You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

fastnlp_tutorial_5.ipynb 35 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "id": "fdd7ff16",
  6. "metadata": {},
  7. "source": [
  8. "# T5. trainer 和 evaluator 的深入介绍\n",
  9. "\n",
  10. "  1   fastNLP 中 driver 的补充介绍\n",
  11. " \n",
  12. "    1.1   trainer 和 driver 的构想 \n",
  13. "\n",
  14. "    1.2   device 与 多卡训练\n",
  15. "\n",
  16. "  2   fastNLP 中的更多 metric 类型\n",
  17. "\n",
  18. "    2.1   预定义的 metric 类型\n",
  19. "\n",
  20. "    2.2   自定义的 metric 类型\n",
  21. "\n",
  22. "  3   fastNLP 中 trainer 的补充介绍\n",
  23. "\n",
  24. "    3.1   trainer 的内部结构"
  25. ]
  26. },
  27. {
  28. "cell_type": "markdown",
  29. "id": "08752c5a",
  30. "metadata": {
  31. "pycharm": {
  32. "name": "#%% md\n"
  33. }
  34. },
  35. "source": [
  36. "## 1. fastNLP 中 driver 的补充介绍\n",
  37. "\n",
  38. "### 1.1 trainer 和 driver 的构想\n",
  39. "\n",
  40. "在`fastNLP 0.8`中,模型训练最关键的模块便是**训练模块`trainer`、评测模块`evaluator`、驱动模块`driver`**,\n",
  41. "\n",
  42. "  在`tutorial 0`中,已经简单介绍过上述三个模块:**`driver`用来控制训练评测中的`model`的最终运行**\n",
  43. "\n",
  44. "    **`evaluator`封装评测的`metric`**,**`trainer`封装训练的`optimizer`**,**也可以包括`evaluator`**\n",
  45. "\n",
  46. "之所以做出上述的划分,其根本目的在于要**达成对于多个`python`学习框架**,**例如`pytorch`、`paddle`、`jittor`的兼容**\n",
  47. "\n",
  48. "  对于训练环节,其伪代码如下方左边紫色一栏所示,由于**不同框架对模型、损失、张量的定义各有不同**,所以将训练环节\n",
  49. "\n",
  50. "    划分为**框架无关的循环控制、批量分发部分**,**由`trainer`模块负责**实现,对应的伪代码如下方中间蓝色一栏所示\n",
  51. "\n",
  52. "    以及**随框架不同的模型调用、数值优化部分**,**由`driver`模块负责**实现,对应的伪代码如下方右边红色一栏所示\n",
  53. "\n",
  54. "| <div align=\"center\">训练过程</div> | <div align=\"center\">框架无关 对应`trainer`</div> | <div align=\"center\">框架相关 对应`driver`</div> |\n",
  55. "|:--|:--|:--|\n",
  56. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">try:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">try:</div> | |\n",
  57. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">for epoch in 1:n_eoochs:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">for epoch in 1:n_eoochs:</div> | |\n",
  58. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">for step in 1:total_steps:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:40px;\">for step in 1:total_steps:</div> | |\n",
  59. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">batch = fetch_batch()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:60px;\">batch = fetch_batch()</div> | |\n",
  60. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">loss = model.forward(batch)&emsp;</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">loss = model.forward(batch)&emsp;</div> |\n",
  61. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">loss.backward()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">loss.backward()</div> |\n",
  62. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">model.clear_grad()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">model.clear_grad()</div> |\n",
  63. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">model.update()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">model.update()</div> |\n",
  64. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">if need_save:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:40px;\">if need_save:</div> | |\n",
  65. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">model.save()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">model.save()</div> |\n",
  66. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">except:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">except:</div> | |\n",
  67. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">process_exception()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">process_exception()</div> | |"
  68. ]
  69. },
  70. {
  71. "cell_type": "markdown",
  72. "id": "3e55f07b",
  73. "metadata": {},
  74. "source": [
  75. "&emsp; 对于评测环节,其伪代码如下方左边紫色一栏所示,同样由于不同框架对模型、损失、张量的定义各有不同,所以将评测环节\n",
  76. "\n",
  77. "&emsp; &emsp; 划分为**框架无关的循环控制、分发汇总部分**,**由`evaluator`模块负责**实现,对应的伪代码如下方中间蓝色一栏所示\n",
  78. "\n",
  79. "&emsp; &emsp; 以及**随框架不同的模型调用、评测计算部分**,同样**由`driver`模块负责**实现,对应的伪代码如下方右边红色一栏所示\n",
  80. "\n",
  81. "| <div align=\"center\">评测过程</div> | <div align=\"center\">框架无关 对应`evaluator`</div> | <div align=\"center\">框架相关 对应`driver`</div> |\n",
  82. "|:--|:--|:--|\n",
  83. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">try:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">try:</div> | |\n",
  84. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">model.set_eval()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">model.set_eval()</div> | |\n",
  85. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">for step in 1:total_steps:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">for step in 1:total_steps:</div> | |\n",
  86. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">batch = fetch_batch()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:40px;\">batch = fetch_batch()</div> | |\n",
  87. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">outputs = model.evaluate(batch)&emsp;</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:40px;\">outputs = model.evaluate(batch)&emsp;</div> |\n",
  88. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">metric.compute(batch, outputs)</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:40px;\">metric.compute(batch, outputs)</div> |\n",
  89. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">results = metric.get_metric()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">results = metric.get_metric()</div> | |\n",
  90. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">except:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">except:</div> | |\n",
  91. "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">process_exception()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">process_exception()</div> | |"
  92. ]
  93. },
  94. {
  95. "cell_type": "markdown",
  96. "id": "94ba11c6",
  97. "metadata": {
  98. "pycharm": {
  99. "name": "#%%\n"
  100. }
  101. },
  102. "source": [
  103. "由此,从程序员的角度,`fastNLP v0.8`**通过一个`driver`让基于`pytorch`、`paddle`、`jittor`框架的模型**\n",
  104. "\n",
  105. "&emsp; &emsp; **都能在相同的`trainer`和`evaluator`上运行**,这也**是`fastNLP v0.8`相比于之前版本的一大亮点**\n",
  106. "\n",
  107. "&emsp; 而从`driver`的角度,`fastNLP v0.8`通过定义一个`driver`基类,**将所有张量转化为`numpy.tensor`**\n",
  108. "\n",
  109. "&emsp; &emsp; 并由此泛化出`torch_driver`、`paddle_driver`、`jittor_driver`三个子类,从而实现了\n",
  110. "\n",
  111. "&emsp; &emsp; 对`pytorch`、`paddle`、`jittor`的兼容,有关后两者的实践请参考接下来的`tutorial-6`"
  112. ]
  113. },
  114. {
  115. "cell_type": "markdown",
  116. "id": "ab1cea7d",
  117. "metadata": {},
  118. "source": [
  119. "### 1.2 device 与 多卡训练\n",
  120. "\n",
  121. "**`fastNLP v0.8`支持多卡训练**,实现方法则是**通过将`trainer`中的`device`设置为对应显卡的序号列表**\n",
  122. "\n",
  123. "&emsp; 由单卡切换成多卡,无论是数据、模型还是评测都会面临一定的调整,`fastNLP v0.8`保证:\n",
  124. "\n",
  125. "&emsp; &emsp; 数据拆分时,不同卡之间相互协调,所有数据都可以被训练,且不会使用到相同的数据\n",
  126. "\n",
  127. "&emsp; &emsp; 模型训练时,模型之间需要交换梯度;评测计算时,每张卡先各自计算,再汇总结果\n",
  128. "\n",
  129. "&emsp; 例如,在评测计算运行`get_metric`函数时,`fastNLP v0.8`将自动按照`self.right`和`self.total`\n",
  130. "\n",
  131. "&emsp; &emsp; 指定的**`aggregate_method`方法**,默认为`sum`,将每张卡上结果汇总起来,因此最终\n",
  132. "\n",
  133. "&emsp; &emsp; 在调用`get_metric`方法时,`Accuracy`类能够返回全部的统计结果,代码如下\n",
  134. " \n",
  135. "```python\n",
  136. "trainer = Trainer(\n",
  137. " model=model, # model 基于 pytorch 实现 \n",
  138. " train_dataloader=train_dataloader,\n",
  139. " optimizers=optimizer,\n",
  140. " ...\n",
  141. " driver='torch', # driver 使用 torch_driver \n",
  142. " device=[0, 1], # gpu 选择 cuda:0 + cuda:1\n",
  143. " ...\n",
  144. " evaluate_dataloaders=evaluate_dataloader,\n",
  145. " metrics={'acc': Accuracy()},\n",
  146. " ...\n",
  147. " )\n",
  148. "\n",
  149. "class Accuracy(Metric):\n",
  150. " def __init__(self):\n",
  151. " super().__init__()\n",
  152. " self.register_element(name='total', value=0, aggregate_method='sum')\n",
  153. " self.register_element(name='right', value=0, aggregate_method='sum')\n",
  154. "```\n"
  155. ]
  156. },
  157. {
  158. "cell_type": "markdown",
  159. "id": "e2e0a210",
  160. "metadata": {
  161. "pycharm": {
  162. "name": "#%%\n"
  163. }
  164. },
  165. "source": [
  166. "注:`fastNLP v0.8`中要求`jupyter`不能多卡,仅能单卡,故在所有`tutorial`中均不作相关演示"
  167. ]
  168. },
  169. {
  170. "cell_type": "markdown",
  171. "id": "8d19220c",
  172. "metadata": {},
  173. "source": [
  174. "## 2. fastNLP 中的更多 metric 类型\n",
  175. "\n",
  176. "### 2.1 预定义的 metric 类型\n",
  177. "\n",
  178. "在`fastNLP 0.8`中,除了前几篇`tutorial`中经常见到的**正确率`Accuracy`**,还有其他**预定义的评测标准`metric`**\n",
  179. "\n",
  180. "&emsp; 包括**所有`metric`的基类`Metric`**、适配`Transformers`中相关模型的正确率`TransformersAccuracy`\n",
  181. "\n",
  182. "&emsp; &emsp; **适用于分类语境下的`F1`值`ClassifyFPreRecMetric`**(其中也包括召回率`Pre`、精确率`Rec`\n",
  183. "\n",
  184. "&emsp; &emsp; **适用于抽取语境下的`F1`值`SpanFPreRecMetric`**;相关基本信息内容见下表,之后是详细分析\n",
  185. "\n",
  186. "| <div align=\"center\">代码名称</div> | <div align=\"center\">简要介绍</div> | <div align=\"center\">代码路径</div> |\n",
  187. "|:--|:--|:--|\n",
  188. "| `Metric` | 定义`metrics`时继承的基类 | `/core/metrics/metric.py` |\n",
  189. "| `Accuracy` | 正确率,最为常用 | `/core/metrics/accuracy.py` |\n",
  190. "| `TransformersAccuracy` | 正确率,为了兼容`Transformers`中相关模型 | `/core/metrics/accuracy.py` |\n",
  191. "| `ClassifyFPreRecMetric` | 召回率、精确率、F1值,适用于**分类问题** | `/core/metrics/classify_f1_pre_rec_metric.py` |\n",
  192. "| `SpanFPreRecMetric` | 召回率、精确率、F1值,适用于**抽取问题** | `/core/metrics/span_f1_pre_rec_metric.py` |"
  193. ]
  194. },
  195. {
  196. "cell_type": "markdown",
  197. "id": "fdc083a3",
  198. "metadata": {
  199. "pycharm": {
  200. "name": "#%%\n"
  201. }
  202. },
  203. "source": [
  204. "&emsp; 如`tutorial-0`中所述,所有的`metric`都包含`get_metric`和`update`函数,其中\n",
  205. "\n",
  206. "&emsp; &emsp; **`update`函数更新单个`batch`的统计量**,**`get_metric`函数返回最终结果**,并打印显示\n",
  207. "\n",
  208. "\n",
  209. "### 2.1.1 Accuracy 与 TransformersAccuracy\n",
  210. "\n",
  211. "`Accuracy`,正确率,预测正确的数据`right_num`在总数据`total_num`,中的占比(公式就不用列了\n",
  212. "\n",
  213. "&emsp; `get_metric`函数打印格式为 **`{\"acc#xx\": float, 'total#xx': float, 'correct#xx': float}`**\n",
  214. "\n",
  215. "&emsp; 一般在初始化时不需要传参,`fastNLP`会根据`update`函数的传入参数确定对应后台框架`backend`\n",
  216. "\n",
  217. "&emsp; **`update`函数的参数包括`pred`、`target`、`seq_len`**,**后者用来标记批次中每笔数据的长度**\n",
  218. "\n",
  219. "`TransformersAccuracy`,继承自`Accuracy`,只是为了兼容`Transformers`框架中相关模型\n",
  220. "\n",
  221. "&emsp; 在`update`函数中,将`Transformers`框架输出的`attention_mask`参数转化为`seq_len`参数\n",
  222. "\n",
  223. "\n",
  224. "### 2.1.2 ClassifyFPreRecMetric 与 SpanFPreRecMetric\n",
  225. "\n",
  226. "`ClassifyFPreRecMetric`,分类评价,`SpanFPreRecMetric`,抽取评价,后者在`tutorial-4`中已出现\n",
  227. "\n",
  228. "&emsp; 两者的相同之处在于:**第一**,**都包括召回率/查全率`Rec`**、**精确率/查准率`Pre`**、**`F1`值**这三个指标\n",
  229. "\n",
  230. "&emsp; &emsp; `get_metric`函数打印格式为 **`{\"f#xx\": float, 'pre#xx': float, 'rec#xx': float}`**\n",
  231. "\n",
  232. "&emsp; &emsp; 三者的计算公式如下,其中`beta`默认为`1`,即`F1`值是召回率`Rec`和精确率`Pre`的调和平均数\n",
  233. "\n",
  234. "$$\\text{召回率}\\ Rec=\\dfrac{\\text{正确预测为正例的数量}}{\\text{所有本来是正例的数量}}\\qquad \\text{精确率}\\ Pre=\\dfrac{\\text{正确预测为正例的数量}}{\\text{所有预测为正例的数量}}$$\n",
  235. "\n",
  236. "$$F_{beta} = \\frac{(1 + {beta}^{2})*(Pre*Rec)}{({beta}^{2}*Pre + Rec)}$$\n",
  237. "\n",
  238. "&emsp; **第二**,可以通过参数`only_gross`为`False`,要求返回所有类别的`Rec-Pre-F1`,同时`F1`值又根据参数`f_type`又分为\n",
  239. "\n",
  240. "&emsp; &emsp; **`micro F1`**(**直接统计所有类别的`Rec-Pre-F1`**)、**`macro F1`**(**统计各类别的`Rec-Pre-F1`再算术平均**)\n",
  241. "\n",
  242. "&emsp; **第三**,两者在初始化时还可以**传入基于`fastNLP.Vocabulary`的`tag_vocab`参数记录数据集中的标签序号**\n",
  243. "\n",
  244. "&emsp; &emsp; **与标签名称之间的映射**,通过字符串列表`ignore_labels`参数,指定若干标签不用于`Rec-Pre-F1`的计算\n",
  245. "\n",
  246. "两者的不同之处在于:`ClassifyFPreRecMetric`针对简单的分类问题,每个分类标签之间彼此独立,不构成标签对\n",
  247. "\n",
  248. "&emsp; &emsp; **`SpanFPreRecMetric`针对更复杂的抽取问题**,**规定标签`B-xx`和`I-xx`或`B-xx`和`E-xx`构成标签对**\n",
  249. "\n",
  250. "&emsp; 在计算`Rec-Pre-F1`时,`ClassifyFPreRecMetric`只需要考虑标签本身是否正确这就足够了,但是\n",
  251. "\n",
  252. "&emsp; &emsp; 对于`SpanFPreRecMetric`,需要保证**标签符合规则且覆盖的区间与正确结果重合才算正确**\n",
  253. "\n",
  254. "&emsp; &emsp; 因此回到`tutorial-4`中`CoNLL-2003`的`NER`任务,如果评测方法选择`ClassifyFPreRecMetric`\n",
  255. "\n",
  256. "&emsp; &emsp; &emsp; 或者`Accuracy`,会发现虽然评测结果显示很高,这是因为选择的评测方法要求太低\n",
  257. "\n",
  258. "&emsp; &emsp; 最后通过`CoNLL-2003`的词性标注`POS`任务简单演示下`ClassifyFPreRecMetric`相关的使用\n",
  259. "\n",
  260. "```python\n",
  261. "from fastNLP import Vocabulary\n",
  262. "from fastNLP import ClassifyFPreRecMetric\n",
  263. "\n",
  264. "tag_vocab = Vocabulary(padding=None, unknown=None) # 记录序号与标签之间的映射\n",
  265. "tag_vocab.add_word_lst(['\"', \"''\", '#', '$', '(', ')', ',', '.', ':', '``', \n",
  266. " 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', \n",
  267. " 'MD', 'NN', 'NNP', 'NNPS', 'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', \n",
  268. " 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', 'VBG', \n",
  269. " 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP+', 'WRB', ]) # CoNLL-2003 中的 pos_tags\n",
  270. "ignore_labels = ['\"', \"''\", '#', '$', '(', ')', ',', '.', ':', '``', ]\n",
  271. "\n",
  272. "FPreRec = ClassifyFPreRecMetric(tag_vocab=tag_vocab, \n",
  273. " ignore_labels=ignore_labels, # 表示评测/优化中不考虑上述标签的正误/损失\n",
  274. " only_gross=True, # 默认为 True 表示输出所有类别的综合统计结果\n",
  275. " f_type='micro') # 默认为 'micro' 表示统计所有类别的 Rec-Pre-F1\n",
  276. "metrics = {'F1': FPreRec}\n",
  277. "```"
  278. ]
  279. },
  280. {
  281. "cell_type": "markdown",
  282. "id": "8a22f522",
  283. "metadata": {},
  284. "source": [
  285. "### 2.2 自定义的 metric 类型\n",
  286. "\n",
  287. "如上文所述,`Metric`作为所有`metric`的基类,`Accuracy`等都是其子类,同样地,对于**自定义的`metric`类型**\n",
  288. "\n",
  289. "&emsp; &emsp; 也**需要继承自`Metric`类**,同时**内部自定义好`__init__`、`update`和`get_metric`函数**\n",
  290. "\n",
  291. "&emsp; 在`__init__`函数中,根据需求定义评测时需要用到的变量,此处沿用`Accuracy`中的`total_num`和`right_num`\n",
  292. "\n",
  293. "&emsp; 在`update`函数中,根据需求定义评测变量的更新方式,需要注意的是如`tutorial-0`中所述,**`update`的参数名**\n",
  294. "\n",
  295. "&emsp; &emsp; **需要待评估模型在`evaluate_step`中的输出名称一致**,由此**和数据集中对应字段名称一致**,即**参数匹配**\n",
  296. "\n",
  297. "&emsp; &emsp; 在`fastNLP v0.8`中,`update`函数的默认输入参数:`pred`,对应预测值;`target`,对应真实值\n",
  298. "\n",
  299. "&emsp; &emsp; 此处刻意调整为:`pred`,对应预测值,和模型输出一致;`true`,对应真实值,数据集字段需要调整\n",
  300. "\n",
  301. "&emsp; 在`get_metric`函数中,根据需求定义评测指标最终的计算,此处直接计算准确率,该函数必须返回一个字典\n",
  302. "\n",
  303. "&emsp; &emsp; 其中,字串`'prefix'`表示该`metric`的名称,会对应显示到`trainer`的`progress bar`中\n",
  304. "\n",
  305. "根据上述要求,这里简单定义了一个名为`MyMetric`的评测模块,用于分类问题的评测,以此展开一个实例展示"
  306. ]
  307. },
  308. {
  309. "cell_type": "code",
  310. "execution_count": null,
  311. "id": "08a872e9",
  312. "metadata": {},
  313. "outputs": [],
  314. "source": [
  315. "import sys\n",
  316. "sys.path.append('..')\n",
  317. "\n",
  318. "from fastNLP import Metric\n",
  319. "\n",
  320. "class MyMetric(Metric):\n",
  321. "\n",
  322. " def __init__(self):\n",
  323. " MyMetric.__init__(self)\n",
  324. " self.total_num = 0\n",
  325. " self.right_num = 0\n",
  326. "\n",
  327. " def update(self, pred, true):\n",
  328. " self.total_num += target.size(0)\n",
  329. " self.right_num += target.eq(pred).sum().item()\n",
  330. "\n",
  331. " def get_metric(self, reset=True):\n",
  332. " acc = self.acc_count / self.total_num\n",
  333. " if reset:\n",
  334. " self.total_num = 0\n",
  335. " self.right_num = 0\n",
  336. " return {'prefix': acc}"
  337. ]
  338. },
  339. {
  340. "cell_type": "markdown",
  341. "id": "0155f447",
  342. "metadata": {},
  343. "source": [
  344. "&emsp; 数据使用方面,此处仍然使用`datasets`模块中的`load_dataset`函数,加载`SST-2`二分类数据集"
  345. ]
  346. },
  347. {
  348. "cell_type": "code",
  349. "execution_count": null,
  350. "id": "5ad81ac7",
  351. "metadata": {
  352. "pycharm": {
  353. "name": "#%%\n"
  354. }
  355. },
  356. "outputs": [],
  357. "source": [
  358. "from datasets import load_dataset\n",
  359. "\n",
  360. "sst2data = load_dataset('glue', 'sst2')"
  361. ]
  362. },
  363. {
  364. "cell_type": "markdown",
  365. "id": "e9d81760",
  366. "metadata": {},
  367. "source": [
  368. "&emsp; 在数据预处理中,需要注意的是,由于`MyMetric`的`update`函数中,输入参数名称为`pred`和`true`\n",
  369. "\n",
  370. "&emsp; &emsp; 对应地,需要将数据集中表示预测目标的字段,调整为`true`(预定义的`metric`,应调整为`target`"
  371. ]
  372. },
  373. {
  374. "cell_type": "code",
  375. "execution_count": null,
  376. "id": "cfb28b1b",
  377. "metadata": {
  378. "pycharm": {
  379. "name": "#%%\n"
  380. }
  381. },
  382. "outputs": [],
  383. "source": [
  384. "from fastNLP import DataSet\n",
  385. "\n",
  386. "dataset = DataSet.from_pandas(sst2data['train'].to_pandas())[:6000]\n",
  387. "\n",
  388. "dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split(), 'true': ins['label']}, \n",
  389. " progress_bar=\"tqdm\")\n",
  390. "dataset.delete_field('sentence')\n",
  391. "dataset.delete_field('label')\n",
  392. "dataset.delete_field('idx')\n",
  393. "\n",
  394. "from fastNLP import Vocabulary\n",
  395. "\n",
  396. "vocab = Vocabulary()\n",
  397. "vocab.from_dataset(dataset, field_name='words')\n",
  398. "vocab.index_dataset(dataset, field_name='words')\n",
  399. "\n",
  400. "train_dataset, evaluate_dataset = dataset.split(ratio=0.85)\n",
  401. "\n",
  402. "from fastNLP import prepare_torch_dataloader\n",
  403. "\n",
  404. "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
  405. "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
  406. ]
  407. },
  408. {
  409. "cell_type": "markdown",
  410. "id": "af3f8c63",
  411. "metadata": {},
  412. "source": [
  413. "&emsp; 模型使用方面,此处仍然使用`tutorial-4`中介绍过的预定义`CNNText`模型,实现`SST-2`二分类"
  414. ]
  415. },
  416. {
  417. "cell_type": "code",
  418. "execution_count": null,
  419. "id": "2fd210c5",
  420. "metadata": {},
  421. "outputs": [],
  422. "source": [
  423. "from fastNLP.models.torch import CNNText\n",
  424. "\n",
  425. "model = CNNText(embed=(len(vocab), 100), num_classes=2, dropout=0.1)\n",
  426. "\n",
  427. "from torch.optim import AdamW\n",
  428. "\n",
  429. "optimizers = AdamW(params=model.parameters(), lr=5e-4)"
  430. ]
  431. },
  432. {
  433. "cell_type": "markdown",
  434. "id": "6e723b87",
  435. "metadata": {},
  436. "source": [
  437. "## 3. fastNLP 中 trainer 的补充介绍\n",
  438. "\n",
  439. "### 3.1 trainer 的内部结构\n",
  440. "\n",
  441. "在`tutorial-0`中,我们已经介绍了`trainer`的基本使用,从`tutorial-1`到`tutorial-4`,我们也已经展示了\n",
  442. "\n",
  443. "&emsp; 很多`trainer`的使用案例,这里通过表格,相对完整地介绍`trainer`模块的属性和初始化参数(标粗为必选参数\n",
  444. "\n",
  445. "| <div align=\"center\">名称</div> | <div align=\"center\">参数</div> | <div align=\"center\">属性</div> | <div align=\"center\">功能</div> | <div align=\"center\">内容</div> |\n",
  446. "|:--|:--:|:--:|:--|:--|\n",
  447. "| **`model`** | √ | √ | 指定`trainer`控制的模型 | 视框架而定,如`torch.nn.Module` |\n",
  448. "| **`driver`** | √ | | 指定`trainer`驱动的框架 | 包括`'torch'`、`'paddle'`、`'jittor'` |\n",
  449. "| | | √ | 记录`trainer`驱动的框架 | `Driver`类型,在初始化阶段生成 |\n",
  450. "| `device` | √ | | 指定`trainer`运行的卡位 | 例如`'cpu'`、`'cuda'`、`0`、`[0, 1]`等 |\n",
  451. "| | | √ | 记录`trainer`运行的卡位 | `Device`类型,在初始化阶段生成 |\n",
  452. "| `n_epochs` | √ | - | 指定`trainer`迭代的轮数 | 默认`20`,记录在`driver.n_epochs`中 |\n",
  453. "| **`optimizers`** | √ | √ | 指定`trainer`优化的方法 | 视框架而定,如`torch.optim.Adam` |\n",
  454. "| `metrics` | √ | √ | 指定`trainer`评测的方法 | 字典类型,如`{'acc': Metric()}` |\n",
  455. "| `evaluator` | | √ | 内置的`trainer`评测模块 | `Evaluator`类型,在初始化阶段生成 |\n",
  456. "| `input_mapping` | √ | √ | 调整`dataloader`的参数不匹配 | 函数类型,输出字典匹配`forward`输入参数 |\n",
  457. "| `output_mapping` | √ | √ | 调整`forward`输出的参数不匹配 | 函数类型,输出字典匹配`xx_step`输入参数 |\n",
  458. "| **`train_dataloader`** | √ | √ | 指定`trainer`训练的数据 | `DataLoader`类型,生成视框架而定 |\n",
  459. "| `evaluate_dataloaders` | √ | √ | 指定`trainer`评测的数据 | `DataLoader`类型,生成视框架而定 |\n",
  460. "| `train_fn` | √ | √ | 指定`trainer`获取某个批次的损失值 | 函数类型,默认为`model.train_step` |\n",
  461. "| `evaluate_fn` | √ | √ | 指定`trainer`获取某个批次的评估量 | 函数类型,默认为`model.evaluate_step` |\n",
  462. "| `batch_step_fn` | √ | √ | 指定`trainer`训练时前向传输一个批次的方式 | 函数类型,默认为`TrainBatchLoop.batch_step_fn` |\n",
  463. "| `evaluate_batch_step_fn` | √ | √ | 指定`trainer`评测时前向传输一个批次的方式 | 函数类型,默认为`EvaluateBatchLoop.batch_step_fn` |\n",
  464. "| `accumulation_steps` | √ | √ | 指定`trainer`训练时反向传播的频率 | 默认为`1`,即每个批次都反向传播 |\n",
  465. "| `evaluate_every` | √ | √ | 指定`evaluator`评测时计算的频率 | 默认`-1`表示每个循环一次,相反`1`表示每个批次一次 |\n",
  466. "| `progress_bar` | √ | √ | 指定`trainer`训练和评测时的进度条样式 | 包括`'auto'`、`'tqdm'`、`'raw'`、`'rich'` |\n",
  467. "| `callbacks` | √ | | 指定`trainer`训练时需要触发的函数 | `Callback`列表类型,详见`tutorial-7` |\n",
  468. "| `callback_manager` | | √ | 记录与管理`callbacks`相关内容 | `CallbackManager`类型,详见`tutorial-7` |\n",
  469. "| `monitor` | √ | √ | 辅助部分的`callbacks`相关内容 | 字符串/函数类型,详见`tutorial-7` |\n",
  470. "| `marker` | √ | √ | 标记`trainer`实例,辅助`callbacks`相关内容 | 字符串型,详见`tutorial-7` |\n",
  471. "| `trainer_state` | | √ | 记录`trainer`状态,辅助`callbacks`相关内容 | `TrainerState`类型,详见`tutorial-7` |\n",
  472. "| `state` | | √ | 记录`trainer`状态,辅助`callbacks`相关内容 | `State`类型,详见`tutorial-7` |\n",
  473. "| `fp16` | √ | √ | 指定`trainer`是否进行混合精度训练 | 布尔类型,默认`False` |"
  474. ]
  475. },
  476. {
  477. "cell_type": "markdown",
  478. "id": "2fc8b9f3",
  479. "metadata": {},
  480. "source": [
  481. "&emsp; 以及`trainer`模块内部的基础方法,相关进阶操作,如“`on`系列函数”、`callback`控制,请参考后续的`tutorial-7`\n",
  482. "\n",
  483. "| <div align=\"center\">名称</div> |<div align=\"center\">功能</div> | <div align=\"center\">主要参数</div> |\n",
  484. "|:--|:--|:--|\n",
  485. "| `run` | 控制`trainer`中模型的训练和评测 | 详见后文 |\n",
  486. "| `train_step` | 实现`trainer`训练中一个批数据的前向传播过程 | 输入`batch` |\n",
  487. "| `backward` | 实现`trainer`训练中一次损失的反向传播过程 | 输入`output` |\n",
  488. "| `zero_grad` | 实现`trainer`训练中`optimizers`的梯度置零 | 无输入 |\n",
  489. "| `step` | 实现`trainer`训练中`optimizers`的参数更新 | 无输入 |\n",
  490. "| `epoch_evaluate` | 实现`trainer`训练中每个循环的评测,实际是否执行取决于评测频率 | 无输入 |\n",
  491. "| `step_evaluate` | 实现`trainer`训练中每个批次的评测,实际是否执行取决于评测频率 | 无输入 |\n",
  492. "| `save_model` | 保存`trainer`中的模型参数/状态字典至`fastnlp_model.pkl.tar` | `folder`指明路径,`only_state_dict`指明是否只保存状态字典,默认`False` |\n",
  493. "| `load_model` | 加载`trainer`中的模型参数/状态字典自`fastnlp_model.pkl.tar` | `folder`指明路径,`only_state_dict`指明是否只加载状态字典,默认`True` |\n",
  494. "| `save_checkpoint` | <div style=\"line-height:25px;\">保存`trainer`中模型参数/状态字典 以及 `callback`、`sampler`<br>和`optimizer`的状态至`fastnlp_model/checkpoint.pkl.tar`</div> | `folder`指明路径,`only_state_dict`指明是否只保存状态字典,默认`True` |\n",
  495. "| `load_checkpoint` | <div style=\"line-height:25px;\">加载`trainer`中模型参数/状态字典 以及 `callback`、`sampler`<br>和`optimizer`的状态自`fastnlp_model/checkpoint.pkl.tar`</div> | <div style=\"line-height:25px;\">`folder`指明路径,`only_state_dict`指明是否只保存状态字典,默认`True`<br>`resume_training`指明是否只精确到上次训练的批量,默认`True`</div> |\n",
  496. "| `add_callback_fn` | 在`trainer`初始化后添加`callback`函数 | 输入`event`指明回调时机,`fn`指明回调函数 |\n",
  497. "| `on` | 函数修饰器,将一个函数转变为`callback`函数 | 详见`tutorial-7` |\n",
  498. "\n",
  499. "<!-- ```python\n",
  500. "Trainer.__init__():\n",
  501. "\ton_after_trainer_initialized(trainer, driver)\n",
  502. "Trainer.run():\n",
  503. "\tif num_eval_sanity_batch > 0: # 如果设置了 num_eval_sanity_batch\n",
  504. "\t\ton_sanity_check_begin(trainer)\n",
  505. "\t\ton_sanity_check_end(trainer, sanity_check_res)\n",
  506. "\ttry:\n",
  507. "\t\ton_train_begin(trainer)\n",
  508. "\t\twhile cur_epoch_idx < n_epochs:\n",
  509. "\t\t\ton_train_epoch_begin(trainer)\n",
  510. "\t\t\twhile batch_idx_in_epoch<=num_batches_per_epoch:\n",
  511. "\t\t\t\ton_fetch_data_begin(trainer)\n",
  512. "\t\t\t\tbatch = next(dataloader)\n",
  513. "\t\t\t\ton_fetch_data_end(trainer)\n",
  514. "\t\t\t\ton_train_batch_begin(trainer, batch, indices)\n",
  515. "\t\t\t\ton_before_backward(trainer, outputs) # 其中 outputs 是经过 output_mapping 后的\n",
  516. "\t\t\t\ton_after_backward(trainer)\n",
  517. "\t\t\t\ton_before_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响\n",
  518. "\t\t\t\ton_after_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响\n",
  519. "\t\t\t\ton_before_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响\n",
  520. "\t\t\t\ton_after_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响\n",
  521. "\t\t\t\ton_train_batch_end(trainer)\n",
  522. "\t\t\ton_train_epoch_end(trainer)\n",
  523. "\texcept BaseException:\n",
  524. "\t\tself.on_exception(trainer, exception)\n",
  525. "\tfinally:\n",
  526. "\t\ton_train_end(trainer)\n",
  527. "``` -->"
  528. ]
  529. },
  530. {
  531. "cell_type": "markdown",
  532. "id": "1e21df35",
  533. "metadata": {},
  534. "source": [
  535. "紧接着,初始化`trainer`实例,继续完成`SST-2`分类,其中`metrics`输入的键值对,字串`'suffix'`和之前定义的\n",
  536. "\n",
  537. "&emsp; 字串`'prefix'`将拼接在一起显示到`progress bar`中,故完整的输出形式为`{'prefix#suffix': float}`"
  538. ]
  539. },
  540. {
  541. "cell_type": "code",
  542. "execution_count": null,
  543. "id": "926a9c50",
  544. "metadata": {},
  545. "outputs": [],
  546. "source": [
  547. "from fastNLP import Trainer\n",
  548. "\n",
  549. "trainer = Trainer(\n",
  550. " model=model,\n",
  551. " driver='torch',\n",
  552. " device=0, # 'cuda'\n",
  553. " n_epochs=10,\n",
  554. " optimizers=optimizers,\n",
  555. " train_dataloader=train_dataloader,\n",
  556. " evaluate_dataloaders=evaluate_dataloader,\n",
  557. " metrics={'suffix': MyMetric()}\n",
  558. ")"
  559. ]
  560. },
  561. {
  562. "cell_type": "markdown",
  563. "id": "b1b2e8b7",
  564. "metadata": {
  565. "pycharm": {
  566. "name": "#%%\n"
  567. }
  568. },
  569. "source": [
  570. "最后就是`run`函数的使用,关于其参数,这里也以表格形式列出,由此就解答了`num_eval_batch_per_dl=10`的含义\n",
  571. "\n",
  572. "| <div align=\"center\">名称</div> | <div align=\"center\">功能</div> | <div align=\"center\">默认值</div> |\n",
  573. "|:--|:--|:--|\n",
  574. "| `num_train_batch_per_epoch` | 指定`trainer`训练时,每个循环计算批量数目 | 整数类型,默认`-1`,表示训练时,每个循环计算所有批量 |\n",
  575. "| `num_eval_batch_per_dl` | 指定`trainer`评测时,每个循环计算批量数目 | 整数类型,默认`-1`,表示评测时,每个循环计算所有批量 |\n",
  576. "| `num_eval_sanity_batch` | 指定`trainer`训练开始前,试探性评测批量数目 | 整数类型,默认`2`,表示训练开始前评估两个批量 |\n",
  577. "| `resume_from` | 指定`trainer`恢复状态的路径,需要是文件夹 | 字符串型,默认`None`,使用可参考`CheckpointCallback` |\n",
  578. "| `resume_training` | 指定`trainer`恢复状态的程度 | 布尔类型,默认`True`恢复所有状态,`False`仅恢复`model`和`optimizers`状态 |"
  579. ]
  580. },
  581. {
  582. "cell_type": "code",
  583. "execution_count": null,
  584. "id": "43be274f",
  585. "metadata": {
  586. "pycharm": {
  587. "name": "#%%\n"
  588. }
  589. },
  590. "outputs": [],
  591. "source": [
  592. "trainer.run(num_eval_batch_per_dl=10)"
  593. ]
  594. },
  595. {
  596. "cell_type": "code",
  597. "execution_count": null,
  598. "id": "f1abfa0a",
  599. "metadata": {},
  600. "outputs": [],
  601. "source": []
  602. }
  603. ],
  604. "metadata": {
  605. "kernelspec": {
  606. "display_name": "Python 3 (ipykernel)",
  607. "language": "python",
  608. "name": "python3"
  609. },
  610. "language_info": {
  611. "codemirror_mode": {
  612. "name": "ipython",
  613. "version": 3
  614. },
  615. "file_extension": ".py",
  616. "mimetype": "text/x-python",
  617. "name": "python",
  618. "nbconvert_exporter": "python",
  619. "pygments_lexer": "ipython3",
  620. "version": "3.7.13"
  621. },
  622. "pycharm": {
  623. "stem_cell": {
  624. "cell_type": "raw",
  625. "metadata": {
  626. "collapsed": false
  627. },
  628. "source": []
  629. }
  630. }
  631. },
  632. "nbformat": 4,
  633. "nbformat_minor": 5
  634. }