|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614 |
- {
- "nbformat": 4,
- "nbformat_minor": 0,
- "metadata": {
- "colab": {
- "name": "Pytorch Tutorial",
- "provenance": [],
- "collapsed_sections": []
- },
- "kernelspec": {
- "name": "python3",
- "display_name": "Python 3"
- },
- "accelerator": "GPU"
- },
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "tHILOGjOQbsQ"
- },
- "source": [
- "# **Pytorch Tutorial**\r\n"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "C1zA7GupxdJv"
- },
- "source": [
- "import torch"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "6Eqj90EkWbWx"
- },
- "source": [
- "**1. Pytorch Documentation Explanation with torch.max**\r\n",
- "\r\n"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "JCXOg-iSQuk7"
- },
- "source": [
- "x = torch.randn(4,5)\r\n",
- "y = torch.randn(4,5)\r\n",
- "z = torch.randn(4,5)\r\n",
- "print(x)\r\n",
- "print(y)\r\n",
- "print(z)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "EEqa9GFoWF78"
- },
- "source": [
- "# 1. max of entire tensor (torch.max(input) → Tensor)\r\n",
- "m = torch.max(x)\r\n",
- "print(m)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "wffThGDyWKxJ"
- },
- "source": [
- "# 2. max along a dimension (torch.max(input, dim, keepdim=False, *, out=None) → (Tensor, LongTensor))\r\n",
- "m, idx = torch.max(x,0)\r\n",
- "print(m)\r\n",
- "print(idx)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "oKDQW3tIXKg-"
- },
- "source": [
- "# 2-2\r\n",
- "m, idx = torch.max(input=x,dim=0)\r\n",
- "print(m)\r\n",
- "print(idx)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "6QZ6WRLyX3De"
- },
- "source": [
- "# 2-3\r\n",
- "m, idx = torch.max(x,0,False)\r\n",
- "print(m)\r\n",
- "print(idx)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "nqGuctkKbUEn"
- },
- "source": [
- "# 2-4\r\n",
- "m, idx = torch.max(x,dim=0,keepdim=True)\r\n",
- "print(m)\r\n",
- "print(idx)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "9OMzxuMlZPIu"
- },
- "source": [
- "# 2-5\r\n",
- "p = (m,idx)\r\n",
- "torch.max(x,0,False,out=p)\r\n",
- "print(p[0])\r\n",
- "print(p[1])\r\n"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "uhd4TqGTbD2c"
- },
- "source": [
- "# 2-6\r\n",
- "p = (m,idx)\r\n",
- "torch.max(x,0,False,p)\r\n",
- "print(p[0])\r\n",
- "print(p[1])"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "wbxjUSOXxN0n"
- },
- "source": [
- "# 2-7\r\n",
- "m, idx = torch.max(x,True)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "iMwhGLlGWYaR"
- },
- "source": [
- "# 3. max(choose max) operators on two tensors (torch.max(input, other, *, out=None) → Tensor)\r\n",
- "t = torch.max(x,y)\r\n",
- "print(t)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "nFxRKu2Dedwb"
- },
- "source": [
- "**2. Common errors**\r\n",
- "\r\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "KMcRyMxGwhul"
- },
- "source": [
- "The following code blocks show some common errors while using the torch library. First, execute the code with error, and then execute the next code block to fix the error. You need to change the runtime to GPU.\r\n"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "eX-kKdi6ynFf"
- },
- "source": [
- "import torch"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "-muJ4KKreoP2",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 363
- },
- "outputId": "c1d5c3a5-9540-4145-d80c-3cbca18a1deb"
- },
- "source": [
- "# 1. different device error\r\n",
- "model = torch.nn.Linear(5,1).to(\"cuda:0\")\r\n",
- "x = torch.Tensor([1,2,3,4,5]).to(\"cpu\")\r\n",
- "y = model(x)"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "error",
- "ename": "RuntimeError",
- "evalue": "ignored",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-2-12e5b7d55705>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"cuda:0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"cpu\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 725\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 726\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 727\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 728\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 729\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/linear.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 93\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 94\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextra_repr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py\u001b[0m in \u001b[0;36mlinear\u001b[0;34m(input, weight, bias)\u001b[0m\n\u001b[1;32m 1690\u001b[0m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maddmm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1691\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1692\u001b[0;31m \u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1693\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbias\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1694\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mRuntimeError\u001b[0m: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU, but expected them to be on GPU (while checking arguments for addmm)"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "a54PqxJLe9-c",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "909d3693-236f-4419-f269-8fb443ef7534"
- },
- "source": [
- "# 1. different device error (fixed)\r\n",
- "x = torch.Tensor([1,2,3,4,5]).to(\"cuda:0\")\r\n",
- "y = model(x)\r\n",
- "print(y.shape)"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "torch.Size([1])\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "n7OHtZwbi7Qw",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 201
- },
- "outputId": "2a7d2dd0-6498-4da0-9591-3554c1739046"
- },
- "source": [
- "# 2. mismatched dimensions error\r\n",
- "x = torch.randn(4,5)\r\n",
- "y= torch.randn(5,4)\r\n",
- "z = x + y"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "error",
- "ename": "RuntimeError",
- "evalue": "ignored",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-4-7fa8b244df3c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mz\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;31mRuntimeError\u001b[0m: The size of tensor a (5) must match the size of tensor b (4) at non-singleton dimension 1"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "qVynzvrskFCD",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "926dc01c-be6f-48e1-ad39-a5bcecebc513"
- },
- "source": [
- "# 2. mismatched dimensions error (fixed)\r\n",
- "y= y.transpose(0,1)\r\n",
- "z = x + y\r\n",
- "print(z.shape)"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "torch.Size([4, 5])\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "Hgzgb9gJANod",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 398
- },
- "outputId": "21b58850-b3f1-4f2a-db5d-cc45e47ccbea"
- },
- "source": [
- "# 3. cuda out of memory error\n",
- "import torch\n",
- "import torchvision.models as models\n",
- "resnet18 = models.resnet18().to(\"cuda:0\") # Neural Networks for Image Recognition\n",
- "data = torch.randn(2048,3,244,244) # Create fake data (512 images)\n",
- "out = resnet18(data.to(\"cuda:0\")) # Use Data as Input and Feed to Model\n",
- "print(out.shape)\n"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "error",
- "ename": "RuntimeError",
- "evalue": "ignored",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-8-711923c7f347>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mresnet18\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresnet18\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"cuda:0\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Neural Networks for Image Recognition\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2048\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m244\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m244\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Create fake data (512 images)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresnet18\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"cuda:0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Use Data as Input and Feed to Model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 725\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 726\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 727\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 728\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 729\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torchvision/models/resnet.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 220\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_forward_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 221\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torchvision/models/resnet.py\u001b[0m in \u001b[0;36m_forward_impl\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 202\u001b[0m \u001b[0;31m# See note [TorchScript super()]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconv1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 204\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbn1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 205\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelu\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 206\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmaxpool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 725\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 726\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 727\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 728\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 729\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/batchnorm.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrunning_mean\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraining\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrack_running_stats\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrunning_var\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraining\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrack_running_stats\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 136\u001b[0;31m self.weight, self.bias, bn_training, exponential_average_factor, self.eps)\n\u001b[0m\u001b[1;32m 137\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py\u001b[0m in \u001b[0;36mbatch_norm\u001b[0;34m(input, running_mean, running_var, weight, bias, training, momentum, eps)\u001b[0m\n\u001b[1;32m 2056\u001b[0m return torch.batch_norm(\n\u001b[1;32m 2057\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrunning_mean\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrunning_var\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2058\u001b[0;31m \u001b[0mtraining\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmomentum\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meps\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackends\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcudnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menabled\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2059\u001b[0m )\n\u001b[1;32m 2060\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mRuntimeError\u001b[0m: CUDA out of memory. Tried to allocate 7.27 GiB (GPU 0; 14.76 GiB total capacity; 8.74 GiB already allocated; 4.42 GiB free; 9.42 GiB reserved in total by PyTorch)"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "VPksKnB_w343",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "fbee46ad-e63e-4bfc-8971-452895dd7a15"
- },
- "source": [
- "# 3. cuda out of memory error (fixed)\n",
- "for d in data:\n",
- " out = resnet18(d.to(\"cuda:0\").unsqueeze(0))\n",
- "print(out.shape)"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "torch.Size([1, 1000])\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "vqszlxEE0Bk0",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 346
- },
- "outputId": "a698b34d-00a8-4067-ddc5-180cb4c8eeaa"
- },
- "source": [
- "# 4. mismatched tensor type\n",
- "import torch.nn as nn\n",
- "L = nn.CrossEntropyLoss()\n",
- "outs = torch.randn(5,5)\n",
- "labels = torch.Tensor([1,2,3,4,0])\n",
- "lossval = L(outs,labels) # Calculate CrossEntropyLoss between outs and labels"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "error",
- "ename": "RuntimeError",
- "evalue": "ignored",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-10-60a5d1aad216>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mlossval\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mL\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Calculate CrossEntropyLoss between outs and labels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 725\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 726\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 727\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 728\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 729\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/loss.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input, target)\u001b[0m\n\u001b[1;32m 960\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 961\u001b[0m return F.cross_entropy(input, target, weight=self.weight,\n\u001b[0;32m--> 962\u001b[0;31m ignore_index=self.ignore_index, reduction=self.reduction)\n\u001b[0m\u001b[1;32m 963\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py\u001b[0m in \u001b[0;36mcross_entropy\u001b[0;34m(input, target, weight, size_average, ignore_index, reduce, reduction)\u001b[0m\n\u001b[1;32m 2466\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msize_average\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mreduce\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2467\u001b[0m \u001b[0mreduction\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_Reduction\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlegacy_get_string\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize_average\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreduce\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2468\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnll_loss\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlog_softmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreduction\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2469\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2470\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py\u001b[0m in \u001b[0;36mnll_loss\u001b[0;34m(input, target, weight, size_average, ignore_index, reduce, reduction)\u001b[0m\n\u001b[1;32m 2262\u001b[0m .format(input.size(0), target.size(0)))\n\u001b[1;32m 2263\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdim\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2264\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_C\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnll_loss\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_Reduction\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_enum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreduction\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2265\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mdim\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2266\u001b[0m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_C\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnll_loss2d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_Reduction\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_enum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreduction\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mRuntimeError\u001b[0m: expected scalar type Long but found Float"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "CZwgwup_1dgS",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "aaf1de76-7ef2-4ca4-b87d-8482a3117249"
- },
- "source": [
- "# 4. mismatched tensor type (fixed)\n",
- "labels = labels.long()\n",
- "lossval = L(outs,labels)\n",
- "print(lossval)"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "tensor(2.6215)\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "dSuNdA8F06dK"
- },
- "source": [
- "**3. More on dataset and dataloader**\r\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "in84z_xu1rE6"
- },
- "source": [
- "A dataset is a cluster of data in a organized way. A dataloader is a loader which can iterate through the data set."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "34zfh-c22Qqs"
- },
- "source": [
- "Let a dataset be the English alphabets \"abcdefghijklmnopqrstuvwxyz\""
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "TaiHofty1qKA"
- },
- "source": [
- "dataset = \"abcdefghijklmnopqrstuvwxyz\""
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "h0jwhVa12h3a"
- },
- "source": [
- "A simple dataloader could be implemented with the python code \"for\""
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "bWC5Wwbv2egy"
- },
- "source": [
- "for datapoint in dataset:\r\n",
- " print(datapoint)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "n33VKzkG2y2U"
- },
- "source": [
- "When using the dataloader, we often like to shuffle the data. This is where torch.utils.data.DataLoader comes in handy. If each data is an index (0,1,2...) from the view of torch.utils.data.DataLoader, shuffling can simply be done by shuffling an index array. \r\n",
- "\r\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "9MXUUKQ65APf"
- },
- "source": [
- "torch.utils.data.DataLoader will need two imformation to fulfill its role. First, it needs to know the length of the data. Second, once torch.utils.data.DataLoader outputs the index of the shuffling results, the dataset needs to return the corresponding data."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "BV5txsjK5j4j"
- },
- "source": [
- "Therefore, torch.utils.data.Dataset provides the imformation by two functions, `__len__()` and `__getitem__()` to support torch.utils.data.Dataloader"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "A0IEkemJ5ajD"
- },
- "source": [
- "import torch\r\n",
- "import torch.utils.data \r\n",
- "class ExampleDataset(torch.utils.data.Dataset):\r\n",
- " def __init__(self):\r\n",
- " self.data = \"abcdefghijklmnopqrstuvwxyz\"\r\n",
- " \r\n",
- " def __getitem__(self,idx): # if the index is idx, what will be the data?\r\n",
- " return self.data[idx]\r\n",
- " \r\n",
- " def __len__(self): # What is the length of the dataset\r\n",
- " return len(self.data)\r\n",
- "\r\n",
- "dataset1 = ExampleDataset() # create the dataset\r\n",
- "dataloader = torch.utils.data.DataLoader(dataset = dataset1,shuffle = True,batch_size = 1)\r\n",
- "for datapoint in dataloader:\r\n",
- " print(datapoint)"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "nTt-ZTid9S2n"
- },
- "source": [
- "A simple data augmentation technique can be done by changing the code in `__len__()` and `__getitem__()`. Suppose we want to double the length of the dataset by adding in the uppercase letters, using only the lowercase dataset, you can change the dataset to the following."
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "7Wn3BA2j-NXl"
- },
- "source": [
- "import torch.utils.data \r\n",
- "class ExampleDataset(torch.utils.data.Dataset):\r\n",
- " def __init__(self):\r\n",
- " self.data = \"abcdefghijklmnopqrstuvwxyz\"\r\n",
- " \r\n",
- " def __getitem__(self,idx): # if the index is idx, what will be the data?\r\n",
- " if idx >= len(self.data): # if the index >= 26, return upper case letter\r\n",
- " return self.data[idx%26].upper()\r\n",
- " else: # if the index < 26, return lower case, return lower case letter\r\n",
- " return self.data[idx]\r\n",
- " \r\n",
- " def __len__(self): # What is the length of the dataset\r\n",
- " return 2 * len(self.data) # The length is now twice as large\r\n",
- "\r\n",
- "dataset1 = ExampleDataset() # create the dataset\r\n",
- "dataloader = torch.utils.data.DataLoader(dataset = dataset1,shuffle = True,batch_size = 1)\r\n",
- "for datapoint in dataloader:\r\n",
- " print(datapoint)"
- ],
- "execution_count": null,
- "outputs": []
- }
- ]
- }
|