Proximal Policy
Optimization (PPO)

default reinforcement learning algorithm at OpenAl
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Policy Gradient (Review)
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Policy of Actor

* Policy  is a network with parameter 6

* Input: the observation of machine represented as a
vector or a matrix

* Output: each action corresponds to a neuron in output
layer

Take the action
based on the
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Example: Playing Video Game

Start with
observation s Observation s, Observation s3

\ - Obtain reward \ / Obtain reward

T1=0 7"2=5




Example: Playing Video Game

Start with
observation s Observation s, Observation s3

This is an episode.
Game Over
(spaceship destroyed)

Obtain reward 7

Total reward:
T

After many turns
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Actor, Environment, Reward
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Actor, Environment, Reward

Expected Reward

ER(T)}DQ(T) = Erpym|R(T)] R(T =

>

t=1

d |



Policy Gradient & =) R@pe(d) VE, =

Vpe(T)
po(T)

TRy = ) R@Tpe(t) = ) Rpe(®)

R(7) do not have to be differentiable
It can even be a black box.
Vf(x) =
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VRg = Erp ) [R(T)VIogpe(7)]

Policy Gradient

Update
Model

Given policy g
1.
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Data

Collection
only used once
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Tip 1: Add a Baseline

0«0+ nVﬁg It is possible that R(t™") is always positive.
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Tip 2: Assign Suitable Credit
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Tip 2: Assign Suitable Credit

How good it is if we take a;other

Advantage 248 (s;, ;) than other actions at s;.

Function . o
Estimated by “critic” (later)

w

N
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Add discount factor y <1

Can be state-dependent



From on-policy
to off-policy

Using the experience more than once



On-policy v.s. Off-policy

* On-policy: The agent learned and the agent
interacting with the environment is the same.

* Off-policy: The agent learned and the agent
interacting with the environment is different.




On-policy = Off-policy

VRg = Erpy) [R(T)Viogpe(7)]
* Use my to collect data. When 8 is updated, we have
to sample training data again.

* Goal: Using the sample from w4 to train 6. 8’ is
fixed, so we can re-use the sample data.

Importance Sampling

x" is sampled from p(x)

1 N . .
Explf(X)] = ﬁ We only have x! sampled
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from q(x)
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Issue of Importance Sampling

p(x)
x~p [f(x)] = x~q [f (x )m] VAR[X]
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Issue of Importance Sampling

(x)
Eyp[f (O] = Eyqlf () %}

Eyplf (x)] is negative f(x)

p(x) K a(0)

Very large weight
Explf (x)] is positives-
negative




On-policy = Off-policy

VRg = Erpy) [R(T)Viogpe(7)]
* Use my to collect data. When 8 is updated, we have
to sample training data again.

* Goal: Using the sample from w4 to train 6. 8’ is
fixed, so we can re-use the sample data.

_— o (7)
VR9 I ETNPQI(T) pQ’(T) R(T)Vlogpe (T)

* Sample the data from @’.
e Use the data to train & many times.

Importance p(x)
sampling Ex plf ()] = Ex_qlf(x) 2(0)
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On-policy = Off-policy
Gradient for update Vf(x) = f(x)Viegf(x)
— E(St,at)~7'[g [AH (st,ar)Vlogpg (ag'|si)]

This term is from
A7 (s, ar) sampled data.
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Add Constraint



@ cannot be very different from 6’

PPO / TRPO

Constraint on behavior not parameters

Proximal Policy Optimization (PPO)

, , Vf(x) = f(x)Viogf (x)
J8po(8) =J9 () — BKL(6,6")
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]0’(0) = E(st,at)fvne/ [ A° (St at)]

TRPO (Trust Region Policy Optimization)
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PPO algorithm

* Initial policy parameters 9°

* In each iteration
e Using 6% to interact with the environment to collect
{s;,a;} and compute advantage Aek(st, a;)
* Find 8 optimizing Jppy (6)

gk ok .\ Update parameters
Jppo(8) =] (0)_'BKL(8’H ) several times

e If KL(H, 9") > KL,,4, increase 5 Adaptive
o If KL(H, 9") < KL,,in, decrease 3 KL Penalty




PPO algorithm

J8ro () = J9%(6) — BKL(6, 9")
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PPO algorithm
90(8) = J°"(6) — BKL(6,6")
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https://arxiv.org/abs/1707.06347

Experimental Results
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Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.



