThreshold( InputArray _src, OutputArray _dst, double maxValue, | |||
thresh.convertTo(thresh, src.depth()); | |||
thresh.convertTo(test, src.depth()); | |||
// | |||
// cv::imshow("imagex",test); | |||
// cv::waitKey(0); | |||
} | |||
// Prepare output image | |||
_dst.create(src.size(), src.type()); | |||
@@ -1,6 +1,5 @@ | |||
#include "FineMapping.h" | |||
namespace pr{ | |||
const int FINEMAPPING_H = 60 ; | |||
const int FINEMAPPING_W = 140; | |||
const int PADDING_UP_DOWN = 30; | |||
@@ -14,17 +13,12 @@ namespace pr{ | |||
FineMapping::FineMapping(std::string prototxt,std::string caffemodel) { | |||
net = cv::dnn::readNetFromCaffe(prototxt, caffemodel); | |||
} | |||
cv::Mat FineMapping::FineMappingHorizon(cv::Mat FinedVertical,int leftPadding,int rightPadding) | |||
{ | |||
// if(FinedVertical.channels()==1) | |||
// cv::cvtColor(FinedVertical,FinedVertical,cv::COLOR_GRAY2BGR); | |||
cv::Mat inputBlob = cv::dnn::blobFromImage(FinedVertical, 1/255.0, cv::Size(66,16), | |||
cv::Scalar(0,0,0),false); | |||
net.setInput(inputBlob,"data"); | |||
cv::Mat prob = net.forward(); | |||
int front = static_cast<int>(prob.at<float>(0,0)*FinedVertical.cols); | |||
@@ -35,9 +29,8 @@ namespace pr{ | |||
if(back>FinedVertical.cols-1) back=FinedVertical.cols - 1; | |||
cv::Mat cropped = FinedVertical.colRange(front,back).clone(); | |||
return cropped; | |||
} | |||
std::pair<int,int> FitLineRansac(std::vector<cv::Point> pts,int zeroadd = 0 ) | |||
{ | |||
std::pair<int,int> res; | |||
@@ -7,8 +7,6 @@ | |||
namespace pr { | |||
const int HorizontalPadding = 4; | |||
PipelinePR::PipelinePR(std::string detector_filename, | |||
std::string finemapping_prototxt, std::string finemapping_caffemodel, | |||
@@ -20,35 +18,26 @@ namespace pr { | |||
plateSegmentation = new PlateSegmentation(segmentation_prototxt, segmentation_caffemodel); | |||
generalRecognizer = new CNNRecognizer(charRecognization_proto, charRecognization_caffemodel); | |||
segmentationFreeRecognizer = new SegmentationFreeRecognizer(segmentationfree_proto,segmentationfree_caffemodel); | |||
} | |||
PipelinePR::~PipelinePR() { | |||
delete plateDetection; | |||
delete fineMapping; | |||
delete plateSegmentation; | |||
delete generalRecognizer; | |||
delete segmentationFreeRecognizer; | |||
} | |||
std::vector<PlateInfo> PipelinePR:: RunPiplineAsImage(cv::Mat plateImage,int method) { | |||
std::vector<PlateInfo> results; | |||
std::vector<pr::PlateInfo> plates; | |||
plateDetection->plateDetectionRough(plateImage,plates,36,700); | |||
for (pr::PlateInfo plateinfo:plates) { | |||
cv::Mat image_finemapping = plateinfo.getPlateImage(); | |||
image_finemapping = fineMapping->FineMappingVertical(image_finemapping); | |||
image_finemapping = pr::fastdeskew(image_finemapping, 5); | |||
//Segmentation-based | |||
if(method==SEGMENTATION_BASED_METHOD) | |||
{ | |||
image_finemapping = fineMapping->FineMappingHorizon(image_finemapping, 2, HorizontalPadding); | |||
@@ -29,6 +29,4 @@ int main() | |||
cv::imshow("image",image); | |||
cv::waitKey(0); | |||
return 0 ; | |||
} |
@@ -136,51 +136,31 @@ void TEST_PIPELINE(){ | |||
void TEST_CAM() | |||
{ | |||
cv::VideoCapture capture("test1.mp4"); | |||
cv::Mat frame; | |||
pr::PipelinePR prc("model/cascade.xml", | |||
"model/HorizonalFinemapping.prototxt","model/HorizonalFinemapping.caffemodel", | |||
"model/Segmentation.prototxt","model/Segmentation.caffemodel", | |||
"model/CharacterRecognization.prototxt","model/CharacterRecognization.caffemodel", | |||
"model/SegmentationFree.prototxt","model/SegmentationFree.caffemodel" | |||
); | |||
while(1) { | |||
//读取下一帧 | |||
if (!capture.read(frame)) { | |||
std::cout << "读取视频失败" << std::endl; | |||
exit(1); | |||
} | |||
// | |||
// cv::transpose(frame,frame); | |||
// cv::flip(frame,frame,2); | |||
// cv::resize(frame,frame,cv::Size(frame.cols/2,frame.rows/2)); | |||
std::vector<pr::PlateInfo> res = prc.RunPiplineAsImage(frame,pr::SEGMENTATION_FREE_METHOD); | |||
for(auto st:res) { | |||
if(st.confidence>0.75) { | |||
std::cout << st.getPlateName() << " " << st.confidence << std::endl; | |||
cv::Rect region = st.getPlateRect(); | |||
cv::rectangle(frame,cv::Point(region.x,region.y),cv::Point(region.x+region.width,region.y+region.height),cv::Scalar(255,255,0),2); | |||
} | |||
} | |||
cv::imshow("image",frame); | |||
cv::waitKey(1); | |||
} | |||
} | |||
@@ -15,14 +15,14 @@ | |||
#### 快速上手 | |||
```python | |||
#导入包 | |||
#导入hyperlpr | |||
from hyperlpr import * | |||
#导入OpenCV库 | |||
import cv2 | |||
#读入图片 | |||
image = cv2.imread("demo.jpg") | |||
#识别结果 | |||
print(HyperLPR_PlateRecogntion(image)) | |||
print(HyperLPR_plate_recognition(image)) | |||
``` | |||
#### Q&A | |||
@@ -194,7 +194,7 @@ int main(){ | |||
#### 获取帮助 | |||
- HyperLPR讨论QQ群1: 673071218, 群2: 746123554(已满) ,加前请备注HyperLPR交流。 | |||
- HyperLPR讨论QQ群1: 673071218, 群2: 746123554(已满) ,加前请备注HyperLPR交流,高精度版本商务合作可在群内联系。 | |||
### 作者和贡献者信息: | |||
@@ -17,15 +17,11 @@ app = Flask(__name__) | |||
def recognize(filename): | |||
image = cv2.imread(filename) | |||
#通过文件名读入一张图片 放到 image中 | |||
return pipline.RecognizePlateJson(image) | |||
#识别一张图片并返回json结果 | |||
#识别函数 | |||
return HyperLPR_plate_recognition(image) | |||
#return pipline.RecognizePlateJson(image) | |||
import base64 | |||
def recognizeBase64(base64_code): | |||
file_bytes = np.asarray(bytearray(base64.b64decode(base64_code)),dtype=np.uint8) | |||
image_data_ndarray = cv2.imdecode(file_bytes,1) | |||
@@ -46,7 +42,6 @@ def upload_file(): | |||
print "识别时间",time.time() - t0 | |||
return res | |||
#返回识别结果 | |||
# return 'file uploaded successfully' | |||
return render_template('upload.html') | |||
@@ -1,75 +0,0 @@ | |||
#coding=utf-8 | |||
import os | |||
import numpy as np | |||
import cv2 | |||
import json | |||
from hyperlpr import pipline as pp | |||
import sys | |||
from Levenshtein import StringMatcher as sm | |||
reload(sys) | |||
sys.setdefaultencoding("utf-8") | |||
parent= "you folder" | |||
def comparestring(a,b): | |||
g = 0 | |||
if len(a) == len(b): | |||
for x,y in zip(a,b): | |||
if x!=y: | |||
g+=1 | |||
return g | |||
count = 0 ; | |||
count_p = 0 | |||
count_d = 0 | |||
count_lev = 0 | |||
count_undetected = 0 | |||
roi = [470,400,650,580] | |||
for filename in os.listdir(parent): | |||
path = os.path.join(parent,filename) | |||
print path | |||
if path.endswith(".jpg") or path.endswith(".png"): | |||
ics,name = os.path.split(path) | |||
name,ext = name.split(".") | |||
image = cv2.imread(path) | |||
image = image[roi[1]:roi[1]+roi[3],roi[0]:roi[0]+roi[2]] | |||
# cv2.imshow("test",image) | |||
# cv2.waitKey(0) | |||
info,dataset = pp.SimpleRecognizePlate(image) | |||
ext = ext.strip() | |||
name = name.strip() | |||
if len(dataset)==0: | |||
count_undetected +=1 | |||
# cv2.imwrite("./cache/bad2/" + name + ".png", image) | |||
for one in dataset: | |||
# p = sm.StringMatcher(seq1=one.encode("utf-8"),seq2=name.encode("utf-8")) | |||
A = one.decode("utf-8") | |||
B = name.decode("utf-8") | |||
print one.decode("utf-8"),"<->",name.decode("utf-8"),"编辑距离:",comparestring(A,B) | |||
if comparestring(A,B)<3: | |||
count_lev+=1 | |||
else: | |||
cv2.imwrite("./cache/bad2/"+B+"->"+A+".png",image) | |||
if one.decode("utf-8") == name.decode("utf-8"): | |||
count_p+=1 | |||
break | |||
else: | |||
print "error",one.decode("utf-8"), name.decode("utf-8") | |||
count_d+=1 | |||
# cv2.imshow("image",image) | |||
# cv2.waitKey(0) | |||
# break | |||
count+=1 | |||
print count_p / float(count),"编辑距离[1]:",count_lev/float(count),u"识出",count_p,u"总数",count,u"未识出",count_d,u"未检测出",count_undetected | |||
if count_p+count_d+count_undetected!=count: | |||
print dataset,len(dataset) | |||
# exit(0) |
@@ -1,18 +0,0 @@ | |||
{ | |||
"global":{ | |||
"debug":true | |||
}, | |||
"log":{ | |||
}, | |||
"detect":{ | |||
}, | |||
"recognize":{ | |||
}, | |||
"detectTest":{ | |||
"detectPath":"/Users/universe/Documents/work/data/Plate/boundingbox", | |||
"outputPath":"/Users/universe/ProgramUniverse/python/Forked/HyperLPR/out/detect_test" | |||
}, | |||
"colorTest":{ | |||
"colorPath":"/Users/universe/Documents/work/data/Plate/colour/u" | |||
} | |||
} |
@@ -1,59 +0,0 @@ | |||
import sys | |||
reload(sys) | |||
sys.setdefaultencoding("utf-8") | |||
import time | |||
def SpeedTest(image_path): | |||
grr = cv2.imread(image_path) | |||
model = pr.LPR("model/cascade.xml", "model/model12.h5", "model/ocr_plate_all_gru.h5") | |||
model.SimpleRecognizePlateByE2E(grr) | |||
t0 = time.time() | |||
for x in range(20): | |||
model.SimpleRecognizePlateByE2E(grr) | |||
t = (time.time() - t0)/20.0 | |||
print "Image size :" + str(grr.shape[1])+"x"+str(grr.shape[0]) + " need " + str(round(t*1000,2))+"ms" | |||
from PIL import ImageFont | |||
from PIL import Image | |||
from PIL import ImageDraw | |||
fontC = ImageFont.truetype("./Font/platech.ttf", 14, 0) | |||
def drawRectBox(image,rect,addText): | |||
cv2.rectangle(image, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])), (0,0, 255), 2,cv2.LINE_AA) | |||
cv2.rectangle(image, (int(rect[0]-1), int(rect[1])-16), (int(rect[0] + 115), int(rect[1])), (0, 0, 255), -1, | |||
cv2.LINE_AA) | |||
img = Image.fromarray(image) | |||
draw = ImageDraw.Draw(img) | |||
draw.text((int(rect[0]+1), int(rect[1]-16)), addText.decode("utf-8"), (255, 255, 255), font=fontC) | |||
imagex = np.array(img) | |||
return imagex | |||
import HyperLPRLite as pr | |||
import cv2 | |||
import numpy as np | |||
grr = cv2.imread("images_rec/2_.jpg") | |||
model = pr.LPR("model/cascade.xml","model/model12.h5","model/ocr_plate_all_gru.h5") | |||
for pstr,confidence,rect in model.SimpleRecognizePlateByE2E(grr): | |||
if confidence>0.7: | |||
image = drawRectBox(grr, rect, pstr+" "+str(round(confidence,3))) | |||
print "plate_str:" | |||
print pstr | |||
print "plate_confidence" | |||
print confidence | |||
cv2.imshow("image",image) | |||
cv2.waitKey(0) | |||
SpeedTest("images_rec/2_.jpg") |
@@ -1,11 +0,0 @@ | |||
import cv2 | |||
import os | |||
import hashlib | |||
def verticalMappingToFolder(image): | |||
name = hashlib.md5(image.data).hexdigest()[:8] | |||
print name | |||
cv2.imwrite("./cache/finemapping/"+name+".png",image) | |||
@@ -1,103 +0,0 @@ | |||
# -- coding: UTF-8 | |||
import cv2 | |||
import matplotlib.pyplot as plt | |||
from sklearn.cluster import KMeans | |||
import os | |||
boundaries = [ | |||
([100,80,0],[240,220,110]), # yellow | |||
([0,40,50],[110,180,250]), # blue | |||
([0,60,0],[60,160,70]), # green | |||
] | |||
color_attr = ["黄牌","蓝牌",'绿牌','白牌','黑牌'] | |||
threhold_green = 13 | |||
threhold_blue = 13 | |||
threhold_yellow1 = 50 | |||
threhold_yellow2 = 70 | |||
# plt.figure() | |||
# plt.axis("off") | |||
# plt.imshow(image) | |||
# plt.show() | |||
import numpy as np | |||
def centroid_histogram(clt): | |||
numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1) | |||
(hist, _) = np.histogram(clt.labels_, bins=numLabels) | |||
# normalize the histogram, such that it sums to one | |||
hist = hist.astype("float") | |||
hist /= hist.sum() | |||
# return the histogram | |||
return hist | |||
def plot_colors(hist, centroids): | |||
bar = np.zeros((50, 300, 3), dtype="uint8") | |||
startX = 0 | |||
for (percent, color) in zip(hist, centroids): | |||
endX = startX + (percent * 300) | |||
cv2.rectangle(bar, (int(startX), 0), (int(endX), 50), | |||
color.astype("uint8").tolist(), -1) | |||
startX = endX | |||
# return the bar chart | |||
return bar | |||
def search_boundaries(color): | |||
for i,color_bound in enumerate(boundaries): | |||
if np.all(color >= color_bound[0]) and np.all(color <= color_bound[1]): | |||
return i | |||
return -1 | |||
def judge_color(color): | |||
r = color[0] | |||
g = color[1] | |||
b = color[2] | |||
if g - r >= threhold_green and g - b >= threhold_green: | |||
return 2 | |||
if b - r >= threhold_blue and b - g >= threhold_blue: | |||
return 1 | |||
if r- b > threhold_yellow2 and g - b > threhold_yellow2: | |||
return 0 | |||
if r > 200 and b > 200 and g > 200: | |||
return 3 | |||
if r < 50 and b < 50 and g < 50: | |||
return 4 | |||
return -1 | |||
def judge_plate_color(img): | |||
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |||
image = image.reshape((image.shape[0] * image.shape[1], 3)) | |||
clt = KMeans(n_clusters=2) | |||
clt.fit(image) | |||
hist = centroid_histogram(clt) | |||
index = np.argmax(hist) | |||
#print clt.cluster_centers_[index] | |||
#color_index = search_boundaries(clt.cluster_centers_[index]) | |||
color_index = judge_color(clt.cluster_centers_[index]) | |||
if color_index == -1: | |||
if index == 0: | |||
secound_index = 1 | |||
else: | |||
secound_index = 0 | |||
color_index = judge_color(clt.cluster_centers_[secound_index]) | |||
if color_index == -1: | |||
print clt.cluster_centers_ | |||
bar = plot_colors(hist, clt.cluster_centers_) | |||
# show our color bart | |||
plt.figure() | |||
plt.axis("off") | |||
plt.imshow(bar) | |||
plt.show() | |||
if color_index != -1: | |||
return color_attr[color_index],clt.cluster_centers_[index] | |||
else: | |||
return None,clt.cluster_centers_[index] |
@@ -1,6 +0,0 @@ | |||
import json | |||
with open("/Users/universe/ProgramUniverse/zeusees/HyperLPR/config.json") as f: | |||
configuration = json.load(f) |
@@ -1,111 +0,0 @@ | |||
#coding=utf-8 | |||
import numpy as np | |||
import cv2 | |||
import time; | |||
from matplotlib import pyplot as plt | |||
import math | |||
from scipy.ndimage import filters | |||
# | |||
# def strokeFiter(): | |||
# pass; | |||
def angle(x,y): | |||
return int(math.atan2(float(y),float(x))*180.0/3.1415); | |||
def h_rot(src, angle, scale=1.): | |||
w = src.shape[1] | |||
h = src.shape[0] | |||
rangle = np.deg2rad(angle) | |||
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale | |||
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale | |||
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale) | |||
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0])) | |||
rot_mat[0,2] += rot_move[0] | |||
rot_mat[1,2] += rot_move[1] | |||
return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) | |||
pass | |||
def v_rot(img,angel,shape,max_angel): | |||
size_o = [shape[1],shape[0]] | |||
size = (shape[1]+ int(shape[0]*np.cos((float(max_angel )/180) * 3.14)),shape[0]) | |||
interval = abs( int( np.sin((float(angel) /180) * 3.14)* shape[0])); | |||
pts1 = np.float32([[0,0] ,[0,size_o[1]],[size_o[0],0],[size_o[0],size_o[1]]]) | |||
if(angel>0): | |||
pts2 = np.float32([[interval,0],[0,size[1] ],[size[0],0 ],[size[0]-interval,size_o[1]]]) | |||
else: | |||
pts2 = np.float32([[0,0],[interval,size[1] ],[size[0]-interval,0 ],[size[0],size_o[1]]]) | |||
M = cv2.getPerspectiveTransform(pts1,pts2); | |||
dst = cv2.warpPerspective(img,M,size); | |||
return dst,M; | |||
def skew_detection(image_gray): | |||
h, w = image_gray.shape[:2] | |||
eigen = cv2.cornerEigenValsAndVecs(image_gray,12, 5) | |||
angle_sur = np.zeros(180,np.uint); | |||
eigen = eigen.reshape(h, w, 3, 2) | |||
flow = eigen[:,:,2] | |||
vis = image_gray.copy() | |||
vis[:] = (192 + np.uint32(vis)) / 2 | |||
d = 12 | |||
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2) | |||
for x, y in points: | |||
vx, vy = np.int32(flow[y, x]*d) | |||
# cv2.line(rgb, (x-vx, y-vy), (x+vx, y+vy), (0, 355, 0), 1, cv2.LINE_AA) | |||
ang = angle(vx,vy); | |||
angle_sur[(ang+180)%180] +=1; | |||
# torr_bin = 30 | |||
angle_sur = angle_sur.astype(np.float) | |||
angle_sur = (angle_sur-angle_sur.min())/(angle_sur.max()-angle_sur.min()) | |||
angle_sur = filters.gaussian_filter1d(angle_sur,5) | |||
skew_v_val = angle_sur[20:180-20].max(); | |||
skew_v = angle_sur[30:180-30].argmax() + 30; | |||
skew_h_A = angle_sur[0:30].max() | |||
skew_h_B = angle_sur[150:180].max() | |||
skew_h = 0; | |||
if (skew_h_A > skew_v_val*0.3 or skew_h_B > skew_v_val*0.3): | |||
if skew_h_A>=skew_h_B: | |||
skew_h = angle_sur[0:20].argmax() | |||
else: | |||
skew_h = - angle_sur[160:180].argmax() | |||
return skew_h,skew_v | |||
def fastDeskew(image): | |||
image_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) | |||
skew_h,skew_v = skew_detection(image_gray) | |||
print "校正角度 h ",skew_h,"v",skew_v | |||
deskew,M = v_rot(image,int((90-skew_v)*1.5),image.shape,60) | |||
return deskew,M | |||
if __name__ == '__main__': | |||
fn = 'test_data/test4.png' | |||
img = cv2.imread(fn) | |||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |||
skew_h,skew_v = skew_detection(img,gray) | |||
img = v_rot(img,(90-skew_v ),img.shape,60) | |||
# img = h_rot(img,skew_h) | |||
# if img.shape[0]>img.shape[1]: | |||
# img = h_rot(img, -90) | |||
plt.show() | |||
cv2.waitKey() |
@@ -1,76 +0,0 @@ | |||
import cv2 | |||
import numpy as np | |||
watch_cascade = cv2.CascadeClassifier('./model/cascade.xml') | |||
def computeSafeRegion(shape,bounding_rect): | |||
top = bounding_rect[1] # y | |||
bottom = bounding_rect[1] + bounding_rect[3] # y + h | |||
left = bounding_rect[0] # x | |||
right = bounding_rect[0] + bounding_rect[2] # x + w | |||
min_top = 0 | |||
max_bottom = shape[0] | |||
min_left = 0 | |||
max_right = shape[1] | |||
# print "computeSateRegion input shape",shape | |||
if top < min_top: | |||
top = min_top | |||
# print "tap top 0" | |||
if left < min_left: | |||
left = min_left | |||
# print "tap left 0" | |||
if bottom > max_bottom: | |||
bottom = max_bottom | |||
#print "tap max_bottom max" | |||
if right > max_right: | |||
right = max_right | |||
#print "tap max_right max" | |||
# print "corr",left,top,right,bottom | |||
return [left,top,right-left,bottom-top] | |||
def cropped_from_image(image,rect): | |||
x, y, w, h = computeSafeRegion(image.shape,rect) | |||
return image[y:y+h,x:x+w] | |||
def detectPlateRough(image_gray,resize_h = 720,en_scale =1.08 ,top_bottom_padding_rate = 0.05): | |||
print image_gray.shape | |||
if top_bottom_padding_rate>0.2: | |||
print "error:top_bottom_padding_rate > 0.2:",top_bottom_padding_rate | |||
exit(1) | |||
height = image_gray.shape[0] | |||
padding = int(height*top_bottom_padding_rate) | |||
scale = image_gray.shape[1]/float(image_gray.shape[0]) | |||
image = cv2.resize(image_gray, (int(scale*resize_h), resize_h)) | |||
image_color_cropped = image[padding:resize_h-padding,0:image_gray.shape[1]] | |||
image_gray = cv2.cvtColor(image_color_cropped,cv2.COLOR_RGB2GRAY) | |||
watches = watch_cascade.detectMultiScale(image_gray, en_scale, 2, minSize=(36, 9),maxSize=(36*40, 9*40)) | |||
cropped_images = [] | |||
for (x, y, w, h) in watches: | |||
cropped_origin = cropped_from_image(image_color_cropped, (int(x), int(y), int(w), int(h))) | |||
x -= w * 0.14 | |||
w += w * 0.28 | |||
y -= h * 0.6 | |||
h += h * 1.1; | |||
cropped = cropped_from_image(image_color_cropped, (int(x), int(y), int(w), int(h))) | |||
cropped_images.append([cropped,[x, y+padding, w, h],cropped_origin]) | |||
return cropped_images |
@@ -1,63 +0,0 @@ | |||
#coding=utf-8 | |||
from keras import backend as K | |||
from keras.models import load_model | |||
from keras.layers import * | |||
import numpy as np | |||
import random | |||
import string | |||
import cv2 | |||
import e2emodel as model | |||
chars = [u"京", u"沪", u"津", u"渝", u"冀", u"晋", u"蒙", u"辽", u"吉", u"黑", u"苏", u"浙", u"皖", u"闽", u"赣", u"鲁", u"豫", u"鄂", u"湘", u"粤", u"桂", | |||
u"琼", u"川", u"贵", u"云", u"藏", u"陕", u"甘", u"青", u"宁", u"新", u"0", u"1", u"2", u"3", u"4", u"5", u"6", u"7", u"8", u"9", u"A", | |||
u"B", u"C", u"D", u"E", u"F", u"G", u"H", u"J", u"K", u"L", u"M", u"N", u"P", u"Q", u"R", u"S", u"T", u"U", u"V", u"W", u"X", | |||
u"Y", u"Z",u"港",u"学",u"使",u"警",u"澳",u"挂",u"军",u"北",u"南",u"广",u"沈",u"兰",u"成",u"济",u"海",u"民",u"航",u"空" | |||
]; | |||
pred_model = model.construct_model("./model/ocr_plate_all_w_rnn_2.h5",) | |||
import time | |||
def fastdecode(y_pred): | |||
results = "" | |||
confidence = 0.0 | |||
table_pred = y_pred.reshape(-1, len(chars)+1) | |||
res = table_pred.argmax(axis=1) | |||
for i,one in enumerate(res): | |||
if one<len(chars) and (i==0 or (one!=res[i-1])): | |||
results+= chars[one] | |||
confidence+=table_pred[i][one] | |||
confidence/= len(results) | |||
return results,confidence | |||
def recognizeOne(src): | |||
# x_tempx= cv2.imread(src) | |||
x_tempx = src | |||
# x_tempx = cv2.bitwise_not(x_tempx) | |||
x_temp = cv2.resize(x_tempx,( 160,40)) | |||
x_temp = x_temp.transpose(1, 0, 2) | |||
t0 = time.time() | |||
y_pred = pred_model.predict(np.array([x_temp])) | |||
y_pred = y_pred[:,2:,:] | |||
# plt.imshow(y_pred.reshape(16,66)) | |||
# plt.show() | |||
# | |||
# cv2.imshow("x_temp",x_tempx) | |||
# cv2.waitKey(0) | |||
return fastdecode(y_pred) | |||
# | |||
# | |||
# import os | |||
# | |||
# path = "/Users/yujinke/PycharmProjects/HyperLPR_Python_web/cache/finemapping" | |||
# for filename in os.listdir(path): | |||
# if filename.endswith(".png") or filename.endswith(".jpg") or filename.endswith(".bmp"): | |||
# x = os.path.join(path,filename) | |||
# recognizeOne(x) | |||
# # print time.time() - t0 | |||
# | |||
# # cv2.imshow("x",x) | |||
# # cv2.waitKey() |
@@ -1,34 +0,0 @@ | |||
from keras import backend as K | |||
from keras.models import * | |||
from keras.layers import * | |||
import e2e | |||
def ctc_lambda_func(args): | |||
y_pred, labels, input_length, label_length = args | |||
y_pred = y_pred[:, 2:, :] | |||
return K.ctc_batch_cost(labels, y_pred, input_length, label_length) | |||
def construct_model(model_path): | |||
input_tensor = Input((None, 40, 3)) | |||
x = input_tensor | |||
base_conv = 32 | |||
for i in range(3): | |||
x = Conv2D(base_conv * (2 ** (i)), (3, 3),padding="same")(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
x = MaxPooling2D(pool_size=(2, 2))(x) | |||
x = Conv2D(256, (5, 5))(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
x = Conv2D(1024, (1, 1))(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
x = Conv2D(len(e2e.chars)+1, (1, 1))(x) | |||
x = Activation('softmax')(x) | |||
base_model = Model(inputs=input_tensor, outputs=x) | |||
base_model.load_weights(model_path) | |||
return base_model |
@@ -1,130 +0,0 @@ | |||
#coding=utf-8 | |||
import cv2 | |||
import numpy as np | |||
import niblack_thresholding as nt | |||
import deskew | |||
def fitLine_ransac(pts,zero_add = 0 ): | |||
if len(pts)>=2: | |||
[vx, vy, x, y] = cv2.fitLine(pts, cv2.DIST_HUBER, 0, 0.01, 0.01) | |||
lefty = int((-x * vy / vx) + y) | |||
righty = int(((136- x) * vy / vx) + y) | |||
return lefty+30+zero_add,righty+30+zero_add | |||
return 0,0 | |||
#精定位算法 | |||
def findContoursAndDrawBoundingBox(image_rgb): | |||
line_upper = []; | |||
line_lower = []; | |||
line_experiment = [] | |||
grouped_rects = [] | |||
gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
# for k in np.linspace(-1.5, -0.2,10): | |||
for k in np.linspace(-50, 0, 15): | |||
# thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k) | |||
# binary_niblack = gray_image > thresh_niblack | |||
# binary_niblack = binary_niblack.astype(np.uint8) * 255 | |||
binary_niblack = cv2.adaptiveThreshold(gray_image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,17,k) | |||
# cv2.imshow("image1",binary_niblack) | |||
# cv2.waitKey(0) | |||
imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
for contour in contours: | |||
bdbox = cv2.boundingRect(contour) | |||
if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1200) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100): | |||
# cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1) | |||
line_upper.append([bdbox[0],bdbox[1]]) | |||
line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
line_experiment.append([bdbox[0],bdbox[1]]) | |||
line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
# grouped_rects.append(bdbox) | |||
rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE) | |||
leftyA, rightyA = fitLine_ransac(np.array(line_lower),3) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA) | |||
leftyB, rightyB = fitLine_ransac(np.array(line_upper),-3) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA) | |||
pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]]) | |||
pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]]) | |||
mat = cv2.getPerspectiveTransform(pts_map1,pts_map2) | |||
image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC) | |||
image,M = deskew.fastDeskew(image) | |||
return image | |||
#多级 | |||
def findContoursAndDrawBoundingBox2(image_rgb): | |||
line_upper = []; | |||
line_lower = []; | |||
line_experiment = [] | |||
grouped_rects = [] | |||
gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
for k in np.linspace(-1.6, -0.2,10): | |||
# for k in np.linspace(-15, 0, 15): | |||
# # | |||
# thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k) | |||
# binary_niblack = gray_image > thresh_niblack | |||
# binary_niblack = binary_niblack.astype(np.uint8) * 255 | |||
binary_niblack = nt.niBlackThreshold(gray_image,19,k) | |||
# cv2.imshow("binary_niblack_opencv",binary_niblack_) | |||
# cv2.imshow("binary_niblack_skimage", binary_niblack) | |||
# cv2.waitKey(0) | |||
imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
for contour in contours: | |||
bdbox = cv2.boundingRect(contour) | |||
if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1000) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100): | |||
# cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1) | |||
line_upper.append([bdbox[0],bdbox[1]]) | |||
line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
line_experiment.append([bdbox[0],bdbox[1]]) | |||
line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
# grouped_rects.append(bdbox) | |||
rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE) | |||
leftyA, rightyA = fitLine_ransac(np.array(line_lower),2) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA) | |||
leftyB, rightyB = fitLine_ransac(np.array(line_upper),-4) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA) | |||
pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]]) | |||
pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]]) | |||
mat = cv2.getPerspectiveTransform(pts_map1,pts_map2) | |||
image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC) | |||
image,M= deskew.fastDeskew(image) | |||
return image |
@@ -1,92 +0,0 @@ | |||
#coding=utf-8 | |||
from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense | |||
from keras.models import Model, Sequential | |||
from keras.layers.advanced_activations import PReLU | |||
from keras.optimizers import adam | |||
import numpy as np | |||
import cv2 | |||
def getModel(): | |||
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input | |||
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) | |||
x = Activation("relu", name='relu1')(x) | |||
x = MaxPool2D(pool_size=2)(x) | |||
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) | |||
x = Activation("relu", name='relu2')(x) | |||
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) | |||
x = Activation("relu", name='relu3')(x) | |||
x = Flatten()(x) | |||
output = Dense(2,name = "dense")(x) | |||
output = Activation("relu", name='relu4')(output) | |||
model = Model([input], [output]) | |||
return model | |||
model = getModel() | |||
model.load_weights("./model/model12.h5") | |||
def getmodel(): | |||
return model | |||
def gettest_model(): | |||
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input | |||
A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) | |||
B = Activation("relu", name='relu1')(A) | |||
C = MaxPool2D(pool_size=2)(B) | |||
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C) | |||
x = Activation("relu", name='relu2')(x) | |||
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) | |||
K = Activation("relu", name='relu3')(x) | |||
x = Flatten()(K) | |||
dense = Dense(2,name = "dense")(x) | |||
output = Activation("relu", name='relu4')(dense) | |||
x = Model([input], [output]) | |||
x.load_weights("./model/model12.h5") | |||
ok = Model([input], [dense]) | |||
for layer in ok.layers: | |||
print layer | |||
return ok | |||
def finemappingVertical(image): | |||
resized = cv2.resize(image,(66,16)) | |||
resized = resized.astype(np.float)/255 | |||
res= model.predict(np.array([resized]))[0] | |||
print "keras_predict",res | |||
res =res*image.shape[1] | |||
res = res.astype(np.int) | |||
H,T = res | |||
H-=3 | |||
#3 79.86 | |||
#4 79.3 | |||
#5 79.5 | |||
#6 78.3 | |||
#T | |||
#T+1 80.9 | |||
#T+2 81.75 | |||
#T+3 81.75 | |||
if H<0: | |||
H=0 | |||
T+=2; | |||
if T>= image.shape[1]-1: | |||
T= image.shape[1]-1 | |||
image = image[0:35,H:T+2] | |||
image = cv2.resize(image, (int(136), int(36))) | |||
return image |
@@ -1,18 +0,0 @@ | |||
import cv2 | |||
import numpy as np | |||
def niBlackThreshold( src, blockSize, k, binarizationMethod= 0 ): | |||
mean = cv2.boxFilter(src,cv2.CV_32F,(blockSize, blockSize),borderType=cv2.BORDER_REPLICATE) | |||
sqmean = cv2.sqrBoxFilter(src, cv2.CV_32F, (blockSize, blockSize), borderType = cv2.BORDER_REPLICATE) | |||
variance = sqmean - (mean*mean) | |||
stddev = np.sqrt(variance) | |||
thresh = mean + stddev * float(-k) | |||
thresh = thresh.astype(src.dtype) | |||
k = (src>thresh)*255 | |||
k = k.astype(np.uint8) | |||
return k | |||
# cv2.imshow() |
@@ -1,264 +0,0 @@ | |||
#coding=utf-8 | |||
import detect | |||
import finemapping as fm | |||
import segmentation | |||
import cv2 | |||
import time | |||
import numpy as np | |||
from PIL import ImageFont | |||
from PIL import Image | |||
from PIL import ImageDraw | |||
import json | |||
import sys | |||
import typeDistinguish as td | |||
reload(sys) | |||
sys.setdefaultencoding("utf-8") | |||
fontC = ImageFont.truetype("./Font/platech.ttf", 14, 0); | |||
import e2e | |||
#寻找车牌左右边界 | |||
def find_edge(image): | |||
sum_i = image.sum(axis=0) | |||
sum_i = sum_i.astype(np.float) | |||
sum_i/=image.shape[0]*255 | |||
# print sum_i | |||
start= 0 ; | |||
end = image.shape[1]-1 | |||
for i,one in enumerate(sum_i): | |||
if one>0.4: | |||
start = i; | |||
if start-3<0: | |||
start = 0 | |||
else: | |||
start -=3 | |||
break; | |||
for i,one in enumerate(sum_i[::-1]): | |||
if one>0.4: | |||
end = end - i; | |||
if end+4>image.shape[1]-1: | |||
end = image.shape[1]-1 | |||
else: | |||
end+=4 | |||
break | |||
return start,end | |||
#垂直边缘检测 | |||
def verticalEdgeDetection(image): | |||
image_sobel = cv2.Sobel(image.copy(),cv2.CV_8U,1,0) | |||
# image = auto_canny(image_sobel) | |||
# img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT | |||
# canny_image = auto_canny(image) | |||
flag,thres = cv2.threshold(image_sobel,0,255,cv2.THRESH_OTSU|cv2.THRESH_BINARY) | |||
print flag | |||
flag,thres = cv2.threshold(image_sobel,int(flag*0.7),255,cv2.THRESH_BINARY) | |||
# thres = simpleThres(image_sobel) | |||
kernal = np.ones(shape=(3,15)) | |||
thres = cv2.morphologyEx(thres,cv2.MORPH_CLOSE,kernal) | |||
return thres | |||
#确定粗略的左右边界 | |||
def horizontalSegmentation(image): | |||
thres = verticalEdgeDetection(image) | |||
# thres = thres*image | |||
head,tail = find_edge(thres) | |||
# print head,tail | |||
# cv2.imshow("edge",thres) | |||
tail = tail+5 | |||
if tail>135: | |||
tail = 135 | |||
image = image[0:35,head:tail] | |||
image = cv2.resize(image, (int(136), int(36))) | |||
return image | |||
#打上boundingbox和标签 | |||
def drawRectBox(image,rect,addText): | |||
cv2.rectangle(image, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])), (0,0, 255), 2,cv2.LINE_AA) | |||
cv2.rectangle(image, (int(rect[0]-1), int(rect[1])-16), (int(rect[0] + 115), int(rect[1])), (0, 0, 255), -1, | |||
cv2.LINE_AA) | |||
img = Image.fromarray(image) | |||
draw = ImageDraw.Draw(img) | |||
draw.text((int(rect[0]+1), int(rect[1]-16)), addText.decode("utf-8"), (255, 255, 255), font=fontC) | |||
imagex = np.array(img) | |||
return imagex | |||
import cache | |||
import finemapping_vertical as fv | |||
def RecognizePlateJson(image): | |||
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
jsons = [] | |||
for j,plate in enumerate(images): | |||
plate,rect,origin_plate =plate | |||
res, confidence = e2e.recognizeOne(origin_plate) | |||
print "res",res | |||
cv2.imwrite("./"+str(j)+"_rough.jpg",plate) | |||
# print "车牌类型:",ptype | |||
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
plate =cv2.resize(plate,(136,int(36*2.5))) | |||
t1 = time.time() | |||
ptype = td.SimplePredict(plate) | |||
if ptype>0 and ptype<4: | |||
plate = cv2.bitwise_not(plate) | |||
# demo = verticalEdgeDetection(plate) | |||
image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
cache.verticalMappingToFolder(image_rgb) | |||
# print time.time() - t1,"校正" | |||
print "e2e:",e2e.recognizeOne(image_rgb)[0] | |||
image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
cv2.imwrite("./"+str(j)+".jpg",image_gray) | |||
# image_gray = horizontalSegmentation(image_gray) | |||
t2 = time.time() | |||
res, confidence = e2e.recognizeOne(image_rgb) | |||
res_json = {} | |||
if confidence > 0.6: | |||
res_json["Name"] = res | |||
res_json["Type"] = td.plateType[ptype] | |||
res_json["Confidence"] = confidence; | |||
res_json["x"] = int(rect[0]) | |||
res_json["y"] = int(rect[1]) | |||
res_json["w"] = int(rect[2]) | |||
res_json["h"] = int(rect[3]) | |||
jsons.append(res_json) | |||
print json.dumps(jsons,ensure_ascii=False,encoding="gb2312") | |||
return json.dumps(jsons,ensure_ascii=False,encoding="gb2312") | |||
def SimpleRecognizePlateByE2E(image): | |||
t0 = time.time() | |||
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
res_set = [] | |||
for j,plate in enumerate(images): | |||
plate, rect, origin_plate =plate | |||
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
plate =cv2.resize(plate,(136,36*2)) | |||
res,confidence = e2e.recognizeOne(origin_plate) | |||
print "res",res | |||
t1 = time.time() | |||
ptype = td.SimplePredict(plate) | |||
if ptype>0 and ptype<5: | |||
# pass | |||
plate = cv2.bitwise_not(plate) | |||
image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
cache.verticalMappingToFolder(image_rgb) | |||
cv2.imwrite("./"+str(j)+".jpg",image_rgb) | |||
res,confidence = e2e.recognizeOne(image_rgb) | |||
print res,confidence | |||
res_set.append([[],res,confidence]) | |||
if confidence>0.7: | |||
image = drawRectBox(image, rect, res+" "+str(round(confidence,3))) | |||
return image,res_set | |||
def SimpleRecognizePlate(image): | |||
t0 = time.time() | |||
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
res_set = [] | |||
for j,plate in enumerate(images): | |||
plate, rect, origin_plate =plate | |||
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
plate =cv2.resize(plate,(136,36*2)) | |||
t1 = time.time() | |||
ptype = td.SimplePredict(plate) | |||
if ptype>0 and ptype<5: | |||
plate = cv2.bitwise_not(plate) | |||
image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
cache.verticalMappingToFolder(image_rgb) | |||
print "e2e:", e2e.recognizeOne(image_rgb) | |||
image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_RGB2GRAY) | |||
# image_gray = horizontalSegmentation(image_gray) | |||
cv2.imshow("image_gray",image_gray) | |||
# cv2.waitKey() | |||
cv2.imwrite("./"+str(j)+".jpg",image_gray) | |||
# cv2.imshow("image",image_gray) | |||
# cv2.waitKey(0) | |||
print "校正",time.time() - t1,"s" | |||
# cv2.imshow("image,",image_gray) | |||
# cv2.waitKey(0) | |||
t2 = time.time() | |||
val = segmentation.slidingWindowsEval(image_gray) | |||
# print val | |||
print "分割和识别",time.time() - t2,"s" | |||
if len(val)==3: | |||
blocks, res, confidence = val | |||
if confidence/7>0.7: | |||
image = drawRectBox(image,rect,res) | |||
res_set.append(res) | |||
for i,block in enumerate(blocks): | |||
block_ = cv2.resize(block,(25,25)) | |||
block_ = cv2.cvtColor(block_,cv2.COLOR_GRAY2BGR) | |||
image[j * 25:(j * 25) + 25, i * 25:(i * 25) + 25] = block_ | |||
if image[j*25:(j*25)+25,i*25:(i*25)+25].shape == block_.shape: | |||
pass | |||
if confidence>0: | |||
print "车牌:",res,"置信度:",confidence/7 | |||
else: | |||
pass | |||
# print "不确定的车牌:", res, "置信度:", confidence | |||
print time.time() - t0,"s" | |||
return image,res_set | |||
@@ -1,154 +0,0 @@ | |||
#coding=utf-8 | |||
from keras.models import Sequential | |||
from keras.layers import Dense, Dropout, Activation, Flatten | |||
from keras.layers import Conv2D,MaxPool2D | |||
from keras.optimizers import SGD | |||
from keras import backend as K | |||
K.set_image_dim_ordering('tf') | |||
import cv2 | |||
import numpy as np | |||
index = {u"京": 0, u"沪": 1, u"津": 2, u"渝": 3, u"冀": 4, u"晋": 5, u"蒙": 6, u"辽": 7, u"吉": 8, u"黑": 9, u"苏": 10, u"浙": 11, u"皖": 12, | |||
u"闽": 13, u"赣": 14, u"鲁": 15, u"豫": 16, u"鄂": 17, u"湘": 18, u"粤": 19, u"桂": 20, u"琼": 21, u"川": 22, u"贵": 23, u"云": 24, | |||
u"藏": 25, u"陕": 26, u"甘": 27, u"青": 28, u"宁": 29, u"新": 30, u"0": 31, u"1": 32, u"2": 33, u"3": 34, u"4": 35, u"5": 36, | |||
u"6": 37, u"7": 38, u"8": 39, u"9": 40, u"A": 41, u"B": 42, u"C": 43, u"D": 44, u"E": 45, u"F": 46, u"G": 47, u"H": 48, | |||
u"J": 49, u"K": 50, u"L": 51, u"M": 52, u"N": 53, u"P": 54, u"Q": 55, u"R": 56, u"S": 57, u"T": 58, u"U": 59, u"V": 60, | |||
u"W": 61, u"X": 62, u"Y": 63, u"Z": 64,u"港":65,u"学":66 ,u"O":67 ,u"使":68,u"警":69,u"澳":70,u"挂":71}; | |||
chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", | |||
"琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", | |||
"B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", | |||
"Q", "R", "S", "T", "U", "V", "W", "X", | |||
"Y", "Z","港","学","O","使","警","澳","挂" ]; | |||
def Getmodel_tensorflow(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 32 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(32, (3, 3))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(512, (3, 3))) | |||
# model.add(Activation('relu')) | |||
# model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) | |||
# model.add(Dropout(0.25)) | |||
model.add(Flatten()) | |||
model.add(Dense(512)) | |||
model.add(Activation('relu')) | |||
model.add(Dropout(0.5)) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
def Getmodel_ch(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 32 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(32, (3, 3))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(512, (3, 3))) | |||
# model.add(Activation('relu')) | |||
# model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) | |||
# model.add(Dropout(0.25)) | |||
model.add(Flatten()) | |||
model.add(Dense(756)) | |||
model.add(Activation('relu')) | |||
model.add(Dropout(0.5)) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
model = Getmodel_tensorflow(65) | |||
#构建网络 | |||
model_ch = Getmodel_ch(31) | |||
model_ch.load_weights("./model/char_chi_sim.h5") | |||
# model_ch.save_weights("./model/char_chi_sim.h5") | |||
model.load_weights("./model/char_rec.h5") | |||
# model.save("./model/char_rec.h5") | |||
def SimplePredict(image,pos): | |||
image = cv2.resize(image, (23, 23)) | |||
image = cv2.equalizeHist(image) | |||
image = image.astype(np.float) / 255 | |||
image -= image.mean() | |||
image = np.expand_dims(image, 3) | |||
if pos!=0: | |||
res = np.array(model.predict(np.array([image]))[0]) | |||
else: | |||
res = np.array(model_ch.predict(np.array([image]))[0]) | |||
zero_add = 0 ; | |||
if pos==0: | |||
res = res[:31] | |||
elif pos==1: | |||
res = res[31+10:65] | |||
zero_add = 31+10 | |||
else: | |||
res = res[31:] | |||
zero_add = 31 | |||
max_id = res.argmax() | |||
return res.max(),chars[max_id+zero_add],max_id+zero_add | |||
@@ -1,320 +0,0 @@ | |||
#coding=utf-8 | |||
import cv2 | |||
import numpy as np | |||
# from matplotlib import pyplot as plt | |||
import scipy.ndimage.filters as f | |||
import scipy | |||
import time | |||
import scipy.signal as l | |||
from keras.models import Sequential | |||
from keras.layers import Dense, Dropout, Activation, Flatten | |||
from keras.layers import Conv2D, MaxPool2D | |||
from keras.optimizers import SGD | |||
from keras import backend as K | |||
K.set_image_dim_ordering('tf') | |||
def Getmodel_tensorflow(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 16 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols,1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Conv2D(nb_filters, (nb_conv, nb_conv))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Flatten()) | |||
model.add(Dense(256)) | |||
model.add(Dropout(0.5)) | |||
model.add(Activation('relu')) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='sgd', | |||
metrics=['accuracy']) | |||
return model | |||
def Getmodel_tensorflow_light(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 8 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols, 1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Conv2D(nb_filters, (nb_conv * 2, nb_conv * 2))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Flatten()) | |||
model.add(Dense(32)) | |||
# model.add(Dropout(0.25)) | |||
model.add(Activation('relu')) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
model = Getmodel_tensorflow_light(3) | |||
model2 = Getmodel_tensorflow(3) | |||
import os | |||
model.load_weights("./model/char_judgement1.h5") | |||
# model.save("./model/char_judgement1.h5") | |||
model2.load_weights("./model/char_judgement.h5") | |||
# model2.save("./model/char_judgement.h5") | |||
model = model2 | |||
def get_median(data): | |||
data = sorted(data) | |||
size = len(data) | |||
# print size | |||
if size % 2 == 0: # 判断列表长度为偶数 | |||
median = (data[size//2]+data[size//2-1])/2 | |||
data[0] = median | |||
if size % 2 == 1: # 判断列表长度为奇数 | |||
median = data[(size-1)//2] | |||
data[0] = median | |||
return data[0] | |||
import time | |||
def searchOptimalCuttingPoint(rgb,res_map,start,width_boundingbox,interval_range): | |||
t0 = time.time() | |||
# | |||
# for x in xrange(10): | |||
# res_map = np.vstack((res_map,res_map[-1])) | |||
length = res_map.shape[0] | |||
refine_s = -2; | |||
if width_boundingbox>20: | |||
refine_s = -9 | |||
score_list = [] | |||
interval_big = int(width_boundingbox * 0.3) # | |||
p = 0 | |||
for zero_add in xrange(start,start+50,3): | |||
# for interval_small in xrange(-0,width_boundingbox/2): | |||
for i in xrange(-8,int(width_boundingbox/1)-8): | |||
for refine in xrange(refine_s,width_boundingbox/2+3): | |||
p1 = zero_add# this point is province | |||
p2 = p1 + width_boundingbox +refine # | |||
p3 = p2 + width_boundingbox + interval_big+i+1 | |||
p4 = p3 + width_boundingbox +refine | |||
p5 = p4 + width_boundingbox +refine | |||
p6 = p5 + width_boundingbox +refine | |||
p7 = p6 + width_boundingbox +refine | |||
if p7>=length: | |||
continue | |||
score = res_map[p1][2]*3 -(res_map[p3][1]+res_map[p4][1]+res_map[p5][1]+res_map[p6][1]+res_map[p7][1])+7 | |||
# print score | |||
score_list.append([score,[p1,p2,p3,p4,p5,p6,p7]]) | |||
p+=1 | |||
print p | |||
score_list = sorted(score_list , key=lambda x:x[0]) | |||
# for one in score_list[-1][1]: | |||
# cv2.line(debug,(one,0),(one,36),(255,0,0),1) | |||
# # | |||
# cv2.imshow("one",debug) | |||
# cv2.waitKey(0) | |||
# | |||
print "寻找最佳点",time.time()-t0 | |||
return score_list[-1] | |||
import sys | |||
sys.path.append('../') | |||
import recognizer as cRP | |||
import niblack_thresholding as nt | |||
def refineCrop(sections,width=16): | |||
new_sections = [] | |||
for section in sections: | |||
# cv2.imshow("section¡",section) | |||
# cv2.blur(section,(3,3),3) | |||
sec_center = np.array([section.shape[1]/2,section.shape[0]/2]) | |||
binary_niblack = nt.niBlackThreshold(section,17,-0.255) | |||
imagex, contours, hierarchy = cv2.findContours(binary_niblack,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
boxs = [] | |||
for contour in contours: | |||
x,y,w,h = cv2.boundingRect(contour) | |||
ratio = w/float(h) | |||
if ratio<1 and h>36*0.4 and y<16\ | |||
: | |||
box = [x,y,w,h] | |||
boxs.append([box,np.array([x+w/2,y+h/2])]) | |||
# cv2.rectangle(section,(x,y),(x+w,y+h),255,1) | |||
# print boxs | |||
dis_ = np.array([ ((one[1]-sec_center)**2).sum() for one in boxs]) | |||
if len(dis_)==0: | |||
kernal = [0, 0, section.shape[1], section.shape[0]] | |||
else: | |||
kernal = boxs[dis_.argmin()][0] | |||
center_c = (kernal[0]+kernal[2]/2,kernal[1]+kernal[3]/2) | |||
w_2 = int(width/2) | |||
h_2 = kernal[3]/2 | |||
if center_c[0] - w_2< 0: | |||
w_2 = center_c[0] | |||
new_box = [center_c[0] - w_2,kernal[1],width,kernal[3]] | |||
# print new_box[2]/float(new_box[3]) | |||
if new_box[2]/float(new_box[3])>0.5: | |||
# print "异常" | |||
h = int((new_box[2]/0.35 )/2) | |||
if h>35: | |||
h = 35 | |||
new_box[1] = center_c[1]- h | |||
if new_box[1]<0: | |||
new_box[1] = 1 | |||
new_box[3] = h*2 | |||
section = section[new_box[1]:new_box[1]+new_box[3],new_box[0]:new_box[0]+new_box[2]] | |||
# cv2.imshow("section",section) | |||
# cv2.waitKey(0) | |||
new_sections.append(section) | |||
# print new_box | |||
return new_sections | |||
def slidingWindowsEval(image): | |||
windows_size = 16; | |||
stride = 1 | |||
height= image.shape[0] | |||
t0 = time.time() | |||
data_sets = [] | |||
for i in range(0,image.shape[1]-windows_size+1,stride): | |||
data = image[0:height,i:i+windows_size] | |||
data = cv2.resize(data,(23,23)) | |||
# cv2.imshow("image",data) | |||
data = cv2.equalizeHist(data) | |||
data = data.astype(np.float)/255 | |||
data= np.expand_dims(data,3) | |||
data_sets.append(data) | |||
res = model2.predict(np.array(data_sets)) | |||
print "分割",time.time() - t0 | |||
pin = res | |||
p = 1 - (res.T)[1] | |||
p = f.gaussian_filter1d(np.array(p,dtype=np.float),3) | |||
lmin = l.argrelmax(np.array(p),order = 3)[0] | |||
interval = [] | |||
for i in xrange(len(lmin)-1): | |||
interval.append(lmin[i+1]-lmin[i]) | |||
if(len(interval)>3): | |||
mid = get_median(interval) | |||
else: | |||
return [] | |||
pin = np.array(pin) | |||
res = searchOptimalCuttingPoint(image,pin,0,mid,3) | |||
cutting_pts = res[1] | |||
last = cutting_pts[-1] + mid | |||
if last < image.shape[1]: | |||
cutting_pts.append(last) | |||
else: | |||
cutting_pts.append(image.shape[1]-1) | |||
name = "" | |||
confidence =0.00 | |||
seg_block = [] | |||
for x in xrange(1,len(cutting_pts)): | |||
if x != len(cutting_pts)-1 and x!=1: | |||
section = image[0:36,cutting_pts[x-1]-2:cutting_pts[x]+2] | |||
elif x==1: | |||
c_head = cutting_pts[x - 1]- 2 | |||
if c_head<0: | |||
c_head=0 | |||
c_tail = cutting_pts[x] + 2 | |||
section = image[0:36, c_head:c_tail] | |||
elif x==len(cutting_pts)-1: | |||
end = cutting_pts[x] | |||
diff = image.shape[1]-end | |||
c_head = cutting_pts[x - 1] | |||
c_tail = cutting_pts[x] | |||
if diff<7 : | |||
section = image[0:36, c_head-5:c_tail+5] | |||
else: | |||
diff-=1 | |||
section = image[0:36, c_head - diff:c_tail + diff] | |||
elif x==2: | |||
section = image[0:36, cutting_pts[x - 1] - 3:cutting_pts[x-1]+ mid] | |||
else: | |||
section = image[0:36,cutting_pts[x-1]:cutting_pts[x]] | |||
seg_block.append(section) | |||
refined = refineCrop(seg_block,mid-1) | |||
t0 = time.time() | |||
for i,one in enumerate(refined): | |||
res_pre = cRP.SimplePredict(one, i ) | |||
# cv2.imshow(str(i),one) | |||
# cv2.waitKey(0) | |||
confidence+=res_pre[0] | |||
name+= res_pre[1] | |||
print "字符识别",time.time() - t0 | |||
return refined,name,confidence |
@@ -1,56 +0,0 @@ | |||
#coding=utf-8 | |||
from keras.models import Sequential | |||
from keras.layers import Dense, Dropout, Activation, Flatten | |||
from keras.layers import Conv2D, MaxPool2D | |||
from keras.optimizers import SGD | |||
from keras import backend as K | |||
K.set_image_dim_ordering('tf') | |||
import cv2 | |||
import numpy as np | |||
plateType = [u"蓝牌",u"单层黄牌",u"新能源车牌",u"白色",u"黑色-港澳"] | |||
def Getmodel_tensorflow(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 9, 34 | |||
# number of convolutional filters to use | |||
nb_filters = 32 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(16, (5, 5),input_shape=(img_rows, img_cols,3))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Flatten()) | |||
model.add(Dense(64)) | |||
model.add(Activation('relu')) | |||
model.add(Dropout(0.5)) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
model = Getmodel_tensorflow(5) | |||
model.load_weights("./model/plate_type.h5") | |||
model.save("./model/plate_type.h5") | |||
def SimplePredict(image): | |||
image = cv2.resize(image, (34, 9)) | |||
image = image.astype(np.float) / 255 | |||
res = np.array(model.predict(np.array([image]))[0]) | |||
return res.argmax() | |||
@@ -1,11 +0,0 @@ | |||
import cv2 | |||
import os | |||
import hashlib | |||
def verticalMappingToFolder(image): | |||
name = hashlib.md5(image.data).hexdigest()[:8] | |||
print(name) | |||
cv2.imwrite("./cache/finemapping/"+name+".png",image) | |||
@@ -1,103 +0,0 @@ | |||
# -- coding: UTF-8 | |||
import cv2 | |||
import matplotlib.pyplot as plt | |||
from sklearn.cluster import KMeans | |||
import os | |||
boundaries = [ | |||
([100,80,0],[240,220,110]), # yellow | |||
([0,40,50],[110,180,250]), # blue | |||
([0,60,0],[60,160,70]), # green | |||
] | |||
color_attr = ["黄牌","蓝牌",'绿牌','白牌','黑牌'] | |||
threhold_green = 13 | |||
threhold_blue = 13 | |||
threhold_yellow1 = 50 | |||
threhold_yellow2 = 70 | |||
# plt.figure() | |||
# plt.axis("off") | |||
# plt.imshow(image) | |||
# plt.show() | |||
import numpy as np | |||
def centroid_histogram(clt): | |||
numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1) | |||
(hist, _) = np.histogram(clt.labels_, bins=numLabels) | |||
# normalize the histogram, such that it sums to one | |||
hist = hist.astype("float") | |||
hist /= hist.sum() | |||
# return the histogram | |||
return hist | |||
def plot_colors(hist, centroids): | |||
bar = np.zeros((50, 300, 3), dtype="uint8") | |||
startX = 0 | |||
for (percent, color) in zip(hist, centroids): | |||
endX = startX + (percent * 300) | |||
cv2.rectangle(bar, (int(startX), 0), (int(endX), 50), | |||
color.astype("uint8").tolist(), -1) | |||
startX = endX | |||
# return the bar chart | |||
return bar | |||
def search_boundaries(color): | |||
for i,color_bound in enumerate(boundaries): | |||
if np.all(color >= color_bound[0]) and np.all(color <= color_bound[1]): | |||
return i | |||
return -1 | |||
def judge_color(color): | |||
r = color[0] | |||
g = color[1] | |||
b = color[2] | |||
if g - r >= threhold_green and g - b >= threhold_green: | |||
return 2 | |||
if b - r >= threhold_blue and b - g >= threhold_blue: | |||
return 1 | |||
if r- b > threhold_yellow2 and g - b > threhold_yellow2: | |||
return 0 | |||
if r > 200 and b > 200 and g > 200: | |||
return 3 | |||
if r < 50 and b < 50 and g < 50: | |||
return 4 | |||
return -1 | |||
def judge_plate_color(img): | |||
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |||
image = image.reshape((image.shape[0] * image.shape[1], 3)) | |||
clt = KMeans(n_clusters=2) | |||
clt.fit(image) | |||
hist = centroid_histogram(clt) | |||
index = np.argmax(hist) | |||
#print clt.cluster_centers_[index] | |||
#color_index = search_boundaries(clt.cluster_centers_[index]) | |||
color_index = judge_color(clt.cluster_centers_[index]) | |||
if color_index == -1: | |||
if index == 0: | |||
secound_index = 1 | |||
else: | |||
secound_index = 0 | |||
color_index = judge_color(clt.cluster_centers_[secound_index]) | |||
if color_index == -1: | |||
print(clt.cluster_centers_) | |||
bar = plot_colors(hist, clt.cluster_centers_) | |||
# show our color bart | |||
plt.figure() | |||
plt.axis("off") | |||
plt.imshow(bar) | |||
plt.show() | |||
if color_index != -1: | |||
return color_attr[color_index],clt.cluster_centers_[index] | |||
else: | |||
return None,clt.cluster_centers_[index] |
@@ -1,6 +0,0 @@ | |||
import json | |||
with open("/Users/universe/ProgramUniverse/zeusees/HyperLPR/config.json") as f: | |||
configuration = json.load(f) |
@@ -1,100 +0,0 @@ | |||
#coding=utf-8 | |||
import numpy as np | |||
import cv2 | |||
import time | |||
from matplotlib import pyplot as plt | |||
import math | |||
from scipy.ndimage import filters | |||
# | |||
# def strokeFiter(): | |||
# pass; | |||
def angle(x,y): | |||
return int(math.atan2(float(y),float(x))*180.0/3.1415) | |||
def h_rot(src, angle, scale=1.0): | |||
w = src.shape[1] | |||
h = src.shape[0] | |||
rangle = np.deg2rad(angle) | |||
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale | |||
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale | |||
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale) | |||
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0])) | |||
rot_mat[0,2] += rot_move[0] | |||
rot_mat[1,2] += rot_move[1] | |||
return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) | |||
pass | |||
def v_rot(img, angel, shape, max_angel): | |||
size_o = [shape[1],shape[0]] | |||
size = (shape[1]+ int(shape[0]*np.cos((float(max_angel )/180) * 3.14)),shape[0]) | |||
interval = abs( int( np.sin((float(angel) /180) * 3.14)* shape[0])) | |||
pts1 = np.float32([[0,0],[0,size_o[1]],[size_o[0],0],[size_o[0],size_o[1]]]) | |||
if(angel>0): | |||
pts2 = np.float32([[interval,0],[0,size[1] ],[size[0],0 ],[size[0]-interval,size_o[1]]]) | |||
else: | |||
pts2 = np.float32([[0,0],[interval,size[1] ],[size[0]-interval,0 ],[size[0],size_o[1]]]) | |||
M = cv2.getPerspectiveTransform(pts1,pts2) | |||
dst = cv2.warpPerspective(img,M,size) | |||
return dst,M | |||
def skew_detection(image_gray): | |||
h, w = image_gray.shape[:2] | |||
eigen = cv2.cornerEigenValsAndVecs(image_gray,12, 5) | |||
angle_sur = np.zeros(180,np.uint) | |||
eigen = eigen.reshape(h, w, 3, 2) | |||
flow = eigen[:,:,2] | |||
vis = image_gray.copy() | |||
vis[:] = (192 + np.uint32(vis)) / 2 | |||
d = 12 | |||
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2) | |||
for x, y in points: | |||
vx, vy = np.int32(flow[int(y), int(x)]*d) | |||
# cv2.line(rgb, (x-vx, y-vy), (x+vx, y+vy), (0, 355, 0), 1, cv2.LINE_AA) | |||
ang = angle(vx,vy) | |||
angle_sur[(ang+180)%180] +=1 | |||
# torr_bin = 30 | |||
angle_sur = angle_sur.astype(np.float) | |||
angle_sur = (angle_sur-angle_sur.min())/(angle_sur.max()-angle_sur.min()) | |||
angle_sur = filters.gaussian_filter1d(angle_sur,5) | |||
skew_v_val = angle_sur[20:180-20].max() | |||
skew_v = angle_sur[30:180-30].argmax() + 30 | |||
skew_h_A = angle_sur[0:30].max() | |||
skew_h_B = angle_sur[150:180].max() | |||
skew_h = 0 | |||
if (skew_h_A > skew_v_val*0.3 or skew_h_B > skew_v_val*0.3): | |||
if skew_h_A>=skew_h_B: | |||
skew_h = angle_sur[0:20].argmax() | |||
else: | |||
skew_h = - angle_sur[160:180].argmax() | |||
return skew_h,skew_v | |||
def fastDeskew(image): | |||
image_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) | |||
skew_h,skew_v = skew_detection(image_gray) | |||
print("校正角度 h ",skew_h,"v",skew_v) | |||
deskew,M = v_rot(image,int((90-skew_v)*1.5),image.shape,60) | |||
return deskew,M | |||
if __name__ == '__main__': | |||
fn = './dataset/0.jpg' | |||
img = cv2.imread(fn) | |||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |||
skew_h,skew_v = skew_detection(gray) | |||
img = v_rot(img,(90-skew_v ),img.shape,60) | |||
# img = h_rot(img,skew_h) | |||
# if img.shape[0]>img.shape[1]: | |||
# img = h_rot(img, -90) | |||
plt.show() | |||
cv2.waitKey() |
@@ -1,76 +0,0 @@ | |||
import cv2 | |||
import numpy as np | |||
watch_cascade = cv2.CascadeClassifier('./model/cascade.xml') | |||
def computeSafeRegion(shape,bounding_rect): | |||
top = bounding_rect[1] # y | |||
bottom = bounding_rect[1] + bounding_rect[3] # y + h | |||
left = bounding_rect[0] # x | |||
right = bounding_rect[0] + bounding_rect[2] # x + w | |||
min_top = 0 | |||
max_bottom = shape[0] | |||
min_left = 0 | |||
max_right = shape[1] | |||
# print "computeSateRegion input shape",shape | |||
if top < min_top: | |||
top = min_top | |||
# print "tap top 0" | |||
if left < min_left: | |||
left = min_left | |||
# print "tap left 0" | |||
if bottom > max_bottom: | |||
bottom = max_bottom | |||
#print "tap max_bottom max" | |||
if right > max_right: | |||
right = max_right | |||
#print "tap max_right max" | |||
# print "corr",left,top,right,bottom | |||
return [left,top,right-left,bottom-top] | |||
def cropped_from_image(image,rect): | |||
x, y, w, h = computeSafeRegion(image.shape,rect) | |||
return image[y:y+h,x:x+w] | |||
def detectPlateRough(image_gray,resize_h = 720,en_scale =1.08 ,top_bottom_padding_rate = 0.05): | |||
print(image_gray.shape) | |||
if top_bottom_padding_rate>0.2: | |||
print("error:top_bottom_padding_rate > 0.2:",top_bottom_padding_rate) | |||
exit(1) | |||
height = image_gray.shape[0] | |||
padding = int(height*top_bottom_padding_rate) | |||
scale = image_gray.shape[1]/float(image_gray.shape[0]) | |||
image = cv2.resize(image_gray, (int(scale*resize_h), resize_h)) | |||
image_color_cropped = image[padding:resize_h-padding,0:image_gray.shape[1]] | |||
image_gray = cv2.cvtColor(image_color_cropped,cv2.COLOR_RGB2GRAY) | |||
watches = watch_cascade.detectMultiScale(image_gray, en_scale, 2, minSize=(36, 9),maxSize=(36*40, 9*40)) | |||
cropped_images = [] | |||
for (x, y, w, h) in watches: | |||
cropped_origin = cropped_from_image(image_color_cropped, (int(x), int(y), int(w), int(h))) | |||
x -= w * 0.14 | |||
w += w * 0.28 | |||
y -= h * 0.6 | |||
h += h * 1.1; | |||
cropped = cropped_from_image(image_color_cropped, (int(x), int(y), int(w), int(h))) | |||
cropped_images.append([cropped,[x, y+padding, w, h],cropped_origin]) | |||
return cropped_images |
@@ -1,63 +0,0 @@ | |||
#coding=utf-8 | |||
from keras import backend as K | |||
from keras.models import load_model | |||
from keras.layers import * | |||
import numpy as np | |||
import random | |||
import string | |||
import cv2 | |||
from . import e2emodel as model | |||
chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", | |||
"琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", | |||
"B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", | |||
"Y", "Z","港","学","使","警","澳","挂","军","北","南","广","沈","兰","成","济","海","民","航","空" | |||
]; | |||
pred_model = model.construct_model("./model/ocr_plate_all_w_rnn_2.h5",) | |||
import time | |||
def fastdecode(y_pred): | |||
results = "" | |||
confidence = 0.0 | |||
table_pred = y_pred.reshape(-1, len(chars)+1) | |||
res = table_pred.argmax(axis=1) | |||
for i,one in enumerate(res): | |||
if one<len(chars) and (i==0 or (one!=res[i-1])): | |||
results+= chars[one] | |||
confidence+=table_pred[i][one] | |||
confidence/= len(results) | |||
return results,confidence | |||
def recognizeOne(src): | |||
# x_tempx= cv2.imread(src) | |||
x_tempx = src | |||
# x_tempx = cv2.bitwise_not(x_tempx) | |||
x_temp = cv2.resize(x_tempx,( 160,40)) | |||
x_temp = x_temp.transpose(1, 0, 2) | |||
t0 = time.time() | |||
y_pred = pred_model.predict(np.array([x_temp])) | |||
y_pred = y_pred[:,2:,:] | |||
# plt.imshow(y_pred.reshape(16,66)) | |||
# plt.show() | |||
# | |||
# cv2.imshow("x_temp",x_tempx) | |||
# cv2.waitKey(0) | |||
return fastdecode(y_pred) | |||
# | |||
# | |||
# import os | |||
# | |||
# path = "/Users/yujinke/PycharmProjects/HyperLPR_Python_web/cache/finemapping" | |||
# for filename in os.listdir(path): | |||
# if filename.endswith(".png") or filename.endswith(".jpg") or filename.endswith(".bmp"): | |||
# x = os.path.join(path,filename) | |||
# recognizeOne(x) | |||
# # print time.time() - t0 | |||
# | |||
# # cv2.imshow("x",x) | |||
# # cv2.waitKey() |
@@ -1,34 +0,0 @@ | |||
from keras import backend as K | |||
from keras.models import * | |||
from keras.layers import * | |||
from . import e2e | |||
def ctc_lambda_func(args): | |||
y_pred, labels, input_length, label_length = args | |||
y_pred = y_pred[:, 2:, :] | |||
return K.ctc_batch_cost(labels, y_pred, input_length, label_length) | |||
def construct_model(model_path): | |||
input_tensor = Input((None, 40, 3)) | |||
x = input_tensor | |||
base_conv = 32 | |||
for i in range(3): | |||
x = Conv2D(base_conv * (2 ** (i)), (3, 3),padding="same")(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
x = MaxPooling2D(pool_size=(2, 2))(x) | |||
x = Conv2D(256, (5, 5))(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
x = Conv2D(1024, (1, 1))(x) | |||
x = BatchNormalization()(x) | |||
x = Activation('relu')(x) | |||
x = Conv2D(len(e2e.chars)+1, (1, 1))(x) | |||
x = Activation('softmax')(x) | |||
base_model = Model(inputs=input_tensor, outputs=x) | |||
base_model.load_weights(model_path) | |||
return base_model |
@@ -1,130 +0,0 @@ | |||
#coding=utf-8 | |||
import cv2 | |||
import numpy as np | |||
from . import niblack_thresholding as nt | |||
from . import deskew | |||
def fitLine_ransac(pts,zero_add = 0 ): | |||
if len(pts)>=2: | |||
[vx, vy, x, y] = cv2.fitLine(pts, cv2.DIST_HUBER, 0, 0.01, 0.01) | |||
lefty = int((-x * vy / vx) + y) | |||
righty = int(((136- x) * vy / vx) + y) | |||
return lefty+30+zero_add,righty+30+zero_add | |||
return 0,0 | |||
#精定位算法 | |||
def findContoursAndDrawBoundingBox(image_rgb): | |||
line_upper = []; | |||
line_lower = []; | |||
line_experiment = [] | |||
grouped_rects = [] | |||
gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
# for k in np.linspace(-1.5, -0.2,10): | |||
for k in np.linspace(-50, 0, 15): | |||
# thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k) | |||
# binary_niblack = gray_image > thresh_niblack | |||
# binary_niblack = binary_niblack.astype(np.uint8) * 255 | |||
binary_niblack = cv2.adaptiveThreshold(gray_image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,17,k) | |||
# cv2.imshow("image1",binary_niblack) | |||
# cv2.waitKey(0) | |||
imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
for contour in contours: | |||
bdbox = cv2.boundingRect(contour) | |||
if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1200) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100): | |||
# cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1) | |||
line_upper.append([bdbox[0],bdbox[1]]) | |||
line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
line_experiment.append([bdbox[0],bdbox[1]]) | |||
line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
# grouped_rects.append(bdbox) | |||
rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE) | |||
leftyA, rightyA = fitLine_ransac(np.array(line_lower),3) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA) | |||
leftyB, rightyB = fitLine_ransac(np.array(line_upper),-3) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA) | |||
pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]]) | |||
pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]]) | |||
mat = cv2.getPerspectiveTransform(pts_map1,pts_map2) | |||
image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC) | |||
image,M = deskew.fastDeskew(image) | |||
return image | |||
#多级 | |||
def findContoursAndDrawBoundingBox2(image_rgb): | |||
line_upper = []; | |||
line_lower = []; | |||
line_experiment = [] | |||
grouped_rects = [] | |||
gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
for k in np.linspace(-1.6, -0.2,10): | |||
# for k in np.linspace(-15, 0, 15): | |||
# # | |||
# thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k) | |||
# binary_niblack = gray_image > thresh_niblack | |||
# binary_niblack = binary_niblack.astype(np.uint8) * 255 | |||
binary_niblack = nt.niBlackThreshold(gray_image,19,k) | |||
# cv2.imshow("binary_niblack_opencv",binary_niblack_) | |||
# cv2.imshow("binary_niblack_skimage", binary_niblack) | |||
# cv2.waitKey(0) | |||
imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
for contour in contours: | |||
bdbox = cv2.boundingRect(contour) | |||
if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1000) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100): | |||
# cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1) | |||
line_upper.append([bdbox[0],bdbox[1]]) | |||
line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
line_experiment.append([bdbox[0],bdbox[1]]) | |||
line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
# grouped_rects.append(bdbox) | |||
rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE) | |||
leftyA, rightyA = fitLine_ransac(np.array(line_lower),2) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA) | |||
leftyB, rightyB = fitLine_ransac(np.array(line_upper),-4) | |||
rows,cols = rgb.shape[:2] | |||
# rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA) | |||
pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]]) | |||
pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]]) | |||
mat = cv2.getPerspectiveTransform(pts_map1,pts_map2) | |||
image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC) | |||
image,M= deskew.fastDeskew(image) | |||
return image |
@@ -1,92 +0,0 @@ | |||
#coding=utf-8 | |||
from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense | |||
from keras.models import Model, Sequential | |||
from keras.layers.advanced_activations import PReLU | |||
from keras.optimizers import adam | |||
import numpy as np | |||
import cv2 | |||
def getModel(): | |||
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input | |||
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) | |||
x = Activation("relu", name='relu1')(x) | |||
x = MaxPool2D(pool_size=2)(x) | |||
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) | |||
x = Activation("relu", name='relu2')(x) | |||
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) | |||
x = Activation("relu", name='relu3')(x) | |||
x = Flatten()(x) | |||
output = Dense(2,name = "dense")(x) | |||
output = Activation("relu", name='relu4')(output) | |||
model = Model([input], [output]) | |||
return model | |||
model = getModel() | |||
model.load_weights("./model/model12.h5") | |||
def getmodel(): | |||
return model | |||
def gettest_model(): | |||
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input | |||
A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) | |||
B = Activation("relu", name='relu1')(A) | |||
C = MaxPool2D(pool_size=2)(B) | |||
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C) | |||
x = Activation("relu", name='relu2')(x) | |||
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) | |||
K = Activation("relu", name='relu3')(x) | |||
x = Flatten()(K) | |||
dense = Dense(2,name = "dense")(x) | |||
output = Activation("relu", name='relu4')(dense) | |||
x = Model([input], [output]) | |||
x.load_weights("./model/model12.h5") | |||
ok = Model([input], [dense]) | |||
for layer in ok.layers: | |||
print(layer) | |||
return ok | |||
def finemappingVertical(image): | |||
resized = cv2.resize(image,(66,16)) | |||
resized = resized.astype(np.float)/255 | |||
res= model.predict(np.array([resized]))[0] | |||
print("keras_predict",res) | |||
res =res*image.shape[1] | |||
res = res.astype(np.int) | |||
H,T = res | |||
H-=3 | |||
#3 79.86 | |||
#4 79.3 | |||
#5 79.5 | |||
#6 78.3 | |||
#T | |||
#T+1 80.9 | |||
#T+2 81.75 | |||
#T+3 81.75 | |||
if H<0: | |||
H=0 | |||
T+=2; | |||
if T>= image.shape[1]-1: | |||
T= image.shape[1]-1 | |||
image = image[0:35,H:T+2] | |||
image = cv2.resize(image, (int(136), int(36))) | |||
return image |
@@ -1,18 +0,0 @@ | |||
import cv2 | |||
import numpy as np | |||
def niBlackThreshold( src, blockSize, k, binarizationMethod= 0 ): | |||
mean = cv2.boxFilter(src,cv2.CV_32F,(blockSize, blockSize),borderType=cv2.BORDER_REPLICATE) | |||
sqmean = cv2.sqrBoxFilter(src, cv2.CV_32F, (blockSize, blockSize), borderType = cv2.BORDER_REPLICATE) | |||
variance = sqmean - (mean*mean) | |||
stddev = np.sqrt(variance) | |||
thresh = mean + stddev * float(-k) | |||
thresh = thresh.astype(src.dtype) | |||
k = (src>thresh)*255 | |||
k = k.astype(np.uint8) | |||
return k | |||
# cv2.imshow() |
@@ -1,246 +0,0 @@ | |||
#coding=utf-8 | |||
from . import detect | |||
from . import finemapping as fm | |||
from . import segmentation | |||
import cv2 | |||
import time | |||
import numpy as np | |||
from PIL import ImageFont | |||
from PIL import Image | |||
from PIL import ImageDraw | |||
import json | |||
import sys | |||
from . import typeDistinguish as td | |||
import imp | |||
imp.reload(sys) | |||
fontC = ImageFont.truetype("./Font/platech.ttf", 14, 0); | |||
from . import e2e | |||
#寻找车牌左右边界 | |||
def find_edge(image): | |||
sum_i = image.sum(axis=0) | |||
sum_i = sum_i.astype(np.float) | |||
sum_i/=image.shape[0]*255 | |||
# print sum_i | |||
start= 0 ; | |||
end = image.shape[1]-1 | |||
for i,one in enumerate(sum_i): | |||
if one>0.4: | |||
start = i; | |||
if start-3<0: | |||
start = 0 | |||
else: | |||
start -=3 | |||
break; | |||
for i,one in enumerate(sum_i[::-1]): | |||
if one>0.4: | |||
end = end - i; | |||
if end+4>image.shape[1]-1: | |||
end = image.shape[1]-1 | |||
else: | |||
end+=4 | |||
break | |||
return start,end | |||
#垂直边缘检测 | |||
def verticalEdgeDetection(image): | |||
image_sobel = cv2.Sobel(image.copy(),cv2.CV_8U,1,0) | |||
# image = auto_canny(image_sobel) | |||
# img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT | |||
# canny_image = auto_canny(image) | |||
flag,thres = cv2.threshold(image_sobel,0,255,cv2.THRESH_OTSU|cv2.THRESH_BINARY) | |||
print(flag) | |||
flag,thres = cv2.threshold(image_sobel,int(flag*0.7),255,cv2.THRESH_BINARY) | |||
# thres = simpleThres(image_sobel) | |||
kernal = np.ones(shape=(3,15)) | |||
thres = cv2.morphologyEx(thres,cv2.MORPH_CLOSE,kernal) | |||
return thres | |||
#确定粗略的左右边界 | |||
def horizontalSegmentation(image): | |||
thres = verticalEdgeDetection(image) | |||
# thres = thres*image | |||
head,tail = find_edge(thres) | |||
# print head,tail | |||
# cv2.imshow("edge",thres) | |||
tail = tail+5 | |||
if tail>135: | |||
tail = 135 | |||
image = image[0:35,head:tail] | |||
image = cv2.resize(image, (int(136), int(36))) | |||
return image | |||
#打上boundingbox和标签 | |||
def drawRectBox(image,rect,addText): | |||
cv2.rectangle(image, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])), (0,0, 255), 2, cv2.LINE_AA) | |||
cv2.rectangle(image, (int(rect[0]-1), int(rect[1])-16), (int(rect[0] + 115), int(rect[1])), (0, 0, 255), -1, cv2.LINE_AA) | |||
img = Image.fromarray(image) | |||
draw = ImageDraw.Draw(img) | |||
#draw.text((int(rect[0]+1), int(rect[1]-16)), addText.decode("utf-8"), (255, 255, 255), font=fontC) | |||
draw.text((int(rect[0]+1), int(rect[1]-16)), addText, (255, 255, 255), font=fontC) | |||
imagex = np.array(img) | |||
return imagex | |||
from . import cache | |||
from . import finemapping_vertical as fv | |||
def RecognizePlateJson(image): | |||
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
jsons = [] | |||
for j,plate in enumerate(images): | |||
plate,rect,origin_plate =plate | |||
res, confidence = e2e.recognizeOne(origin_plate) | |||
print("res",res) | |||
cv2.imwrite("./"+str(j)+"_rough.jpg",plate) | |||
# print "车牌类型:",ptype | |||
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
plate =cv2.resize(plate,(136,int(36*2.5))) | |||
t1 = time.time() | |||
ptype = td.SimplePredict(plate) | |||
if ptype>0 and ptype<4: | |||
plate = cv2.bitwise_not(plate) | |||
# demo = verticalEdgeDetection(plate) | |||
image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
cache.verticalMappingToFolder(image_rgb) | |||
# print time.time() - t1,"校正" | |||
print("e2e:",e2e.recognizeOne(image_rgb)[0]) | |||
image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
cv2.imwrite("./"+str(j)+".jpg",image_gray) | |||
# image_gray = horizontalSegmentation(image_gray) | |||
t2 = time.time() | |||
res, confidence = e2e.recognizeOne(image_rgb) | |||
res_json = {} | |||
if confidence > 0.6: | |||
res_json["Name"] = res | |||
res_json["Type"] = td.plateType[ptype] | |||
res_json["Confidence"] = confidence; | |||
res_json["x"] = int(rect[0]) | |||
res_json["y"] = int(rect[1]) | |||
res_json["w"] = int(rect[2]) | |||
res_json["h"] = int(rect[3]) | |||
jsons.append(res_json) | |||
print(json.dumps(jsons,ensure_ascii=False,encoding="gb2312")) | |||
return json.dumps(jsons,ensure_ascii=False,encoding="gb2312") | |||
def SimpleRecognizePlateByE2E(image): | |||
t0 = time.time() | |||
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
res_set = [] | |||
for j,plate in enumerate(images): | |||
plate, rect, origin_plate =plate | |||
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
plate =cv2.resize(plate,(136,36*2)) | |||
res,confidence = e2e.recognizeOne(origin_plate) | |||
print("res",res) | |||
t1 = time.time() | |||
ptype = td.SimplePredict(plate) | |||
if ptype>0 and ptype<5: | |||
# pass | |||
plate = cv2.bitwise_not(plate) | |||
image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
cache.verticalMappingToFolder(image_rgb) | |||
cv2.imwrite("./"+str(j)+".jpg",image_rgb) | |||
res,confidence = e2e.recognizeOne(image_rgb) | |||
print(res,confidence) | |||
res_set.append([[],res,confidence]) | |||
if confidence>0.7: | |||
image = drawRectBox(image, rect, res+" "+str(round(confidence,3))) | |||
return image,res_set | |||
def SimpleRecognizePlate(image): | |||
t0 = time.time() | |||
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
res_set = [] | |||
for j,plate in enumerate(images): | |||
plate, rect, origin_plate =plate | |||
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
plate =cv2.resize(plate,(136,36*2)) | |||
t1 = time.time() | |||
ptype = td.SimplePredict(plate) | |||
if ptype>0 and ptype<5: | |||
plate = cv2.bitwise_not(plate) | |||
image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
image_rgb = fv.finemappingVertical(image_rgb) | |||
cache.verticalMappingToFolder(image_rgb) | |||
print("e2e:", e2e.recognizeOne(image_rgb)) | |||
image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_RGB2GRAY) | |||
# image_gray = horizontalSegmentation(image_gray) | |||
cv2.imshow("image_gray",image_gray) | |||
# cv2.waitKey() | |||
cv2.imwrite("./"+str(j)+".jpg",image_gray) | |||
# cv2.imshow("image",image_gray) | |||
# cv2.waitKey(0) | |||
print("校正",time.time() - t1,"s") | |||
# cv2.imshow("image,",image_gray) | |||
# cv2.waitKey(0) | |||
t2 = time.time() | |||
val = segmentation.slidingWindowsEval(image_gray) | |||
# print val | |||
print("分割和识别",time.time() - t2,"s") | |||
if len(val)==3: | |||
blocks, res, confidence = val | |||
if confidence/7>0.7: | |||
image = drawRectBox(image,rect,res) | |||
res_set.append(res) | |||
for i,block in enumerate(blocks): | |||
block_ = cv2.resize(block,(25,25)) | |||
block_ = cv2.cvtColor(block_,cv2.COLOR_GRAY2BGR) | |||
image[j * 25:(j * 25) + 25, i * 25:(i * 25) + 25] = block_ | |||
if image[j*25:(j*25)+25,i*25:(i*25)+25].shape == block_.shape: | |||
pass | |||
if confidence>0: | |||
print("车牌:",res,"置信度:",confidence/7) | |||
else: | |||
pass | |||
# print "不确定的车牌:", res, "置信度:", confidence | |||
print(time.time() - t0,"s") | |||
return image,res_set | |||
@@ -1,154 +0,0 @@ | |||
#coding=utf-8 | |||
from keras.models import Sequential | |||
from keras.layers import Dense, Dropout, Activation, Flatten | |||
from keras.layers import Conv2D,MaxPool2D | |||
from keras.optimizers import SGD | |||
from keras import backend as K | |||
K.set_image_dim_ordering('tf') | |||
import cv2 | |||
import numpy as np | |||
index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9, "苏": 10, "浙": 11, "皖": 12, | |||
"闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19, "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, | |||
"藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, | |||
"6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, | |||
"J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60, | |||
"W": 61, "X": 62, "Y": 63, "Z": 64,"港":65,"学":66 ,"O":67 ,"使":68,"警":69,"澳":70,"挂":71}; | |||
chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", | |||
"琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", | |||
"B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", | |||
"Q", "R", "S", "T", "U", "V", "W", "X", | |||
"Y", "Z","港","学","O","使","警","澳","挂" ]; | |||
def Getmodel_tensorflow(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 32 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(32, (3, 3))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(512, (3, 3))) | |||
# model.add(Activation('relu')) | |||
# model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) | |||
# model.add(Dropout(0.25)) | |||
model.add(Flatten()) | |||
model.add(Dense(512)) | |||
model.add(Activation('relu')) | |||
model.add(Dropout(0.5)) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
def Getmodel_ch(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 32 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(32, (3, 3))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Dropout(0.25)) | |||
model.add(Conv2D(512, (3, 3))) | |||
# model.add(Activation('relu')) | |||
# model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) | |||
# model.add(Dropout(0.25)) | |||
model.add(Flatten()) | |||
model.add(Dense(756)) | |||
model.add(Activation('relu')) | |||
model.add(Dropout(0.5)) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
model = Getmodel_tensorflow(65) | |||
#构建网络 | |||
model_ch = Getmodel_ch(31) | |||
model_ch.load_weights("./model/char_chi_sim.h5") | |||
# model_ch.save_weights("./model/char_chi_sim.h5") | |||
model.load_weights("./model/char_rec.h5") | |||
# model.save("./model/char_rec.h5") | |||
def SimplePredict(image,pos): | |||
image = cv2.resize(image, (23, 23)) | |||
image = cv2.equalizeHist(image) | |||
image = image.astype(np.float) / 255 | |||
image -= image.mean() | |||
image = np.expand_dims(image, 3) | |||
if pos!=0: | |||
res = np.array(model.predict(np.array([image]))[0]) | |||
else: | |||
res = np.array(model_ch.predict(np.array([image]))[0]) | |||
zero_add = 0 ; | |||
if pos==0: | |||
res = res[:31] | |||
elif pos==1: | |||
res = res[31+10:65] | |||
zero_add = 31+10 | |||
else: | |||
res = res[31:] | |||
zero_add = 31 | |||
max_id = res.argmax() | |||
return res.max(),chars[max_id+zero_add],max_id+zero_add | |||
@@ -1,307 +0,0 @@ | |||
#coding=utf-8 | |||
import cv2 | |||
import numpy as np | |||
# from matplotlib import pyplot as plt | |||
import scipy.ndimage.filters as f | |||
import scipy | |||
import time | |||
import scipy.signal as l | |||
from keras.models import Sequential | |||
from keras.layers import Dense, Dropout, Activation, Flatten | |||
from keras.layers import Conv2D, MaxPool2D | |||
from keras.optimizers import SGD | |||
from keras import backend as K | |||
K.set_image_dim_ordering('tf') | |||
def Getmodel_tensorflow(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 16 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols,1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Conv2D(nb_filters, (nb_conv, nb_conv))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Flatten()) | |||
model.add(Dense(256)) | |||
model.add(Dropout(0.5)) | |||
model.add(Activation('relu')) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='sgd', | |||
metrics=['accuracy']) | |||
return model | |||
def Getmodel_tensorflow_light(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 23, 23 | |||
# number of convolutional filters to use | |||
nb_filters = 8 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols, 1))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Conv2D(nb_filters, (nb_conv * 2, nb_conv * 2))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Flatten()) | |||
model.add(Dense(32)) | |||
# model.add(Dropout(0.25)) | |||
model.add(Activation('relu')) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
model = Getmodel_tensorflow_light(3) | |||
model2 = Getmodel_tensorflow(3) | |||
import os | |||
model.load_weights("./model/char_judgement1.h5") | |||
# model.save("./model/char_judgement1.h5") | |||
model2.load_weights("./model/char_judgement.h5") | |||
# model2.save("./model/char_judgement.h5") | |||
model = model2 | |||
def get_median(data): | |||
data = sorted(data) | |||
size = len(data) | |||
# print size | |||
if size % 2 == 0: # 判断列表长度为偶数 | |||
median = (data[size//2]+data[size//2-1])//2 | |||
data[0] = median | |||
if size % 2 == 1: # 判断列表长度为奇数 | |||
median = data[(size-1)//2] | |||
data[0] = median | |||
return data[0] | |||
import time | |||
def searchOptimalCuttingPoint(rgb,res_map,start,width_boundingbox,interval_range): | |||
t0 = time.time() | |||
# | |||
# for x in xrange(10): | |||
# res_map = np.vstack((res_map,res_map[-1])) | |||
length = res_map.shape[0] | |||
refine_s = -2; | |||
if width_boundingbox>20: | |||
refine_s = -9 | |||
score_list = [] | |||
interval_big = int(width_boundingbox * 0.3) # | |||
p = 0 | |||
for zero_add in range(start,start+50,3): | |||
# for interval_small in xrange(-0,width_boundingbox/2): | |||
for i in range(-8,int(width_boundingbox/1)-8): | |||
for refine in range(refine_s, int(width_boundingbox/2+3)): | |||
p1 = zero_add# this point is province | |||
p2 = p1 + width_boundingbox +refine # | |||
p3 = p2 + width_boundingbox + interval_big+i+1 | |||
p4 = p3 + width_boundingbox +refine | |||
p5 = p4 + width_boundingbox +refine | |||
p6 = p5 + width_boundingbox +refine | |||
p7 = p6 + width_boundingbox +refine | |||
if p7>=length: | |||
continue | |||
score = res_map[p1][2]*3 -(res_map[p3][1]+res_map[p4][1]+res_map[p5][1]+res_map[p6][1]+res_map[p7][1])+7 | |||
# print score | |||
score_list.append([score,[p1,p2,p3,p4,p5,p6,p7]]) | |||
p+=1 | |||
print(p) | |||
score_list = sorted(score_list , key=lambda x:x[0]) | |||
# for one in score_list[-1][1]: | |||
# cv2.line(debug,(one,0),(one,36),(255,0,0),1) | |||
# # | |||
# cv2.imshow("one",debug) | |||
# cv2.waitKey(0) | |||
# | |||
print("寻找最佳点",time.time()-t0) | |||
return score_list[-1] | |||
import sys | |||
sys.path.append('../') | |||
from . import recognizer as cRP | |||
from . import niblack_thresholding as nt | |||
def refineCrop(sections,width=16): | |||
new_sections = [] | |||
for section in sections: | |||
# cv2.imshow("section¡",section) | |||
# cv2.blur(section,(3,3),3) | |||
sec_center = np.array([section.shape[1]/2,section.shape[0]/2]) | |||
binary_niblack = nt.niBlackThreshold(section,17,-0.255) | |||
imagex, contours, hierarchy = cv2.findContours(binary_niblack,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
boxs = [] | |||
for contour in contours: | |||
x,y,w,h = cv2.boundingRect(contour) | |||
ratio = w/float(h) | |||
if ratio<1 and h>36*0.4 and y<16\ | |||
: | |||
box = [x,y,w,h] | |||
boxs.append([box,np.array([x+w/2,y+h/2])]) | |||
# cv2.rectangle(section,(x,y),(x+w,y+h),255,1) | |||
# print boxs | |||
dis_ = np.array([ ((one[1]-sec_center)**2).sum() for one in boxs]) | |||
if len(dis_)==0: | |||
kernal = [0, 0, section.shape[1], section.shape[0]] | |||
else: | |||
kernal = boxs[dis_.argmin()][0] | |||
center_c = (kernal[0]+kernal[2]/2,kernal[1]+kernal[3]/2) | |||
w_2 = int(width/2) | |||
h_2 = kernal[3]/2 | |||
if center_c[0] - w_2< 0: | |||
w_2 = center_c[0] | |||
new_box = [center_c[0] - w_2,kernal[1],width,kernal[3]] | |||
# print new_box[2]/float(new_box[3]) | |||
if new_box[2]/float(new_box[3])>0.5: | |||
# print "异常" | |||
h = int((new_box[2]/0.35 )/2) | |||
if h>35: | |||
h = 35 | |||
new_box[1] = center_c[1]- h | |||
if new_box[1]<0: | |||
new_box[1] = 1 | |||
new_box[3] = h*2 | |||
section = section[int(new_box[1]):int(new_box[1]+new_box[3]), int(new_box[0]):int(new_box[0]+new_box[2])] | |||
# cv2.imshow("section",section) | |||
# cv2.waitKey(0) | |||
new_sections.append(section) | |||
# print new_box | |||
return new_sections | |||
def slidingWindowsEval(image): | |||
windows_size = 16; | |||
stride = 1 | |||
height= image.shape[0] | |||
t0 = time.time() | |||
data_sets = [] | |||
for i in range(0,image.shape[1]-windows_size+1,stride): | |||
data = image[0:height,i:i+windows_size] | |||
data = cv2.resize(data,(23,23)) | |||
# cv2.imshow("image",data) | |||
data = cv2.equalizeHist(data) | |||
data = data.astype(np.float)/255 | |||
data= np.expand_dims(data,3) | |||
data_sets.append(data) | |||
res = model2.predict(np.array(data_sets)) | |||
print("分割",time.time() - t0) | |||
pin = res | |||
p = 1 - (res.T)[1] | |||
p = f.gaussian_filter1d(np.array(p,dtype=np.float),3) | |||
lmin = l.argrelmax(np.array(p),order = 3)[0] | |||
interval = [] | |||
for i in range(len(lmin)-1): | |||
interval.append(lmin[i+1]-lmin[i]) | |||
if(len(interval)>3): | |||
mid = get_median(interval) | |||
else: | |||
return [] | |||
pin = np.array(pin) | |||
res = searchOptimalCuttingPoint(image,pin,0,mid,3) | |||
cutting_pts = res[1] | |||
last = cutting_pts[-1] + mid | |||
if last < image.shape[1]: | |||
cutting_pts.append(last) | |||
else: | |||
cutting_pts.append(image.shape[1]-1) | |||
name = "" | |||
confidence =0.00 | |||
seg_block = [] | |||
for x in range(1,len(cutting_pts)): | |||
if x != len(cutting_pts)-1 and x!=1: | |||
section = image[0:36,cutting_pts[x-1]-2:cutting_pts[x]+2] | |||
elif x==1: | |||
c_head = cutting_pts[x - 1]- 2 | |||
if c_head<0: | |||
c_head=0 | |||
c_tail = cutting_pts[x] + 2 | |||
section = image[0:36, c_head:c_tail] | |||
elif x==len(cutting_pts)-1: | |||
end = cutting_pts[x] | |||
diff = image.shape[1]-end | |||
c_head = cutting_pts[x - 1] | |||
c_tail = cutting_pts[x] | |||
if diff<7 : | |||
section = image[0:36, c_head-5:c_tail+5] | |||
else: | |||
diff-=1 | |||
section = image[0:36, c_head - diff:c_tail + diff] | |||
elif x==2: | |||
section = image[0:36, cutting_pts[x - 1] - 3:cutting_pts[x-1]+ mid] | |||
else: | |||
section = image[0:36,cutting_pts[x-1]:cutting_pts[x]] | |||
seg_block.append(section) | |||
refined = refineCrop(seg_block,mid-1) | |||
t0 = time.time() | |||
for i,one in enumerate(refined): | |||
res_pre = cRP.SimplePredict(one, i ) | |||
# cv2.imshow(str(i),one) | |||
# cv2.waitKey(0) | |||
confidence+=res_pre[0] | |||
name+= res_pre[1] | |||
print("字符识别",time.time() - t0) | |||
return refined,name,confidence |
@@ -1,56 +0,0 @@ | |||
#coding=utf-8 | |||
from keras.models import Sequential | |||
from keras.layers import Dense, Dropout, Activation, Flatten | |||
from keras.layers import Conv2D, MaxPool2D | |||
from keras.optimizers import SGD | |||
from keras import backend as K | |||
K.set_image_dim_ordering('tf') | |||
import cv2 | |||
import numpy as np | |||
plateType = ["蓝牌","单层黄牌","新能源车牌","白色","黑色-港澳"] | |||
def Getmodel_tensorflow(nb_classes): | |||
# nb_classes = len(charset) | |||
img_rows, img_cols = 9, 34 | |||
# number of convolutional filters to use | |||
nb_filters = 32 | |||
# size of pooling area for max pooling | |||
nb_pool = 2 | |||
# convolution kernel size | |||
nb_conv = 3 | |||
# x = np.load('x.npy') | |||
# y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
# weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
# weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
model = Sequential() | |||
model.add(Conv2D(16, (5, 5),input_shape=(img_rows, img_cols,3))) | |||
model.add(Activation('relu')) | |||
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
model.add(Flatten()) | |||
model.add(Dense(64)) | |||
model.add(Activation('relu')) | |||
model.add(Dropout(0.5)) | |||
model.add(Dense(nb_classes)) | |||
model.add(Activation('softmax')) | |||
model.compile(loss='categorical_crossentropy', | |||
optimizer='adam', | |||
metrics=['accuracy']) | |||
return model | |||
model = Getmodel_tensorflow(5) | |||
model.load_weights("./model/plate_type.h5") | |||
model.save("./model/plate_type.h5") | |||
def SimplePredict(image): | |||
image = cv2.resize(image, (34, 9)) | |||
image = image.astype(np.float) / 255 | |||
res = np.array(model.predict(np.array([image]))[0]) | |||
return res.argmax() | |||
@@ -17,8 +17,8 @@ bot = Bot(console_qr=True, cache_path=True) | |||
def pr_msg(msg): | |||
image_name = msg.file_name | |||
friend = msg.chat | |||
print msg.chat | |||
print '接收图片' | |||
print(msg.chat) | |||
print('接收图片') | |||
# face(image_name) | |||
msg.get_file('' + msg.file_name) | |||
json_text = recognize(image_name) | |||