#coding=utf-8 from flask import Flask, render_template, request from werkzeug.utils import secure_filename import cv2 import numpy as np #导入opencv from hyperlpr_py3 import pipline #导入车牌识别库 app = Flask(__name__) #设置App name def recognize(filename): image = cv2.imread(filename) #通过文件名读入一张图片 放到 image中 return pipline.RecognizePlateJson(image) #识别一张图片并返回json结果 #识别函数 import base64 def recognizeBase64(base64_code): file_bytes = np.asarray(bytearray(base64.b64decode(base64_code)),dtype=np.uint8) image_data_ndarray = cv2.imdecode(file_bytes,1) return pipline.RecognizePlateJson(image_data_ndarray) import time @app.route('/uploader', methods=['GET', 'POST'])#设置请求路由 def upload_file(): if request.method == 'POST': #如果请求方法是POST f = request.files['file'] f.save("./images_rec/"+secure_filename(f.filename)) #保存请求上来的文件 t0 = time.time() res = recognize("./images_rec/"+secure_filename(f.filename)) print("识别时间",time.time() - t0) return res #返回识别结果 # return 'file uploaded successfully' return render_template('upload.html') if __name__ == '__main__': #入口函数 app.run("0.0.0.0", port=8000, threaded=False, debug=False) #运行app 指定IP 指定端口