Proximal Policy
Optimization (PPO)

default reinforcement learning algorithm at OpenAl

Policy On-policy — Add

D e e p I\/I | n d https://youtu.be/gn4nRCCOTWQ

It might
look goofy ...

https://blog.openai.com/o
penai-baselines-ppo/

Policy Gradient (Review)

Basic Components

@ You cannot control
g A
rd 1 r N

Video Get 20 scores when
Game killing a monster
The rule
Go

of GO

Policy of Actor

* Policy is a network with parameter 6

* Input: the observation of machine represented as a
vector or a matrix

* Output: each action corresponds to a neuron in output
layer

Take the action
based on the

1y |eft 0.7\ probability.
* » » T right 0.2\ Score of an
: action
— fire 0.1

pixels)

Example: Playing Video Game

Start with
observation s Observation s, Observation s3

\ - Obtain reward \ / Obtain reward

T1=0 7"2=5

Example: Playing Video Game

Start with
observation s Observation s, Observation s3

This is an episode.
Game Over
(spaceship destroyed)

Obtain reward 7

Total reward:
T

After many turns

IIIIIIIIIIIIIIIII>

R: Tt

Actor, Environment, Reward

S1 aq So a-,
JE- S

v \ v
51 ai 52 a 53

Trajectory 7 = {s{,a,S,,ay, ", Sy, a7}

pe(7)

= p(s1)pe(asls1)p(szls1, a1)pg(az[sz)p(sszlss, az) -

T
= p(s1) 1_[po(aclse)p(Se+1lSe, ar)
t=1

Actor, Environment, Reward

Expected Reward

ER(T)}DQ(T) = Erpym|R(T)] R(T =

>

t=1

d |

Policy Gradient & =) R@pe(d) VE, =

Vpe(T)
po(T)

TRy =) R@Tpe(t) =) Rpe(®)

R(7) do not have to be differentiable
It can even be a black box.
Vf(x) =

ER(T lngg (1) f(x)Vlogf(x)

T

1 S n n
= E¢py(o[R(DVI0gpy (0)] Nz RG™Vlogpe(c™)

1 77,
=~ z z R(t™Viogpe(al|si)

n=1t=1

VRg = Erp) [R(T)VIogpe(7)]

Policy Gradient

Update
Model

Given policy g
1.

T (si,a1) R(Y)
(s3,a3) R(@Y)

0 « 0 +nVRy

% (stad) R(?)
(sf,a5) R(7%)

R(z™)Vlogpe(at'|st’)

Data

Collection
only used once

| =

N

=| -

0 « 0 +nVR,
Implementation N Ty

PRo =) Z R(z™)Plogpe (af|st)

n=1t=

n
Consider as classification problem st ar R(t™)

—> left < »1 af
-* » » _ T right <« >0
ST U fire < .0
N Ty N T,
Z Z ogpe(at|si) 1 z z Viogpg (ait|si)
IV t1°t
n=1t=1 TF, pyTorch ... n=1t=1
N Ty jl N T,
Z R(t")logpe(ar|s N Z Z t")Vlogpe(a;'|st’)
n=1t=1 n=1t=1

Tip 1: Add a Baseline

0«0+ nVﬁg It is possible that R(t™") is always positive.

N T,
TRy ~ = > > (RG™) —b)Vlogps(aflst) b~ E[R(D)]
n 1t=1
Itis probablllty
|deal
case
c
Not
sampled
Sampling

»

Tip 2: Assign Suitable Credit

x3 X=2 X-=2 X —7 X—2 X=2
(Sea1) (sp,az) (s¢ as) (sq,az) (sp,az) (sg as)
+5 +0 -2 -5 +0 -2
R =43 R=-7

Tip 2: Assign Suitable Credit

How good it is if we take a;other

Advantage 248 (s;, ;) than other actions at s;.

Function . o
Estimated by “critic” (later)

w

N
_ 1
VRo ~~ > @8 = b)Vlogpe(aflst)

|—> 2 7" ! —Vz
t'=t t’—t

Add discount factor y <1

Can be state-dependent

From on-policy
to off-policy

Using the experience more than once

On-policy v.s. Off-policy

* On-policy: The agent learned and the agent
interacting with the environment is the same.

* Off-policy: The agent learned and the agent
interacting with the environment is different.

On-policy = Off-policy

VRg = Erpy) [R(T)Viogpe(7)]
* Use my to collect data. When 8 is updated, we have
to sample training data again.

* Goal: Using the sample from w4 to train 6. 8’ is
fixed, so we can re-use the sample data.

Importance Sampling

x" is sampled from p(x)

1 N . .
Explf(X)] = ﬁ We only have x! sampled
i=1

from q(x)

= [reper = [100l awix = Byl

Importance weight

Issue of Importance Sampling

p(x)
x~p [f(x)] = x~q [f (x)m] VAR[X]
Var,,[f (x)] Vare.q[f (x) %] = E[X*] — (E[X])?

Var,p[f ()] = Exoplf (021 = (Exp[F 1)’
p(x)
_(- [f(s)

Exp f(x)z — (Ex~p [f(x)])z

p(x) p(x)
Vary.q [f () q(x)] Ex-q (f()q(x)>

Issue of Importance Sampling

(x)
Eyp[f (O] = Eyqlf () %}

Eyplf (x)] is negative f(x)

p(x) K a(0)

Very large weight
Explf (x)] is positives-
negative

On-policy = Off-policy

VRg = Erpy) [R(T)Viogpe(7)]
* Use my to collect data. When 8 is updated, we have
to sample training data again.

* Goal: Using the sample from w4 to train 6. 8’ is
fixed, so we can re-use the sample data.

_— o (7)
VR9 I ETNPQI(T) pQ’(T) R(T)Vlogpe (T)

* Sample the data from @’.
e Use the data to train & many times.

Importance p(x)
sampling Ex plf ()] = Ex_qlf(x) 2(0)

—

On-policy = Off-policy
Gradient for update Vf(x) = f(x)Viegf(x)
— E(St,at)~7'[g [AH (st,ar)Vlogpg (ag'|si)]

This term is from
A7 (s, ar) sampled data.

PO (St' at)
= E(syan~n,) Al Viogpe (al|sP)]

Pe (S¢,a)
pe(azls:) Pelst) 0
= F - A , Vi Mslt
(St at) TL' [pg (atlst) m (St at) ng9 (a’t |St)]

po(ac|se)
por(ac|se)

19 (6) = Espap~m, l A% (s, Clt)] When to stop?

Add Constraint

@ cannot be very different from 6’

PPO / TRPO

Constraint on behavior not parameters

Proximal Policy Optimization (PPO)

, , Vf(x) = f(x)Viogf (x)
J8po(8) =J9 () — BKL(6,6")

po(a¢|se)
por(ag|se)

]0’(0) = E(st,at)fvne/ [A° (St at)]

TRPO (Trust Region Policy Optimization)

po(a¢|se)
por(ag|se)

AQ,(St! at)]

KL(8,0") <6

]gRPO 0) = E(St;at)"’ﬂgl [

PPO algorithm

* Initial policy parameters 9°

* In each iteration
e Using 6% to interact with the environment to collect
{s;,a;} and compute advantage Aek(st, a;)
* Find 8 optimizing Jppy (6)

gk ok .\ Update parameters
Jppo(8) =] (0)_'BKL(8’H) several times

e If KL(H, 9") > KL,,4, increase 5 Adaptive
o If KL(H, 9") < KL,,in, decrease 3 KL Penalty

PPO algorithm

J8ro () = J9%(6) — BKL(6, 9")

(8) ~ pe(ac|st) Agk(st’ a,)
PPO2 algorithm &y Porlaclse)
g
Jpo2®) =)
(st,at) '
clip(pe(atlst) 1—¢1+ 8) A‘gk(s a,)

pok(az|se) ' , vt
1+e1
1 |
1—¢ |

‘ po(ac|st)

1—-¢ 1 1+-¢ Pek(at|5t)

PPO algorithm
90(8) = J°"(6) — BKL(6,6")

NOE Po ((atlst)) Qk(st’ a)
PPO2 algorithm &\ Porlaclse
[pelaclst) ik
J8p02(8) ~ (;t) min (pek(at) A% (s¢, ap),

| az|s
clip(pe(clse) ,1—5,1+£>A9k(st,at))

pok(ac|se)

t

1+ ¢ A<O

https://arxiv.org/abs/1707.06347

Experimental Results

—— A2C + Trus! Regon
- CEM
e PPO (Cip)

Vandla PG, Adaptive
- TRPO
-80

“100

-120
o 1000200

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.

