#coding=utf-8 from keras import backend as K from keras.models import load_model from keras.layers import * import numpy as np import random import string import cv2 from . import e2emodel as model chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z","港","学","使","警","澳","挂","军","北","南","广","沈","兰","成","济","海","民","航","空" ]; pred_model = model.construct_model("./model/ocr_plate_all_w_rnn_2.h5") import time def fastdecode(y_pred): results = "" confidence = 0.0 table_pred = y_pred.reshape(-1, len(chars)+1) res = table_pred.argmax(axis=1) for i,one in enumerate(res): if one