|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "213d538c",
- "metadata": {},
- "source": [
- "# T3. dataloader 的内部结构和基本使用\n",
- "\n",
- "  1   fastNLP 中的 dataloader\n",
- " \n",
- "    1.1   dataloader 的基本介绍\n",
- "\n",
- "    1.2   dataloader 的函数创建\n",
- "\n",
- "  2   fastNLP 中 dataloader 的延伸\n",
- "\n",
- "    2.1   collator 的概念与使用\n",
- "\n",
- "    2.2   sampler 的概念与使用"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "85857115",
- "metadata": {},
- "source": [
- "## 1. fastNLP 中的 dataloader\n",
- "\n",
- "### 1.1 dataloader 的基本介绍\n",
- "\n",
- "在`fastNLP 0.8`的开发中,最关键的开发目标就是**实现`fastNLP`对当前主流机器学习框架**,例如\n",
- "\n",
- "  **较为火热的`pytorch`**,以及**国产的`paddle`和`jittor`的兼容**,扩大受众的同时,也是助力国产\n",
- "\n",
- "本着分而治之的思想,我们可以将`fastNLP 0.8`对`pytorch`、`paddle`、`jittor`框架的兼容,划分为\n",
- "\n",
- "    **对数据预处理**、**批量`batch`的划分与补齐**、**模型训练**、**模型评测**,**四个部分的兼容**\n",
- "\n",
- "  针对数据预处理,我们已经在`tutorial-1`中介绍了`dataset`和`vocabulary`的使用\n",
- "\n",
- "    而结合`tutorial-0`,我们可以发现**数据预处理环节本质上是框架无关的**\n",
- "\n",
- "    因为在不同框架下,读取的原始数据格式都差异不大,彼此也很容易转换\n",
- "\n",
- "只有涉及到张量、模型,不同框架才展现出其各自的特色:**`pytorch`中的`tensor`和`nn.Module`**\n",
- "\n",
- "    **在`paddle`中称为`tensor`和`nn.Layer`**,**在`jittor`中则称为`Var`和`Module`**\n",
- "\n",
- "    因此,**模型训练、模型评测**,**是兼容的重难点**,我们将会在`tutorial-5`中详细介绍\n",
- "\n",
- "  针对批量`batch`的处理,作为`fastNLP 0.8`中框架无关部分想框架相关部分的过渡\n",
- "\n",
- "    就是`dataloader`模块的职责,这也是本篇教程`tutorial-3`讲解的重点\n",
- "\n",
- "**`dataloader`模块的职责**,详细划分可以包含以下三部分,**采样划分、补零对齐、框架匹配**\n",
- "\n",
- "    第一,确定`batch`大小,确定采样方式,划分后通过迭代器即可得到`batch`序列\n",
- "\n",
- "    第二,对于序列处理,这也是`fastNLP`主要针对的,将同个`batch`内的数据对齐\n",
- "\n",
- "    第三,**`batch`内数据格式要匹配框架**,**但`batch`结构需保持一致**,**参数匹配机制**\n",
- "\n",
- "  对此,`fastNLP 0.8`给出了 **`TorchDataLoader`、`PaddleDataLoader`和`JittorDataLoader`**\n",
- "\n",
- "    分别针对并匹配不同框架,但彼此之间参数名、属性、方法仍然类似,前两者大致如下表所示\n",
- "\n",
- "| <div align=\"center\">名称</div> | <div align=\"center\">参数</div> | <div align=\"center\">属性</div> | <div align=\"center\">功能</div> | <div align=\"center\">内容</div> |\n",
- "|:--|:--:|:--:|:--|:--|\n",
- "| **`dataset`** | √ | √ | 指定`dataloader`的数据内容 | |\n",
- "| `batch_size` | √ | √ | 指定`dataloader`的`batch`大小 | 默认`16` |\n",
- "| `shuffle` | √ | √ | 指定`dataloader`的数据是否打乱 | 默认`False` |\n",
- "| `collate_fn` | √ | √ | 指定`dataloader`的`batch`打包方法 | 视框架而定 |\n",
- "| `sampler` | √ | √ | ? | 默认`None` |\n",
- "| `batch_sampler` | √ | √ | ? | 默认`None` |\n",
- "| `drop_last` | √ | √ | 指定`dataloader`划分`batch`时是否丢弃剩余的 | 默认`False` |\n",
- "| `cur_batch_indices` | | √ | 记录`dataloader`当前遍历批量序号 | |\n",
- "| `num_workers` | √ | √ | 指定`dataloader`开启子进程数量 | 默认`0` |\n",
- "| `worker_init_fn` | √ | √ | 指定`dataloader`子进程初始方法 | 默认`None` |\n",
- "| `generator` | √ | √ | 指定`dataloader`子进程随机种子 | 默认`None` |\n",
- "| `prefetch_factor` | | √ | 指定为每个`worker`装载的`sampler`数量 | 默认`2` |"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "60a8a224",
- "metadata": {},
- "source": [
- "  论及`dataloader`的函数,其中,`get_batch_indices`用来获取当前遍历到的`batch`序号,其他函数\n",
- "\n",
- "    包括`set_ignore`、`set_pad`和`databundle`类似,请参考`tutorial-2`,此处不做更多介绍\n",
- "\n",
- "    以下是`tutorial-2`中已经介绍过的数据预处理流程,接下来是对相关数据进行`dataloader`处理"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "aca72b49",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/4 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/2 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/2 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+------------+------------------+-----------+------------------+--------------------+--------------------+\n",
- "| SentenceId | Sentence | Sentiment | input_ids | token_type_ids | attention_mask |\n",
- "+------------+------------------+-----------+------------------+--------------------+--------------------+\n",
- "| 5 | A comedy-dram... | positive | [101, 1037, 4... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
- "| 2 | This quiet , ... | positive | [101, 2023, 4... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
- "| 1 | A series of e... | negative | [101, 1037, 2... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
- "| 6 | The Importanc... | neutral | [101, 1996, 5... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... |\n",
- "+------------+------------------+-----------+------------------+--------------------+--------------------+\n"
- ]
- }
- ],
- "source": [
- "import sys\n",
- "sys.path.append('..')\n",
- "\n",
- "import pandas as pd\n",
- "from functools import partial\n",
- "from fastNLP.transformers.torch import BertTokenizer\n",
- "\n",
- "from fastNLP import DataSet\n",
- "from fastNLP import Vocabulary\n",
- "from fastNLP.io import DataBundle\n",
- "\n",
- "\n",
- "class PipeDemo:\n",
- " def __init__(self, tokenizer='bert-base-uncased'):\n",
- " self.tokenizer = BertTokenizer.from_pretrained(tokenizer)\n",
- "\n",
- " def process_from_file(self, path='./data/test4dataset.tsv'):\n",
- " datasets = DataSet.from_pandas(pd.read_csv(path, sep='\\t'))\n",
- " train_ds, test_ds = datasets.split(ratio=0.7)\n",
- " train_ds, dev_ds = datasets.split(ratio=0.8)\n",
- " data_bundle = DataBundle(datasets={'train': train_ds, 'dev': dev_ds, 'test': test_ds})\n",
- "\n",
- " encode = partial(self.tokenizer.encode_plus, max_length=100, truncation=True,\n",
- " return_attention_mask=True)\n",
- " data_bundle.apply_field_more(encode, field_name='Sentence', progress_bar='tqdm')\n",
- " \n",
- " target_vocab = Vocabulary(padding=None, unknown=None)\n",
- "\n",
- " target_vocab.from_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='Sentiment')\n",
- " target_vocab.index_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='Sentiment',\n",
- " new_field_name='target')\n",
- "\n",
- " data_bundle.set_pad('input_ids', pad_val=self.tokenizer.pad_token_id)\n",
- " data_bundle.set_ignore('SentenceId', 'Sentence', 'Sentiment') \n",
- " return data_bundle\n",
- "\n",
- " \n",
- "pipe = PipeDemo(tokenizer='bert-base-uncased')\n",
- "\n",
- "data_bundle = pipe.process_from_file('./data/test4dataset.tsv')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "76e6b8ab",
- "metadata": {},
- "source": [
- "### 1.2 dataloader 的函数创建\n",
- "\n",
- "在`fastNLP 0.8`中,**更方便、可能更常用的`dataloader`创建方法是通过`prepare_xx_dataloader`函数**\n",
- "\n",
- "  例如下方的`prepare_torch_dataloader`函数,指定必要参数,读取数据集,生成对应`dataloader`\n",
- "\n",
- "  类型为`TorchDataLoader`,只能适用于`pytorch`框架,因此对应`trainer`初始化时`driver='torch'`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "5fd60e42",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "train_dataset = data_bundle.get_dataset('train')\n",
- "evaluate_dataset = data_bundle.get_dataset('dev')\n",
- "\n",
- "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
- "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "7c53f181",
- "metadata": {},
- "source": [
- "```python\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " train_dataloader=train_dataloader,\n",
- " optimizers=optimizer,\n",
- "\t...\n",
- "\tdriver='torch',\n",
- "\tdevice='cuda',\n",
- "\t...\n",
- " evaluate_dataloaders=evaluate_dataloader, \n",
- " metrics={'acc': Accuracy()},\n",
- "\t...\n",
- ")\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9f457a6e",
- "metadata": {},
- "source": [
- "之所以称`prepare_xx_dataloader`函数更方便,是因为其**导入对象不仅可也是`DataSet`类型**,**还可以**\n",
- "\n",
- "  **是`DataBundle`类型**,不过数据集名称需要是`'train'`、`'dev'`、`'test'`供`fastNLP`识别\n",
- "\n",
- "  例如下方就是**直接通过`prepare_paddle_dataloader`函数生成基于`PaddleDataLoader`的字典**\n",
- "\n",
- "  在接下来`trainer`的初始化过程中,按如下方式使用即可,除了初始化时`driver='paddle'`外\n",
- "\n",
- "    这里也可以看出 **`evaluate_dataloaders`的妙处**,一次评测可以针对多个数据集"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "7827557d",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import prepare_paddle_dataloader\n",
- "\n",
- "dl_bundle = prepare_paddle_dataloader(data_bundle, batch_size=16, shuffle=True)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d898cf40",
- "metadata": {},
- "source": [
- "```python\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " train_dataloader=dl_bundle['train'],\n",
- " optimizers=optimizer,\n",
- "\t...\n",
- "\tdriver='paddle',\n",
- "\tdevice='gpu',\n",
- "\t...\n",
- " evaluate_dataloaders={'dev': dl_bundle['dev'], 'test': dl_bundle['test']}, \n",
- " metrics={'acc': Accuracy()},\n",
- "\t...\n",
- ")\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d74d0523",
- "metadata": {},
- "source": [
- "## 2. fastNLP 中 dataloader 的延伸\n",
- "\n",
- "### 2.1 collator 的概念与使用\n",
- "\n",
- "在`fastNLP 0.8`中,在数据加载模块`DataLoader`之前,还存在其他的一些模块,负责例如对文本数据\n",
- "\n",
- "  进行补零对齐,即 **核对器`collator`模块**,进行分词标注,即 **分词器`tokenizer`模块**\n",
- "\n",
- "  本节将对`fastNLP`中的核对器`collator`等展开介绍,分词器`tokenizer`将在下一节中详细介绍\n",
- "\n",
- "在`fastNLP 0.8`中,**核对器`collator`模块负责文本序列的补零对齐**,通过"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "651baef6",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "dl_bundle = prepare_torch_dataloader(data_bundle, train_batch_size=2)\n",
- "\n",
- "print(type(dl_bundle), type(dl_bundle['train']))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5f816ef5",
- "metadata": {},
- "source": [
- "  "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "726ba357",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "dataloader = prepare_torch_dataloader(datasets['train'], train_batch_size=2)\n",
- "print(type(dataloader))\n",
- "print(dir(dataloader))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "d0795b3e",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "dataloader.collate_fn"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f9bbd9a7",
- "metadata": {},
- "source": [
- "### 2.2 sampler 的概念与使用"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "b0c3c58d",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "dataloader.batch_sampler"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "51bf0878",
- "metadata": {},
- "source": [
- "  "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "3fd2486f",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.13"
- },
- "pycharm": {
- "stem_cell": {
- "cell_type": "raw",
- "metadata": {
- "collapsed": false
- },
- "source": []
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|