|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "fdd7ff16",
- "metadata": {},
- "source": [
- "# T4. fastNLP 中的预定义模型\n",
- "\n",
- "  1   fastNLP 中 modules 的介绍\n",
- " \n",
- "    1.1   modules 模块、models 模块 简介\n",
- "\n",
- "    1.2   示例一:modules 实现 LSTM 分类\n",
- "\n",
- "  2   fastNLP 中 models 的介绍\n",
- " \n",
- "    2.1   示例一:models 实现 CNN 分类\n",
- "\n",
- "    2.3   示例二:models 实现 BiLSTM 标注"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d3d65d53",
- "metadata": {},
- "source": [
- "## 1. fastNLP 中 modules 模块的介绍\n",
- "\n",
- "### 1.1 modules 模块、models 模块 简介\n",
- "\n",
- "在`fastNLP 0.8`中,**`modules.torch`路径下定义了一些基于`pytorch`实现的基础模块**\n",
- "\n",
- "    包括长短期记忆网络`LSTM`、条件随机场`CRF`、`transformer`的编解码器模块等,详见下表\n",
- "\n",
- "| <div align=\"center\">代码名称</div> | <div align=\"center\">简要介绍</div> | <div align=\"center\">代码路径</div> |\n",
- "|:--|:--|:--|\n",
- "| `LSTM` | 轻量封装`pytorch`的`LSTM` | `/modules/torch/encoder/lstm.py` |\n",
- "| `Seq2SeqEncoder` | 序列变换编码器,基类 | `/modules/torch/encoder/seq2seq_encoder.py` |\n",
- "| `LSTMSeq2SeqEncoder` | 序列变换编码器,基于`LSTM` | `/modules/torch/encoder/seq2seq_encoder.py` |\n",
- "| `TransformerSeq2SeqEncoder` | 序列变换编码器,基于`transformer` | `/modules/torch/encoder/seq2seq_encoder.py` |\n",
- "| `StarTransformer` | `Star-Transformer`的编码器部分 | `/modules/torch/encoder/star_transformer.py` |\n",
- "| `VarRNN` | 实现`Variational Dropout RNN` | `/modules/torch/encoder/variational_rnn.py` |\n",
- "| `VarLSTM` | 实现`Variational Dropout LSTM` | `/modules/torch/encoder/variational_rnn.py` |\n",
- "| `VarGRU` | 实现`Variational Dropout GRU` | `/modules/torch/encoder/variational_rnn.py` |\n",
- "| `ConditionalRandomField` | 条件随机场模型 | `/modules/torch/decoder/crf.py` |\n",
- "| `Seq2SeqDecoder` | 序列变换解码器,基类 | `/modules/torch/decoder/seq2seq_decoder.py` |\n",
- "| `LSTMSeq2SeqDecoder` | 序列变换解码器,基于`LSTM` | `/modules/torch/decoder/seq2seq_decoder.py` |\n",
- "| `TransformerSeq2SeqDecoder` | 序列变换解码器,基于`transformer` | `/modules/torch/decoder/seq2seq_decoder.py` |\n",
- "| `SequenceGenerator` | 序列生成,封装`Seq2SeqDecoder` | `/models/torch/sequence_labeling.py` |\n",
- "| `TimestepDropout` | 在每个`timestamp`上`dropout` | `/modules/torch/dropout.py` |"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "89ffcf07",
- "metadata": {},
- "source": [
- "  **`models.torch`路径下定义了一些基于`pytorch`、`modules`实现的预定义模型** \n",
- "\n",
- "    例如基于`CNN`的分类模型、基于`BiLSTM+CRF`的标注模型、基于[双仿射注意力机制](https://arxiv.org/pdf/1611.01734.pdf)的分析模型\n",
- "\n",
- "    基于`modules.torch`中的`LSTM`/`transformer`编/解码器模块的序列变换/生成模型,详见下表\n",
- "\n",
- "| <div align=\"center\">代码名称</div> | <div align=\"center\">简要介绍</div> | <div align=\"center\">代码路径</div> |\n",
- "|:--|:--|:--|\n",
- "| `BiaffineParser` | 句法分析模型,基于双仿射注意力 | `/models/torch/biaffine_parser.py` |\n",
- "| `CNNText` | 文本分类模型,基于`CNN` | `/models/torch/cnn_text_classification.py` |\n",
- "| `Seq2SeqModel` | 序列变换,基类`encoder+decoder` | `/models/torch/seq2seq_model.py` |\n",
- "| `LSTMSeq2SeqModel` | 序列变换,基于`LSTM` | `/models/torch/seq2seq_model.py` |\n",
- "| `TransformerSeq2SeqModel` | 序列变换,基于`transformer` | `/models/torch/seq2seq_model.py` |\n",
- "| `SequenceGeneratorModel` | 封装`Seq2SeqModel`,结合`SequenceGenerator` | `/models/torch/seq2seq_generator.py` |\n",
- "| `SeqLabeling` | 标注模型,基类`LSTM+FC+CRF` | `/models/torch/sequence_labeling.py` |\n",
- "| `BiLSTMCRF` | 标注模型,`BiLSTM+FC+CRF` | `/models/torch/sequence_labeling.py` |\n",
- "| `AdvSeqLabel` | 标注模型,`LN+BiLSTM*2+LN+FC+CRF` | `/models/torch/sequence_labeling.py` |"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "61318354",
- "metadata": {},
- "source": [
- "上述`fastNLP`模块,不仅**为入门级用户提供了简单易用的工具**,以解决各种`NLP`任务,或复现相关论文\n",
- "\n",
- "  同时**也为专业研究人员提供了便捷可操作的接口**,封装部分代码的同时,也能指定参数修改细节\n",
- "\n",
- "  在接下来的`tutorial`中,我们将通过`SST-2`分类和`CoNLL-2003`标注,展示相关模型使用\n",
- "\n",
- "注一:**`SST`**,**单句情感分类**数据集,包含电影评论和对应情感极性,1 对应正面情感,0 对应负面情感\n",
- "\n",
- "  数据集包括三部分:训练集 67350 条,验证集 873 条,测试集 1821 条,更多参考[下载链接](https://gluebenchmark.com/tasks)\n",
- "\n",
- "注二:**`CoNLL-2003`**,**文本语法标注**数据集,包含语句和对应的词性标签`pos_tags`(名动形数量代)\n",
- "\n",
- "  语法结构标签`chunk_tags`(主谓宾定状补)、命名实体标签`ner_tags`(人名、组织名、地名、时间等)\n",
- "\n",
- "  数据集包括三部分:训练集 14041 条,验证集 3250 条,测试集 3453 条,更多参考[原始论文](https://aclanthology.org/W03-0419.pdf)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2a36bbe4",
- "metadata": {},
- "source": [
- "### 1.2 示例一:modules 实现 LSTM 分类"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "40e66b21",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import sys\n",
- "# sys.path.append('..')\n",
- "\n",
- "# from fastNLP.io import SST2Pipe # 没有 SST2Pipe 会运行很长时间,并且还会报错\n",
- "\n",
- "# databundle = SST2Pipe(tokenizer='raw').process_from_file()\n",
- "\n",
- "# dataset = databundle.get_dataset('train')[:6000]\n",
- "\n",
- "# dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split(), 'target': ins['label']}, \n",
- "# progress_bar=\"tqdm\")\n",
- "# dataset.delete_field('sentence')\n",
- "# dataset.delete_field('label')\n",
- "# dataset.delete_field('idx')\n",
- "\n",
- "# from fastNLP import Vocabulary\n",
- "\n",
- "# vocab = Vocabulary()\n",
- "# vocab.from_dataset(dataset, field_name='words')\n",
- "# vocab.index_dataset(dataset, field_name='words')\n",
- "\n",
- "# train_dataset, evaluate_dataset = dataset.split(ratio=0.85)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "50960476",
- "metadata": {},
- "outputs": [],
- "source": [
- "# from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "# train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
- "# evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "0b25b25c",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import torch\n",
- "# import torch.nn as nn\n",
- "\n",
- "# from fastNLP.modules.torch import LSTM, MLP # 没有 MLP\n",
- "# from fastNLP import Embedding, CrossEntropyLoss\n",
- "\n",
- "\n",
- "# class ClsByModules(nn.Module):\n",
- "# def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n",
- "# nn.Module.__init__(self)\n",
- "\n",
- "# self.embedding = Embedding((vocab_size, embedding_dim))\n",
- "# self.lstm = LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True)\n",
- "# self.mlp = MLP([hidden_dim * 2, output_dim], dropout=dropout)\n",
- " \n",
- "# self.loss_fn = CrossEntropyLoss()\n",
- "\n",
- "# def forward(self, words):\n",
- "# output = self.embedding(words)\n",
- "# output, (hidden, cell) = self.lstm(output)\n",
- "# output = self.mlp(torch.cat((hidden[-1], hidden[-2]), dim=1))\n",
- "# return output\n",
- " \n",
- "# def train_step(self, words, target):\n",
- "# pred = self(words)\n",
- "# return {\"loss\": self.loss_fn(pred, target)}\n",
- "\n",
- "# def evaluate_step(self, words, target):\n",
- "# pred = self(words)\n",
- "# pred = torch.max(pred, dim=-1)[1]\n",
- "# return {\"pred\": pred, \"target\": target}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "9dbbf50d",
- "metadata": {},
- "outputs": [],
- "source": [
- "# model = ClsByModules(vocab_size=len(vocabulary), embedding_dim=100, output_dim=2)\n",
- "\n",
- "# from torch.optim import AdamW\n",
- "\n",
- "# optimizers = AdamW(params=model.parameters(), lr=5e-5)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "7a93432f",
- "metadata": {},
- "outputs": [],
- "source": [
- "# from fastNLP import Trainer, Accuracy\n",
- "\n",
- "# trainer = Trainer(\n",
- "# model=model,\n",
- "# driver='torch',\n",
- "# device=0, # 'cuda'\n",
- "# n_epochs=10,\n",
- "# optimizers=optimizers,\n",
- "# train_dataloader=train_dataloader,\n",
- "# evaluate_dataloaders=evaluate_dataloader,\n",
- "# metrics={'acc': Accuracy()}\n",
- "# )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "31102e0f",
- "metadata": {},
- "outputs": [],
- "source": [
- "# trainer.run(num_eval_batch_per_dl=10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "8bc4bfb2",
- "metadata": {},
- "outputs": [],
- "source": [
- "# trainer.evaluator.run()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d9443213",
- "metadata": {},
- "source": [
- "## 2. fastNLP 中 models 模块的介绍\n",
- "\n",
- "### 2.1 示例一:models 实现 CNN 分类\n",
- "\n",
- "  本示例使用`fastNLP 0.8`中预定义模型`models`中的`CNNText`模型,实现`SST-2`文本二分类任务\n",
- "\n",
- "模型使用方面,如上所述,这里使用**基于卷积神经网络`CNN`的预定义文本分类模型`CNNText`**,结构如下所示\n",
- "\n",
- "  首先是内置的`100`维嵌入层、`dropout`层、紧接着是三个一维卷积,将`100`维嵌入特征,分别通过\n",
- "\n",
- "    **感受野为`1`、`3`、`5`的卷积算子变换至`30`维、`40`维、`50`维的卷积特征**,再将三者拼接\n",
- "\n",
- "  最终再次通过`dropout`层、线性变换层,映射至二元的输出值,对应两个分类结果上的几率`logits`\n",
- "\n",
- "```\n",
- "CNNText(\n",
- " (embed): Embedding(\n",
- " (embed): Embedding(5194, 100)\n",
- " (dropout): Dropout(p=0.0, inplace=False)\n",
- " )\n",
- " (conv_pool): ConvMaxpool(\n",
- " (convs): ModuleList(\n",
- " (0): Conv1d(100, 30, kernel_size=(1,), stride=(1,), bias=False)\n",
- " (1): Conv1d(100, 40, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
- " (2): Conv1d(100, 50, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n",
- " )\n",
- " )\n",
- " (dropout): Dropout(p=0.1, inplace=False)\n",
- " (fc): Linear(in_features=120, out_features=2, bias=True)\n",
- ")\n",
- "```\n",
- "\n",
- "数据使用方面,此处**使用`datasets`模块中的`load_dataset`函数**,以如下形式,指定`SST-2`数据集自动加载\n",
- "\n",
- "  首次下载后会保存至`~/.cache/huggingface/modules/datasets_modules/datasets/glue/`目录下"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1aa5cf6d",
- "metadata": {},
- "outputs": [],
- "source": [
- "from datasets import load_dataset\n",
- "\n",
- "sst2data = load_dataset('glue', 'sst2')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c476abe7",
- "metadata": {},
- "source": [
- "紧接着,使用`tutorial-1`和`tutorial-2`中的知识,将数据集转化为`fastNLP`中的`DataSet`格式\n",
- "\n",
- "  **使用`apply_more`函数、`Vocabulary`模块的`from_/index_dataset`函数预处理数据**\n",
- "\n",
- "    并结合`delete_field`函数删除字段调整格式,`split`函数划分测试集和验证集\n",
- "\n",
- "  **仅保留`'words'`字段表示输入文本单词序号序列、`'target'`字段表示文本对应预测输出结果**\n",
- "\n",
- "    两者**对应到`CNNText`中`train_step`函数和`evaluate_step`函数的签名/输入参数**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "357ea748",
- "metadata": {},
- "outputs": [],
- "source": [
- "import sys\n",
- "sys.path.append('..')\n",
- "\n",
- "from fastNLP import DataSet\n",
- "\n",
- "dataset = DataSet.from_pandas(sst2data['train'].to_pandas())[:6000]\n",
- "\n",
- "dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split(), 'target': ins['label']}, \n",
- " progress_bar=\"tqdm\")\n",
- "dataset.delete_field('sentence')\n",
- "dataset.delete_field('label')\n",
- "dataset.delete_field('idx')\n",
- "\n",
- "from fastNLP import Vocabulary\n",
- "\n",
- "vocab = Vocabulary()\n",
- "vocab.from_dataset(dataset, field_name='words')\n",
- "vocab.index_dataset(dataset, field_name='words')\n",
- "\n",
- "train_dataset, evaluate_dataset = dataset.split(ratio=0.85)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "96380c67",
- "metadata": {},
- "source": [
- "然后,使用`tutorial-3`中的知识,**通过`prepare_torch_dataloader`处理数据集得到`dataloader`**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "b9dd1273",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
- "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "96941b63",
- "metadata": {},
- "source": [
- "接着,**从`fastNLP.models.torch`路径下导入`CNNText`**,初始化`CNNText`实例以及`optimizer`实例\n",
- "\n",
- "  注意:初始化`CNNText`时,**二元组参数`embed`、分类数量`num_classes`是必须传入的**,其中\n",
- "\n",
- "    **`embed`表示嵌入层的嵌入抽取矩阵大小**,因此第二个元素对应的是默认隐藏层维度 `100`维"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "f6e76e2e",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP.models.torch import CNNText\n",
- "\n",
- "model = CNNText(embed=(len(vocab), 100), num_classes=2, dropout=0.1)\n",
- "\n",
- "from torch.optim import AdamW\n",
- "\n",
- "optimizers = AdamW(params=model.parameters(), lr=5e-4)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0cc5ca10",
- "metadata": {},
- "source": [
- "最后,使用`trainer`模块,集成`model`、`optimizer`、`dataloader`、`metric`训练"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "50a13ee5",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import Trainer, Accuracy\n",
- "\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " driver='torch',\n",
- " device=0, # 'cuda'\n",
- " n_epochs=10,\n",
- " optimizers=optimizers,\n",
- " train_dataloader=train_dataloader,\n",
- " evaluate_dataloaders=evaluate_dataloader,\n",
- " metrics={'acc': Accuracy()}\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "28903a7d",
- "metadata": {},
- "outputs": [],
- "source": [
- "trainer.run()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "f47a6a35",
- "metadata": {},
- "outputs": [],
- "source": [
- "trainer.evaluator.run()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "7c811257",
- "metadata": {},
- "source": [
- "  注:此处使用`gc`模块删除相关变量,释放内存,为接下来新的模型训练预留存储空间"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "c1a2e2ca",
- "metadata": {},
- "outputs": [],
- "source": [
- "import gc\n",
- "\n",
- "del model\n",
- "del trainer\n",
- "del dataset\n",
- "del sst2data\n",
- "\n",
- "gc.collect()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6aec2a19",
- "metadata": {},
- "source": [
- "### 2.2 示例二:models 实现 BiLSTM 标注\n",
- "\n",
- "  通过两个示例一的对比可以发现,得益于`models`对模型结构的封装,使用`models`明显更加便捷\n",
- "\n",
- "    针对更加复杂的模型时,编码更加轻松;本示例将使用`models`中的`BiLSTMCRF`模型\n",
- "\n",
- "  避免`CRF`和`Viterbi`算法代码书写的困难,轻松实现`CoNLL-2003`中的命名实体识别`NER`任务\n",
- "\n",
- "模型使用方面,如上所述,这里使用**基于双向`LSTM`+条件随机场`CRF`的标注模型`BiLSTMCRF`**,结构如下所示\n",
- "\n",
- "  其中,隐藏层维度默认`100`维,因此对应双向`LSTM`输出`200`维,`dropout`层退学概率、`LSTM`层数可调\n",
- "\n",
- "```\n",
- "BiLSTMCRF(\n",
- " (embed): Embedding(7590, 100)\n",
- " (lstm): LSTM(\n",
- " (lstm): LSTM(100, 100, batch_first=True, bidirectional=True)\n",
- " )\n",
- " (dropout): Dropout(p=0.1, inplace=False)\n",
- " (fc): Linear(in_features=200, out_features=9, bias=True)\n",
- " (crf): ConditionalRandomField()\n",
- ")\n",
- "```\n",
- "\n",
- "数据使用方面,此处仍然**使用`datasets`模块中的`load_dataset`函数**,以如下形式,加载`CoNLL-2003`数据集\n",
- "\n",
- "  首次下载后会保存至`~.cache/huggingface/datasets/conll2003/conll2003/1.0.0/`目录下"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "03e66686",
- "metadata": {},
- "outputs": [],
- "source": [
- "from datasets import load_dataset\n",
- "\n",
- "ner2data = load_dataset('conll2003', 'conll2003')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fc505631",
- "metadata": {},
- "source": [
- "紧接着,使用`tutorial-1`和`tutorial-2`中的知识,将数据集转化为`fastNLP`中的`DataSet`格式\n",
- "\n",
- "  完成数据集格式调整、文本序列化等操作;此处**需要`'words'`、`'seq_len'`、`'target'`三个字段**\n",
- "\n",
- "此外,**需要定义`NER`标签到标签序号的映射**(**词汇表`label_vocab`**),数据集中标签已经完成了序号映射\n",
- "\n",
- "  所以需要人工定义**`9`个标签对应之前的`9`个分类目标**;数据集说明中规定,`'O'`表示其他标签\n",
- "\n",
- "  **后缀`'-PER'`、`'-ORG'`、`'-LOC'`、`'-MISC'`对应人名、组织名、地名、时间等其他命名**\n",
- "\n",
- "  **前缀`'B-'`表示起始标签、`'I-'`表示终止标签**;例如,`'B-PER'`表示人名实体的起始标签"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1f88cad4",
- "metadata": {},
- "outputs": [],
- "source": [
- "import sys\n",
- "sys.path.append('..')\n",
- "\n",
- "from fastNLP import DataSet\n",
- "\n",
- "dataset = DataSet.from_pandas(ner2data['train'].to_pandas())[:4000]\n",
- "\n",
- "dataset.apply_more(lambda ins:{'words': ins['tokens'], 'seq_len': len(ins['tokens']), 'target': ins['ner_tags']}, \n",
- " progress_bar=\"tqdm\")\n",
- "dataset.delete_field('tokens')\n",
- "dataset.delete_field('ner_tags')\n",
- "dataset.delete_field('pos_tags')\n",
- "dataset.delete_field('chunk_tags')\n",
- "dataset.delete_field('id')\n",
- "\n",
- "from fastNLP import Vocabulary\n",
- "\n",
- "token_vocab = Vocabulary()\n",
- "token_vocab.from_dataset(dataset, field_name='words')\n",
- "token_vocab.index_dataset(dataset, field_name='words')\n",
- "label_vocab = Vocabulary(padding=None, unknown=None)\n",
- "label_vocab.add_word_lst(['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC'])\n",
- "\n",
- "train_dataset, evaluate_dataset = dataset.split(ratio=0.85)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d9889427",
- "metadata": {},
- "source": [
- "然后,同样使用`tutorial-3`中的知识,通过`prepare_torch_dataloader`处理数据集得到`dataloader`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "7802a072",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
- "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2bc7831b",
- "metadata": {},
- "source": [
- "接着,**从`fastNLP.models.torch`路径下导入`BiLSTMCRF`**,初始化`BiLSTMCRF`实例和优化器\n",
- "\n",
- "  注意:初始化`BiLSTMCRF`时,和`CNNText`相同,**参数`embed`、`num_classes`是必须传入的**\n",
- "\n",
- "    隐藏层维度`hidden_size`默认`100`维,调整`150`维;退学概率默认`0.1`,调整`0.2`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "4e12c09f",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP.models.torch import BiLSTMCRF\n",
- "\n",
- "model = BiLSTMCRF(embed=(len(token_vocab), 150), num_classes=len(label_vocab), \n",
- " num_layers=1, hidden_size=150, dropout=0.2)\n",
- "\n",
- "from torch.optim import AdamW\n",
- "\n",
- "optimizers = AdamW(params=model.parameters(), lr=1e-3)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "bf30608f",
- "metadata": {},
- "source": [
- "最后,使用`trainer`模块,集成`model`、`optimizer`、`dataloader`、`metric`训练\n",
- "\n",
- "  **使用`SpanFPreRecMetric`作为`NER`的评价标准**,详细请参考接下来的`tutorial-5`\n",
- "\n",
- "  同时,**初始化时需要添加`vocabulary`形式的标签与序号之间的映射`tag_vocab`**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "cbd6c205",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import Trainer, SpanFPreRecMetric\n",
- "\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " driver='torch',\n",
- " device=0, # 'cuda'\n",
- " n_epochs=10,\n",
- " optimizers=optimizers,\n",
- " train_dataloader=train_dataloader,\n",
- " evaluate_dataloaders=evaluate_dataloader,\n",
- " metrics={'F1': SpanFPreRecMetric(tag_vocab=label_vocab)}\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "0f8eff34",
- "metadata": {},
- "outputs": [],
- "source": [
- "trainer.run(num_eval_batch_per_dl=10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "37871d6b",
- "metadata": {},
- "outputs": [],
- "source": [
- "trainer.evaluator.run()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "96bae094",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.13"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|