|
- //
- // Created by Jack Yu on 16/10/2017.
- //
-
- #include "../include/PlateSegmentation.h"
- #include "../include/niBlackThreshold.h"
-
- namespace pr {
- PlateSegmentation::PlateSegmentation(std::string prototxt,
- std::string caffemodel) {
- net = cv::dnn::readNetFromCaffe(prototxt, caffemodel);
- }
- cv::Mat PlateSegmentation::classifyResponse(const cv::Mat &cropped) {
- cv::Mat inputBlob = cv::dnn::blobFromImage(
- cropped, 1 / 255.0, cv::Size(22, 22), cv::Scalar(0, 0, 0), false);
- net.setInput(inputBlob, "data");
- return net.forward();
- }
-
- void drawHist(float *seq, int size, const char *name) {
- cv::Mat image(300, size, CV_8U);
- image.setTo(0);
- float *start = seq;
- float *end = seq + size;
- float l = *std::max_element(start, end);
- for (int i = 0; i < size; i++) {
- int p = int(float(seq[i]) / l * 300);
- cv::line(image, cv::Point(i, 300), cv::Point(i, 300 - p),
- cv::Scalar(255, 255, 255));
- }
- cv::resize(image, image, cv::Size(600, 100));
- cv::imshow(name, image);
- }
-
- inline void computeSafeMargin(int &val, const int &rows) {
- val = std::min(val, rows);
- val = std::max(val, 0);
- }
-
- cv::Rect boxFromCenter(const cv::Point center, int left, int right, int top,
- int bottom, cv::Size bdSize) {
- cv::Point p1(center.x - left, center.y - top);
- cv::Point p2(center.x + right, center.y + bottom);
- p1.x = std::max(0, p1.x);
- p1.y = std::max(0, p1.y);
- p2.x = std::min(p2.x, bdSize.width - 1);
- p2.y = std::min(p2.y, bdSize.height - 1);
- cv::Rect rect(p1, p2);
- return rect;
- }
-
- cv::Rect boxPadding(cv::Rect rect, int left, int right, int top, int bottom,
- cv::Size bdSize) {
-
- cv::Point center(rect.x + (rect.width >> 1), rect.y + (rect.height >> 1));
- int rebuildLeft = (rect.width >> 1) + left;
- int rebuildRight = (rect.width >> 1) + right;
- int rebuildTop = (rect.height >> 1) + top;
- int rebuildBottom = (rect.height >> 1) + bottom;
- return boxFromCenter(center, rebuildLeft, rebuildRight, rebuildTop,
- rebuildBottom, bdSize);
- }
-
- void PlateSegmentation::refineRegion(cv::Mat &plateImage,
- const std::vector<int> &candidatePts,
- const int padding,
- std::vector<cv::Rect> &rects) {
- int w = candidatePts[5] - candidatePts[4];
- int cols = plateImage.cols;
- int rows = plateImage.rows;
- for (int i = 0; i < candidatePts.size(); i++) {
- int left = 0;
- int right = 0;
-
- if (i == 0) {
- left = candidatePts[i];
- right = left + w + padding;
- } else {
- left = candidatePts[i] - padding;
- right = left + w + padding * 2;
- }
-
- computeSafeMargin(right, cols);
- computeSafeMargin(left, cols);
- cv::Rect roi(left, 0, right - left, rows - 1);
- cv::Mat roiImage;
- plateImage(roi).copyTo(roiImage);
-
- if (i >= 1) {
-
- cv::Mat roi_thres;
- // cv::threshold(roiImage,roi_thres,0,255,cv::THRESH_OTSU|cv::THRESH_BINARY);
-
- niBlackThreshold(roiImage, roi_thres, 255, cv::THRESH_BINARY, 15, 0.27,
- BINARIZATION_NIBLACK);
-
- std::vector<std::vector<cv::Point>> contours;
- cv::findContours(roi_thres, contours, cv::RETR_LIST,
- cv::CHAIN_APPROX_SIMPLE);
- cv::Point boxCenter(roiImage.cols >> 1, roiImage.rows >> 1);
-
- cv::Rect final_bdbox;
- cv::Point final_center;
- int final_dist = INT_MAX;
-
- for (auto contour : contours) {
- cv::Rect bdbox = cv::boundingRect(contour);
- cv::Point center(bdbox.x + (bdbox.width >> 1),
- bdbox.y + (bdbox.height >> 1));
- int dist = (center.x - boxCenter.x) * (center.x - boxCenter.x);
- if (dist < final_dist and bdbox.height > rows >> 1) {
- final_dist = dist;
- final_center = center;
- final_bdbox = bdbox;
- }
- }
-
- // rebuild box
- if (final_bdbox.height / static_cast<float>(final_bdbox.width) > 3.5 &&
- final_bdbox.width * final_bdbox.height < 10)
- final_bdbox = boxFromCenter(final_center, 8, 8, (rows >> 1) - 3,
- (rows >> 1) - 2, roiImage.size());
- else {
- if (i == candidatePts.size() - 1)
- final_bdbox = boxPadding(final_bdbox, padding / 2, padding,
- padding / 2, padding / 2, roiImage.size());
- else
- final_bdbox = boxPadding(final_bdbox, padding, padding, padding,
- padding, roiImage.size());
-
- // std::cout<<final_bdbox<<std::endl;
- // std::cout<<roiImage.size()<<std::endl;
- #ifdef DEBUG
- cv::imshow("char_thres", roi_thres);
-
- cv::imshow("char", roiImage(final_bdbox));
- cv::waitKey(0);
- #endif
- }
-
- final_bdbox.x += left;
-
- rects.push_back(final_bdbox);
- //
-
- } else {
- rects.push_back(roi);
- }
-
- // else
- // {
- //
- // }
-
- // cv::GaussianBlur(roiImage,roiImage,cv::Size(7,7),3);
- //
- // cv::imshow("image",roiImage);
- // cv::waitKey(0);
- }
- }
- void avgfilter(float *angle_list, int size, int windowsSize) {
- float *filterd = new float[size];
- for (int i = 0; i < size; i++)
- filterd[i] = angle_list[i];
- // memcpy(filterd,angle_list,size);
-
- cv::Mat kernal_gaussian = cv::getGaussianKernel(windowsSize, 3, CV_32F);
- float *kernal = (float *)kernal_gaussian.data;
- // kernal+=windowsSize;
- int r = windowsSize / 2;
-
- for (int i = 0; i < size; i++) {
- float avg = 0.00f;
- for (int j = 0; j < windowsSize; j++) {
- if (i + j - r > 0 && i + j + r < size - 1)
- avg += filterd[i + j - r] * kernal[j];
- }
- // avg = avg / windowsSize;
- angle_list[i] = avg;
- }
-
- delete filterd;
- }
-
- void PlateSegmentation::templateMatchFinding(
- const cv::Mat &respones, int windowsWidth,
- std::pair<float, std::vector<int>> &candidatePts) {
- int rows = respones.rows;
- int cols = respones.cols;
- float *data = (float *)respones.data;
- float *engNum_prob = data;
- float *false_prob = data + cols;
- float *ch_prob = data + cols * 2;
- avgfilter(engNum_prob, cols, 5);
- avgfilter(false_prob, cols, 5);
- std::vector<int> candidate_pts(7);
- int cp_list[7];
- float loss_selected = -10;
-
- for (int start = 0; start < 20; start += 2)
- for (int width = windowsWidth - 5; width < windowsWidth + 5; width++) {
- for (int interval = windowsWidth / 2; interval < windowsWidth;
- interval++) {
- int cp1_ch = start;
- int cp2_p0 = cp1_ch + width;
- int cp3_p1 = cp2_p0 + width + interval;
- int cp4_p2 = cp3_p1 + width;
- int cp5_p3 = cp4_p2 + width + 1;
- int cp6_p4 = cp5_p3 + width + 2;
- int cp7_p5 = cp6_p4 + width + 2;
- int md1 = (cp1_ch + cp2_p0) >> 1;
- int md2 = (cp2_p0 + cp3_p1) >> 1;
- int md3 = (cp3_p1 + cp4_p2) >> 1;
- int md4 = (cp4_p2 + cp5_p3) >> 1;
- int md5 = (cp5_p3 + cp6_p4) >> 1;
- int md6 = (cp6_p4 + cp7_p5) >> 1;
-
- if (cp7_p5 >= cols)
- continue;
- float loss =
- ch_prob[cp1_ch] * 3 -
- (false_prob[cp3_p1] + false_prob[cp4_p2] + false_prob[cp5_p3] +
- false_prob[cp6_p4] + false_prob[cp7_p5]);
-
- if (loss > loss_selected) {
- loss_selected = loss;
- cp_list[0] = cp1_ch;
- cp_list[1] = cp2_p0;
- cp_list[2] = cp3_p1;
- cp_list[3] = cp4_p2;
- cp_list[4] = cp5_p3;
- cp_list[5] = cp6_p4;
- cp_list[6] = cp7_p5;
- }
- }
- }
- candidate_pts[0] = cp_list[0];
- candidate_pts[1] = cp_list[1];
- candidate_pts[2] = cp_list[2];
- candidate_pts[3] = cp_list[3];
- candidate_pts[4] = cp_list[4];
- candidate_pts[5] = cp_list[5];
- candidate_pts[6] = cp_list[6];
-
- candidatePts.first = loss_selected;
- candidatePts.second = candidate_pts;
- };
-
- void PlateSegmentation::segmentPlateBySlidingWindows(cv::Mat &plateImage,
- int windowsWidth,
- int stride,
- cv::Mat &respones) {
- cv::Mat plateImageGray;
- cv::cvtColor(plateImage, plateImageGray, cv::COLOR_BGR2GRAY);
- int padding = plateImage.cols - 136;
- int height = plateImage.rows - 1;
- int width = plateImage.cols - 1 - padding;
- for (int i = 0; i < width - windowsWidth + 1; i += stride) {
- cv::Rect roi(i, 0, windowsWidth, height);
- cv::Mat roiImage = plateImageGray(roi);
- cv::Mat response = classifyResponse(roiImage);
- respones.push_back(response);
- }
- respones = respones.t();
- }
-
- void PlateSegmentation::segmentPlatePipline(PlateInfo &plateInfo, int stride,
- std::vector<cv::Rect> &Char_rects) {
- cv::Mat plateImage = plateInfo.getPlateImage(); // get src image .
- cv::Mat plateImageGray;
- cv::cvtColor(plateImage, plateImageGray, cv::COLOR_BGR2GRAY);
- // do binarzation
- std::pair<float, std::vector<int>> sections; // segment points variables .
- cv::Mat respones; // three response of every sub region from origin image .
- segmentPlateBySlidingWindows(plateImage, DEFAULT_WIDTH, 1, respones);
- templateMatchFinding(respones, DEFAULT_WIDTH / stride, sections);
- for (int i = 0; i < sections.second.size(); i++) {
- sections.second[i] *= stride;
- }
- refineRegion(plateImageGray, sections.second, 5, Char_rects);
- }
-
- void PlateSegmentation::ExtractRegions(PlateInfo &plateInfo,
- std::vector<cv::Rect> &rects) {
- cv::Mat plateImage = plateInfo.getPlateImage();
- for (int i = 0; i < rects.size(); i++) {
- cv::Mat charImage;
- plateImage(rects[i]).copyTo(charImage);
- if (charImage.channels())
- cv::cvtColor(charImage, charImage, cv::COLOR_BGR2GRAY);
- cv::equalizeHist(charImage, charImage);
- std::pair<CharType, cv::Mat> char_instance;
- if (i == 0) {
- char_instance.first = CHINESE;
- } else if (i == 1) {
- char_instance.first = LETTER;
- } else {
- char_instance.first = LETTER_NUMS;
- }
- char_instance.second = charImage;
- plateInfo.appendPlateChar(char_instance);
- }
- }
-
- } // namespace pr
|