New Optimization

Chung-Ming Chien 2020/4/9

Background Knowledge

- µ-strong convexity
- Lipschitz continuity
- Bregman proximal inequality

New Optimization Chung-Ming Chien 2020/4/12

New Optimizers for Deep Learning

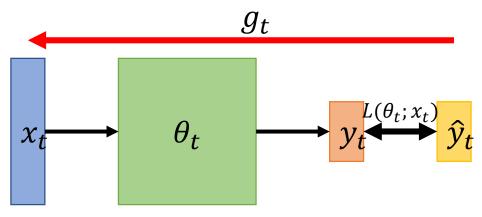
Chung-Ming Chien 2020/4/12

What you have known before?

- SGD
- SGD with momentum
- Adagrad
- RMSProp
- Adam

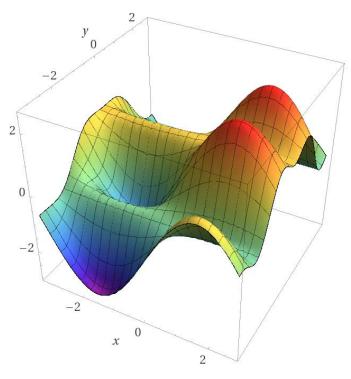
Some Notations

- θ_t : model parameters at time step t
- $\nabla L(\theta_t)$ or g_t : gradient at θ_t , used to compute θ_{t+1}
- m_{t+1} : momentum accumulated from time step 0 to time step t, which is used to compute θ_{t+1}



What is Optimization about?

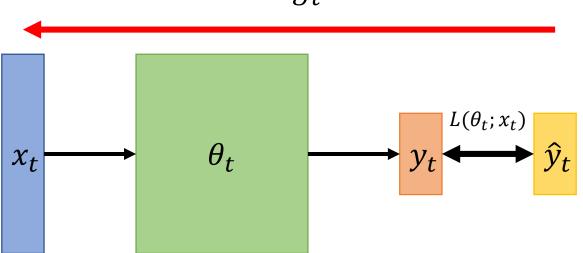
- Find a θ to get the lowest $\sum_{x} L(\theta; x) !!$
- Or, Find a θ to get the lowest $L(\theta)$!!



Computed by Wolfram Alpha

On-line vs Off-line

• On-line : one pair of (x_t, \hat{y}_t) at a time step



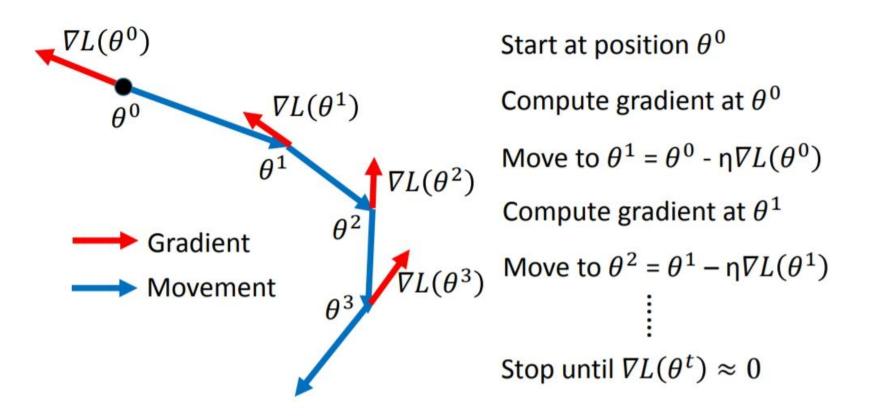
 g_t

On-line vs Off-line

• Off-line : pour all (x_t, \hat{y}_t) into the model at every time step g_t

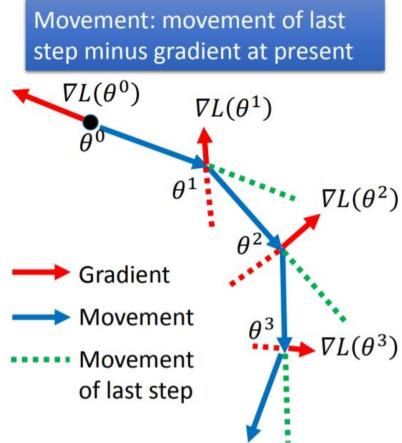
• The rest of this lecture will focus on the off-line cases

SGD



Credit to 李宏毅老師上課投影片

SGD with Momentum(SGDM)



Start at point θ^0 Movement v⁰=0 Compute gradient at θ^0 Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$ Move to $\theta^1 = \theta^0 + v^1$ Compute gradient at θ^1 Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$ Move to $\theta^2 = \theta^1 + v^2$ Movement not just based

on gradient, but previous movement.

Credit to 李宏毅老師上課投影片

SGD with Momentum(SGDM)

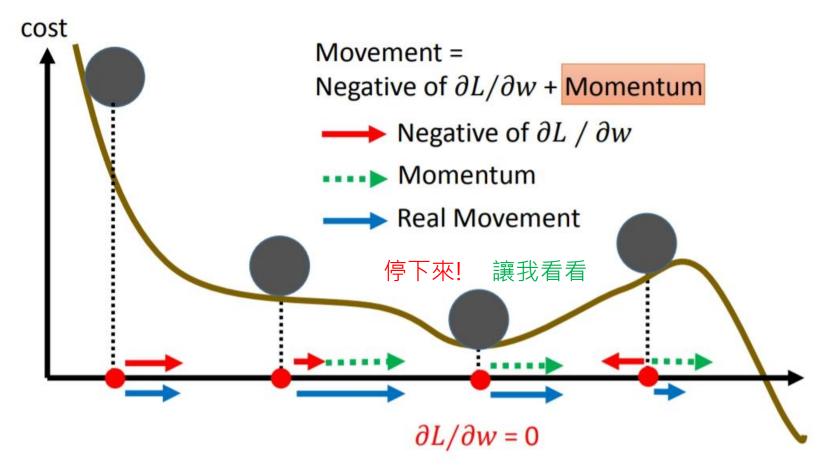
 $\begin{array}{l} \mathsf{v}^{i} \text{ is actually the weighted sum of} \\ \text{all the previous gradient:} \\ \overline{\nabla L}(\theta^{0}), \overline{\nabla L}(\theta^{1}), \dots \overline{\nabla L}(\theta^{i-1}) \\ \mathbf{v}^{0} = \mathbf{0} \\ \mathbf{v}^{1} = -\eta \overline{\nabla L}(\theta^{0}) \\ \mathbf{v}^{2} = -\lambda \eta \overline{\nabla L}(\theta^{0}) - \eta \overline{\nabla L}(\theta^{1}) \end{array}$

Start at point θ^0 Movement $v^0=0$ Compute gradient at θ^0 Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$ Move to $\theta^1 = \theta^0 + v^1$ Compute gradient at θ^1 Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$ Move to $\theta^2 = \theta^1 + v^2$ Movement not just based on gradient, but previous

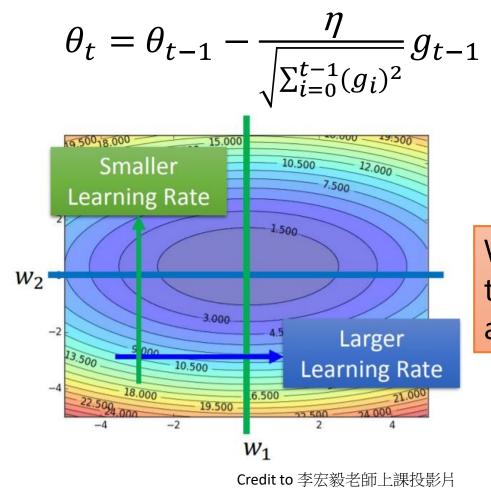
movement.

Credit to 李宏毅老師上課投影片

Why momentum?

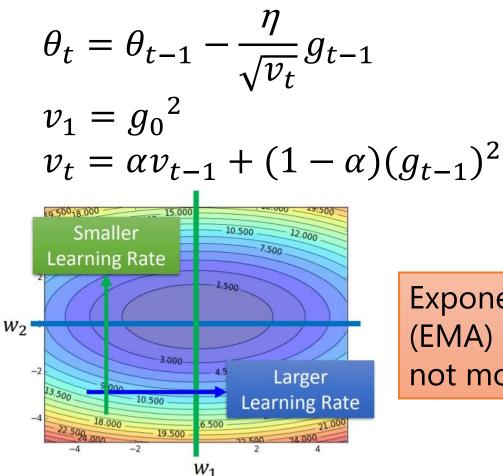


Adagrad



What if the gradients at the first few time steps are extremely large...

RMSProp



Credit to 李宏毅老師上課投影片

Exponential moving average (EMA) of squared gradients is not monotonically increasing

Adam

• SGDM

$$\theta_t = \theta_{t-1} - \eta m_t$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_{t-1}$$

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \widehat{m}_t$$

• RMSProp

$$\begin{split} \theta_t &= \theta_{t-1} - \frac{\eta}{\sqrt{\nu_t}} g_{t-1} \\ \nu_1 &= g_0^2 \\ \nu_t &= \beta_2 \nu_{t-1} + (1 - \beta_2) (g_{t-1})^2 \end{split}$$

$$\widehat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$\widehat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$
de-biasing
$$\beta_{1} = 0.9$$

$$\beta_{2} = 0.999$$

$$\varepsilon = 10^{-8}$$

What you have known before?

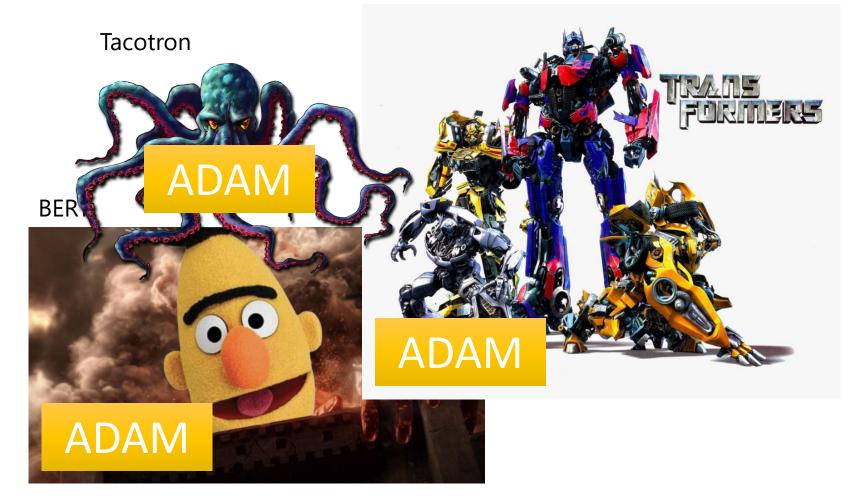
- SGD [Cauchy, 1847]
- SGD with momentum [Rumelhart, et al., Nature'86]

Adaptive learning rate

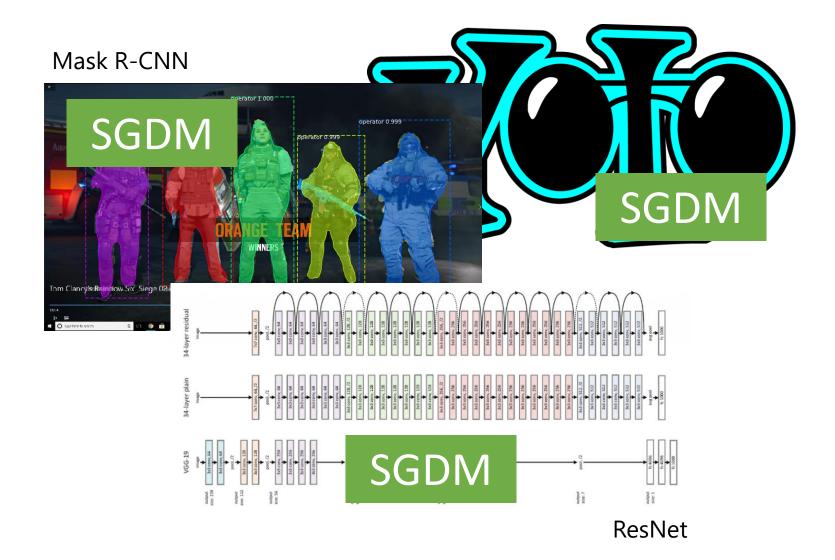
- Adagrad [Duchi, et al., JMLR'11]
- RMSProp [Hinton, et al., Lecture slides, 2013]
- Adam [Kingma, et al., ICLR'15]

Optimizers: Real Application

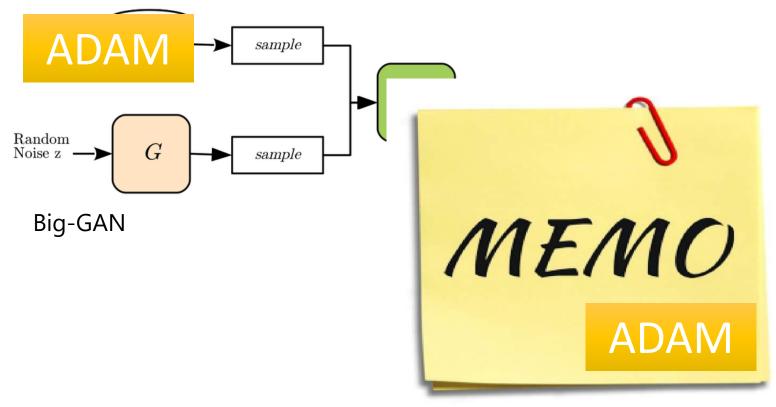
Transformer



Optimizers: Real Application



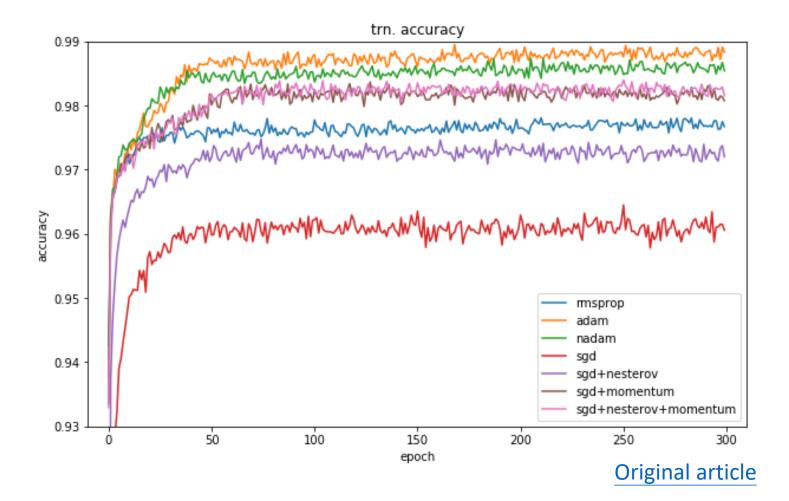
Optimizers: Real Application

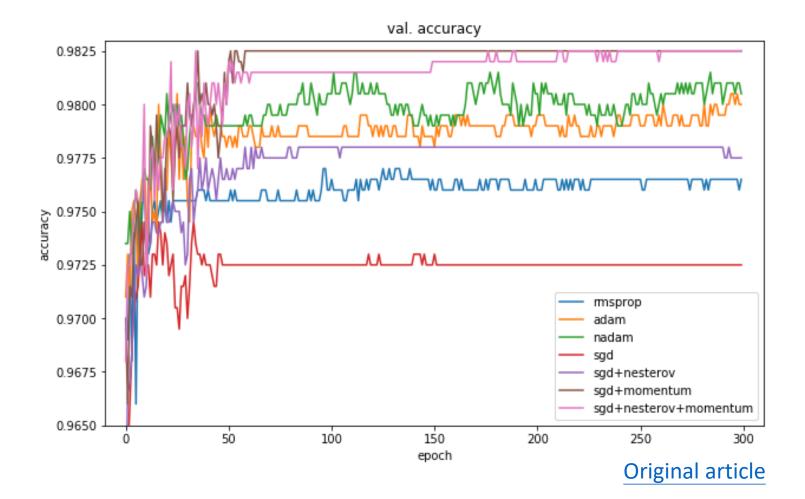


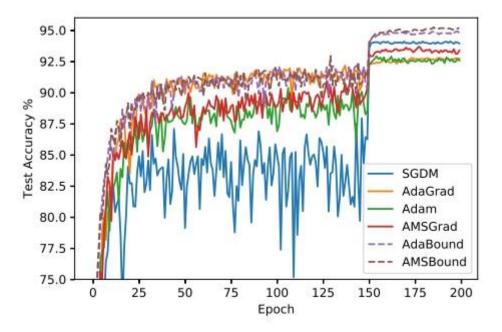
MAML

Back to 2014...

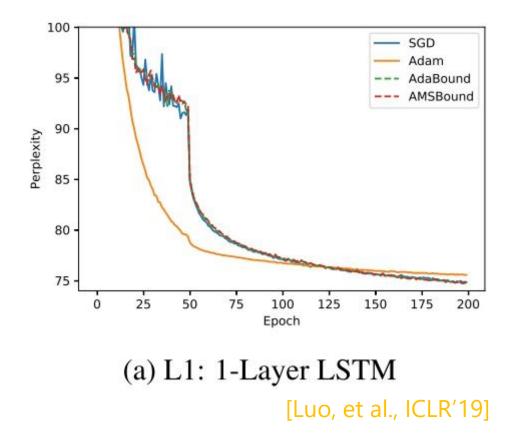
Back to 2014...







(d) Test Accuracy for ResNet-34 [Luo, et al., ICLR'19]



- Adam : fast training, large generalization gap, unstable
- SGDM : stable, little generalization gap, better convergence(?)

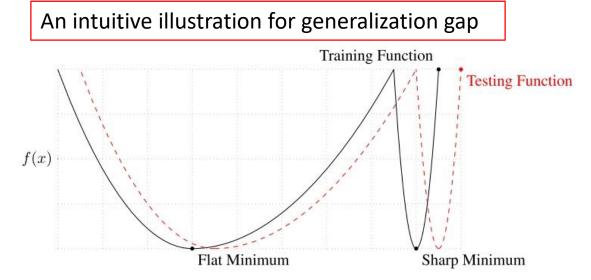
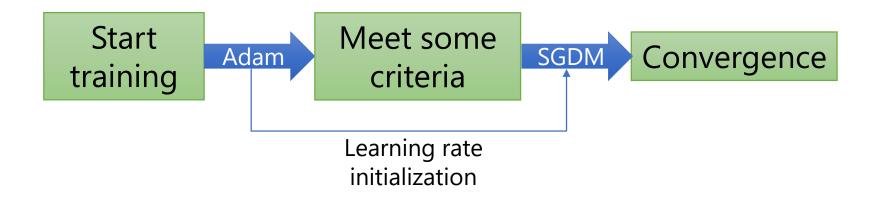


Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss function and the X-axis the variables (parameters)

Simply combine Adam with SGDM?

• SWATS [Keskar, et al., arXiv'17]

Begin with Adam(fast), end with SGDM



Trouble shooting

 $\begin{aligned} \theta_t &= \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \hat{m}_t \\ m_t &= \beta_1 m_{t-1} + (1 - \beta_1) g_{t-1}, \beta_1 = 0. \\ v_t &= \beta_2 v_{t-1} + (1 - \beta_2) (g_{t-1})^2, \beta_2 = 0.999 \\ \hline The "memory" of v_t keeps roughly 1000 steps!! \end{aligned}$

In the final stage of training, most gradients are small and non-informative, while some mini-batches provide large informative gradient rarely.

time step	•••	100000	100001	100002	100003	•••	100999	101000
gradient		1	1	1	1		100000	1
movement		η	η	η	η		$10\sqrt{10}\eta$	$10^{-3.5}\eta$

• Trouble shooting

Maximum movement distance for one single update

is roughly upper bounded by $\sqrt{\frac{1}{1-\beta_2}}\eta$

Non-informative gradients contribute more than informative gradients

time step	•••	100000	100001	100002	100003	•••	100999	101000
gradient		1	1	1	1		100000	1
movement		η	η	η	η		$10\sqrt{10}\eta$	$10^{-3.5}\eta$
		(γ					

1000η

• AMSGrad [Reddi, et al., ICLR'18]

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} m_t$$
$$\hat{v}_t = \max(\hat{v}_{t-1}, v_t)$$

Reduce the influence of noninformative gradients

Remove de-biasing due to the max operation

Monotonically decreasing learning rate

Remember Adagrad vs RMSProp?

• Trouble shooting

In the final stage of training, most gradients are small and non-informative, while some mini-batches provide large informative gradient rarely.

Learning rates are either extremely large(for small gradients) or extremely small(for large gradients).

Figure 1: Learning rates of sampled parameters. Each cell contains a value obtained by conducting a logarithmic operation on the learning rate. The lighter cell stands for the smaller learning rate.

- AMSGrad only handles large learning rates
- AdaBound [Luo, et al., ICLR'19]

$$\begin{aligned} \theta_t &= \theta_{t-1} - Clip(\frac{\eta}{\sqrt{\hat{v}_t + \varepsilon}}) \hat{m}_t \\ Clip(x) &= Clip(x, 0.1 - \frac{0.1}{(1 - \beta_2)t + 1}, 0.1 + \frac{0.1}{(1 - \beta_2)t}) \end{aligned}$$

hat is RUD

Towards Improving SGDM...

- Adaptive learning rate algorithms : dynamically adjust learning rate over time
- SGD-type algorithms : fix learning rate for all updates... too slow for small learning rates and bad result for large learning rates

There might be a "best" learning rate?

Towards Improving SGDM

LR range test [Smith, WACV'17]

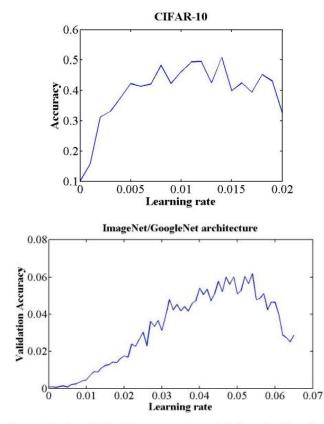


Figure 11. GoogleNet LR range test; validation classification accuracy as a function of increasing learning rate.

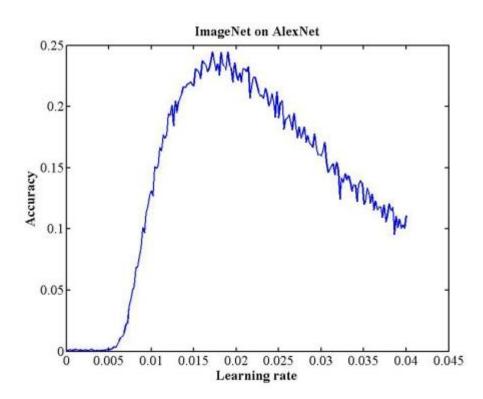
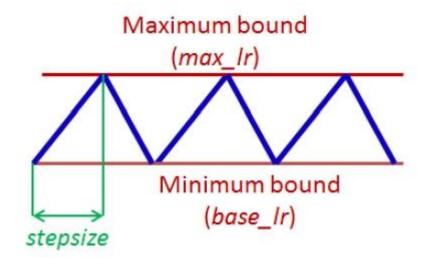


Figure 7. AlexNet LR range test; validation classification accuracy as a function of increasing learning rate.

Towards Improving SGDM

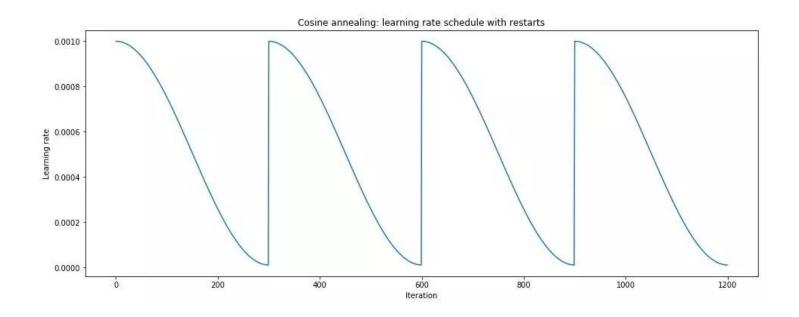
- Cyclical LR [Smith, WACV'17]
- learning rate : decide by LR range test
- stepsize : several epochs
- avoid local minimum by varying learning rate



The more exploration the better!

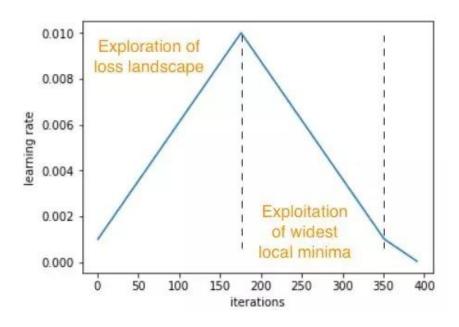
Towards Improving SGDM

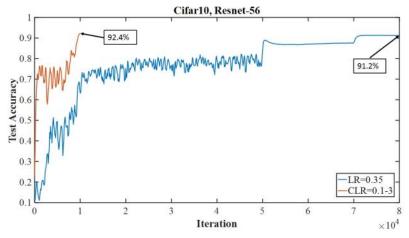
• SGDR [Loshchilov, et al., ICLR'17]



Towards Improving SGDM

- One-cycle LR [Smith, et al., arXiv'17]
- warm-up + annealing + fine-tuning





(a) Comparison of test accuracies of superconvergence example to a typical (piecewise constant) training regime.

Does Adam need warm-up?

Of Course!

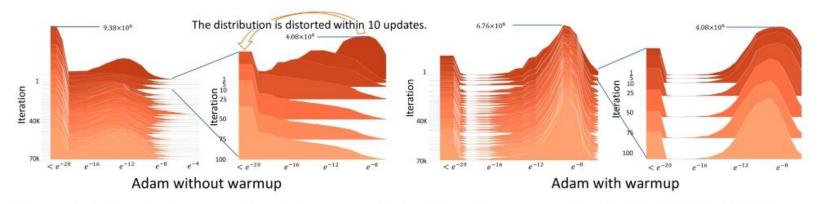
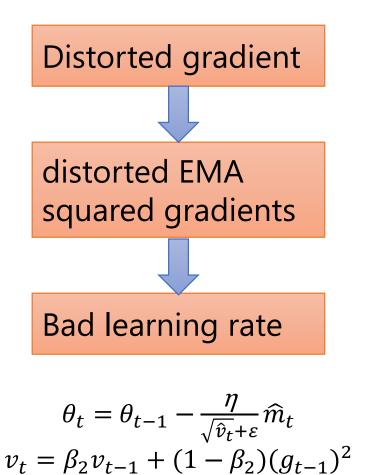


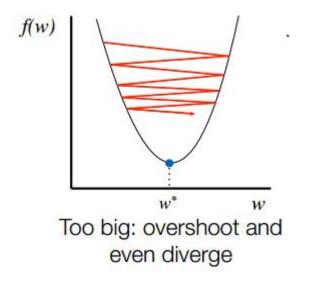
Figure 2: The absolute gradient histogram of the Transformers on the De-En IWSLT' 14 dataset during the training (stacked along the y-axis). X-axis is absolute value in the log scale and the height is the frequency. Without warmup, the gradient distribution is distorted in the first 10 steps.

Experiments show that the gradient distribution distorted in the first 10 steps

Does Adam need warm-up?



Keep your step size small at the beginning of training helps to reduce the variance of the gradients



Does Adam need warm-up?

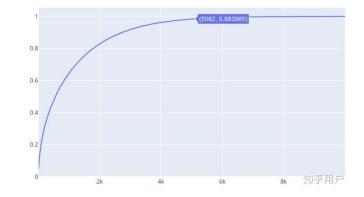
• RAdam [Liu, et al., ICLR'20]

$$\rho_t = \rho_\infty - \frac{2t\beta_2^t}{1-\beta_2^t}$$
$$\rho_\infty = \frac{2}{1-\beta_2} - 1$$
$$r_t = \sqrt{\frac{\rho_t - 4(\rho_t - 2)\rho_\infty}{(\rho_\infty - 4)(\rho_\infty - 2)\rho_t}}$$

effective memory size of EMA max memory size $(t \rightarrow \infty)$ approximated $\frac{Var[\frac{1}{\widehat{v}_{\infty}}]}{Var[\frac{1}{\widehat{v}_{t}}]}$ (for $\rho_{t}>4$)

$$\begin{split} \underline{When} & \rho_t \leq 4 \text{ (first few steps of training)} \\ \theta_t &= \theta_{t-1} - \eta \widehat{m}_t \\ \underline{When} & \rho_t > 4 \\ \theta_t &= \theta_{t-1} - \frac{\eta r_t}{\sqrt{\widehat{v_t} + \varepsilon}} \widehat{m}_t \end{split}$$

 r_t is increasing through time!



RAdam vs SWATS

	RAdam	SWATS
Inspiration	Distortion of gradient at the beginning of training results in inaccurate adaptive learning rate	non-convergence and generalization gap of Adam, slow training of SGDM
How?	Apply warm-up learning rate to reduce the influence of inaccurate adaptive learning rate	Combine their advantages by applying Adam first, then SGDM
Switch	SGDM to RAdam	Adam to SGDM
Why switch	The approximation of the variance of \hat{v}_t is invalid at the beginning of training	To pursue better convergence
Switch point	When the approximation becomes valid	Some human-defined criteria

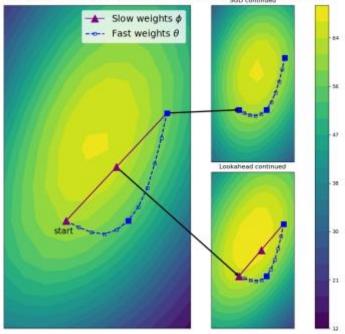
k step forward, 1 step back

• Lookahead [Zhang, et al., arXiv'19]

universal wrapper for all optimizers

Similar to Reptile?

Optim can be any optimizer. E.g. Ranger= RAdam+Lookahead



CIFAR-100 accuracy surface with Lookahead interpolation

k step forward, 1 step back

• Lookahead [Zhang, et al., arXiv'19]

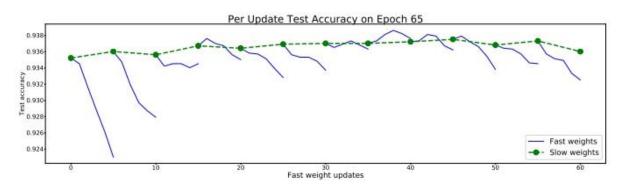
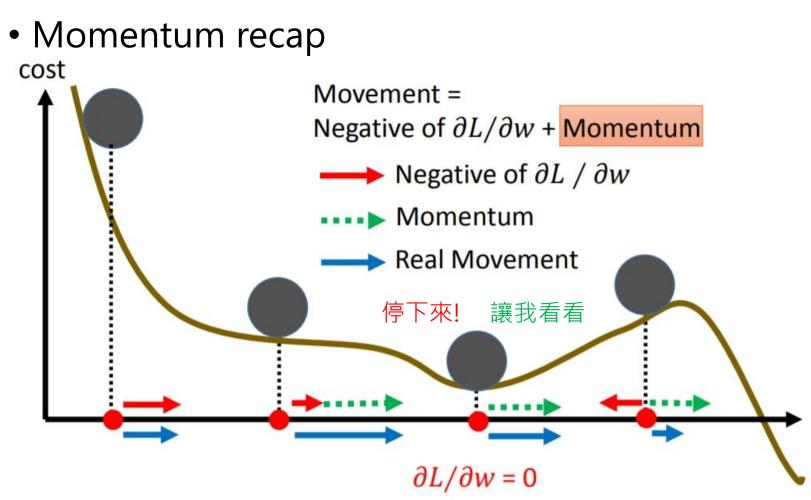
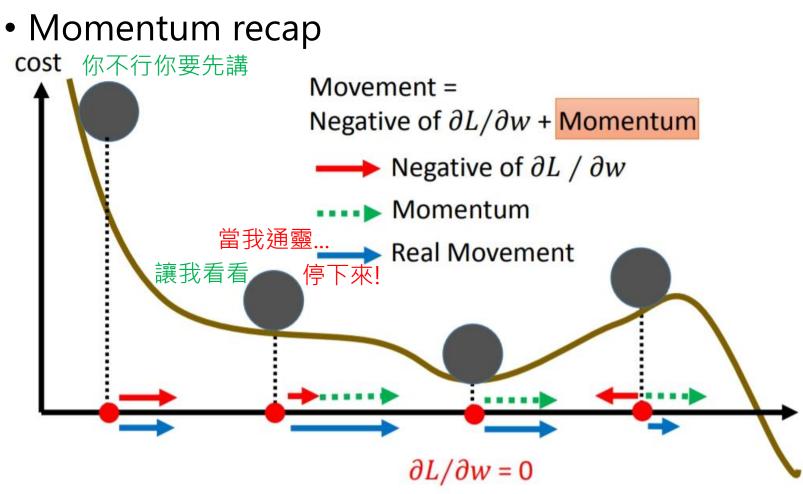


Figure 10: Visualizing Lookahead accuracy for 60 fast weight updates. We plot the test accuracy after every update (the training accuracy and loss behave similarly). The inner loop update tends to degrade both the training and test accuracy, while the interpolation recovers the original performance.

More than momentum...



More than momentum...



Can we look into the future?

- Nesterov accelerated gradient (NAG) [Nesterov, jour Dokl. Akad. Nauk SSSR'83]
- SGDM

 $\begin{aligned} \theta_t &= \theta_{t-1} - m_t \\ m_t &= \lambda m_{t-1} + \eta \nabla L(\theta_{t-1}) \end{aligned}$

• Look into the future...

 $\begin{aligned} \theta_t &= \theta_{t-1} - m_t \\ m_t &= \lambda m_{t-1} + \eta \nabla L (\theta_{t-1} - \lambda m_{t-1}) \end{aligned}$

Need to maintain a duplication of model parameters?

Math Warning

Can we look into the future?

Nesterov accelerated gradient (NAG)

$$\begin{aligned} \theta_t &= \theta_{t-1} - m_t \\ m_t &= \lambda m_{t-1} + \eta \nabla L(\theta_{t-1} - \lambda m_{t-1}) \end{aligned}$$

Let
$$\theta_t' = \theta_t - \lambda m_t$$

 $= \theta_{t-1} - m_t - \lambda m_t$
 $= \theta_{t-1} - \lambda m_t - \lambda m_{t-1} - \eta \nabla L(\theta_{t-1} - \lambda m_{t-1})$
 $= \theta_{t-1}' - \lambda m_t - \eta \nabla L(\theta_{t-1}')$
 $m_t = \lambda m_{t-1} + \eta \nabla L(\theta_{t-1}')$
你也懂超前部署?

• SGDM

$$\begin{aligned} \theta_t &= \theta_{t-1} - m_t \\ m_t &= \lambda m_{t-1} + \eta \nabla L(\theta_{t-1}) \end{aligned} \quad \text{or} \quad \begin{array}{l} \theta_t &= \theta_{t-1} - \lambda m_{t-1} - \eta \nabla L(\theta_{t-1}) \\ m_t &= \lambda m_{t-1} + \eta \nabla L(\theta_{t-1}) \end{aligned}$$

Adam in the future

• Nadam [Dozat, ICLR workshop'16]

$$\begin{split} \theta_t &= \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \widehat{m}_t \\ \widehat{m}_t &= \frac{\beta_1 m_t}{1 - \beta_1^{t+1}} + \frac{(1 - \beta_1) g_{t-1}}{1 - \beta_1^{t}} \end{split}$$

$$\widehat{m}_{t} = \frac{1}{1 - \beta_{1}^{t}} (\beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t-1})$$
$$= \frac{\beta_{1} m_{t-1}}{1 - \beta_{1}^{t}} + \frac{(1 - \beta_{1}) g_{t-1}}{1 - \beta_{1}^{t}}$$

Do you really know your optimizer?

• A story of L2 regularization...

 $L_{l_2}(\theta) = L(\theta) + \gamma ||\theta||^2$

SGD SGDM Adam

$$\begin{aligned} \theta_t &= \theta_{t-1} - \nabla L_{l_2}(\theta_{t-1}) \\ &= \theta_{t-1} - \nabla L(\theta_{t-1}) - \gamma \theta_{t-1} \end{aligned}$$

$$\begin{aligned} \theta_t &= \theta_{t-1} - \lambda m_{t-1} - \eta (\nabla L(\theta_{t-1}) + \gamma \theta_{t-1}) \\ m_t &= \lambda m_{t-1} + \eta (\nabla L(\theta_{t-1}) + \gamma \theta_{t-1}) ? \\ m_t &= \lambda m_{t-1} + \eta (\nabla L(\theta_{t-1})) ? \end{aligned}$$

 $m_t = \lambda m_{t-1} + \eta (\nabla L(\theta_{t-1}) + \gamma \theta_{t-1}) ?$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla L(\theta_{t-1}) + \gamma \theta_{t-1})^2 ?$

Do you really know your optimizer?

• AdamW & SGDW with momentum [Loshchilov, arXiv'17]

$$\begin{array}{l} \textbf{SGDWM} \qquad \begin{array}{l} \theta_t = \theta_{t-1} - m_t - \gamma \theta_{t-1} \\ m_t = \lambda m_{t-1} + \eta (\nabla L(\theta_{t-1})) \end{array} \\ \\ \textbf{M}_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla L(\theta_{t-1}) \\ v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla L(\theta_{t-1}))^2 \\ \theta_t = \theta_{t-1} - \eta (\frac{1}{\sqrt{\hat{v}_t + \varepsilon}} \widehat{m}_t + \gamma \theta_{t-1}) \end{array} \end{array}$$

L2 regularization or weight decay?

Something helps optimization...

- Shuffling
- Dropout
- Gradient noise [Neelakantan, et al., arXiv'15]

$$g_{t,i} = g_{t,i} + N(0, \sigma_t^2)$$
$$\sigma_t = \frac{c}{(1+t)^{\gamma}}$$

The more exploration, the better!

Something helps optimization...

- Warm-up
- Curriculum learning [Bengio, et al., ICML'09]

Train your model with easy data(e.g. clean voice) first, then difficult data.

Perhaps helps to improve generalization

• Fine-tuning

Teach your model patiently!

Something helps optimization...

Normalization

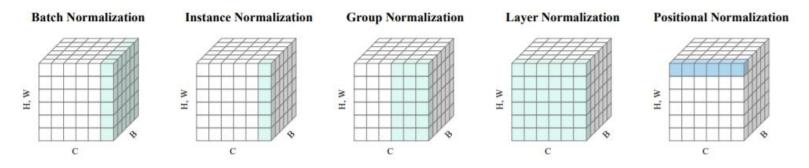


Figure 2: Positional Normalization together with previous normalization methods. In the figure, each subplot shows a feature map tensor, with B as the batch axis, C as the channel axis, and (H, W) as the spatial axis. The entries colored in **green** or **blue** (ours) are normalized by the same mean and standard deviation. Unlike previous methods, our method processes each position independently, and compute both statistics across the channels.

Regularization

What we learned today?

Team SGD	Team Adam		
• SGD	• Adagrad		
• SGDM	RMSProp		
 Learning rate scheduling 	• Adam		
• NAG	AMSGrad Extreme values of		
• SGDWM	AdaBound learning rate		
	 Learning rate scheduling 		
	• RAdam		
	• Nadam		
	• AdamW		
SWATS			
Lookahead			

What we learned today?

SGDM	Adam
• Slow	• Fast
Better convergence	 Possibly non-convergence
• Stable	• Unstable
 Smaller generalization gap 	 Larger generalization gap

Advices

SGDM	Adam
 Computer vision image classification segmentation object detection 	 NLP QA machine translation summary
	 Speech synthesis GAN Reinforcement learning

Universal Optimizer? No Way!!!

What I think I am going to learn in this class

What I actually learned in this class

- [Ruder, arXiv'17] Sebastian Ruder, "An Overview of Gradient Descent Optimization Algorithms", arXiv, 2017
- [Rumelhart, et al., Nature'86] David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, "Learning Representations by Back-Propagating Errors", Nature, 1986
- [Duchi, et al., JMLR'11] John Duchi, Elad Hazan and Yoram Singer, "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization", JMLR, 2011
- [Hinton, et al., Lecture slides, 2013] Geoffrey Hinton, Nitish Srivastava and Kevin Swersky, "RMSProp", Lecture slides, 2013
- [Kingma, et al., ICLR'15] Diederik P. Kingma and Jimmy Ba, "A Method for Stochastic Optimization", ICLR, 2015

- [Keskar, et al., arXiv'17] Nitish Shirish Keskar and Richard Socher, "Improving Generalization Performance by Switching from Adam to SGD", arXiv, 2017
- [Reddi, et al., ICLR'18] Sashank J. Reddi, Satyen Kale and Sanjiv Kumar, "On the Convergence of Adam and Beyond", ICLR, 2018
- [Luo, et al., ICLR'19] Liangchen Luo, Yuanhao Xiong, Yan Liu and Xu Sun, "Adaptive Gradient Methods with Dynamic Bound of Learning Rate", ICLR, 2019
- [Smith, WACV'17] Leslie N. Smith, "Cyclical Learning Rates for Training Neural Networks", WACV, 2017
- [Loshchilov, et al., ICLR'17] Ilya Loshchilov and Frank Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR, 2017

- [Smith, et al., arXiv'17] Leslie N. Smith and Nicholay Topin, "Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates", arXiv, 2017
- [Liu, et al., ICLR'20] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao and Jiawei Han, "On the Variance of the Adaptive Learning Rate and Beyond", ICLR, 2020
- [Zhang, et al., arXiv'19] Michael R. Zhang, James Lucas, Geoffrey Hinton and Jimmy Ba, "Lookahead Optimizer: k Step Forward, 1 Step Back", arXiv, 2019
- [Nesterov, jour Dokl. Akad. Nauk SSSR'83] Yu. E. Nesterov, "A Method of Solving a Convex Programming Problem with Convergence Rate O(1/k²)""

- [Dozat, ICLR workshop'16] Timothy Dozat, "Incorporating Nesterov Momentum into Adam", ICLR workshop, 2016
- [Loshchilov, arXiv'17] Ilya Loshchilov and Frank Hutter, "Fixing Weight Decay Regularization in Adam", arXiv, 2017
- [Neelakantan, et al., arXiv'15] Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach and James Martens, "Adding Gradient Noise Improves Learning for Very Deep Networks", arXiv, 2015
- [Bengio, et al., ICML'09] Yoshua Bengio, Jèrôme Louradour, Ronan Collobert and Jason Weston, "Curriculum Learning", ICML, 2015