|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "aec0fde7",
- "metadata": {},
- "source": [
- "# T0. trainer 和 evaluator 的基本使用\n",
- "\n",
- "  1   trainer 和 evaluator 的基本关系\n",
- " \n",
- "    1.1   trainer 和 evaluater 的初始化\n",
- "\n",
- "    1.2   driver 的含义与使用要求\n",
- "\n",
- "    1.3   trainer 内部初始化 evaluater\n",
- "\n",
- "  2   使用 fastNLP 搭建 argmax 模型\n",
- "\n",
- "    2.1   trainer_step 和 evaluator_step\n",
- "\n",
- "    2.2   trainer 和 evaluator 的参数匹配\n",
- "\n",
- "    2.3   示例:argmax 模型的搭建\n",
- "\n",
- "  3   使用 fastNLP 训练 argmax 模型\n",
- " \n",
- "    3.1   trainer 外部初始化的 evaluator\n",
- "\n",
- "    3.2   trainer 内部初始化的 evaluator "
- ]
- },
- {
- "cell_type": "markdown",
- "id": "09ea669a",
- "metadata": {},
- "source": [
- "## 1. trainer 和 evaluator 的基本关系\n",
- "\n",
- "### 1.1 trainer 和 evaluator 的初始化\n",
- "\n",
- "在`fastNLP 0.8`中,**`Trainer`模块和`Evaluator`模块分别表示“训练器”和“评测器”**\n",
- "\n",
- "  对应于之前的`fastNLP`版本中的`Trainer`模块和`Tester`模块,其定义方法如下所示\n",
- "\n",
- "在`fastNLP 0.8`中,需要注意,在同个`python`脚本中先使用`Trainer`训练,然后使用`Evaluator`评测\n",
- "\n",
- "  非常关键的问题在于**如何正确设置二者的`driver`**。这就引入了另一个问题:什么是 `driver`?\n",
- "\n",
- "\n",
- "```python\n",
- "trainer = Trainer(\n",
- " model=model, # 模型基于 torch.nn.Module\n",
- " train_dataloader=train_dataloader, # 加载模块基于 torch.utils.data.DataLoader \n",
- " optimizers=optimizer, # 优化模块基于 torch.optim.*\n",
- " ...\n",
- " driver=\"torch\", # 使用 pytorch 模块进行训练 \n",
- " device='cuda', # 使用 GPU:0 显卡执行训练\n",
- " ...\n",
- " )\n",
- "...\n",
- "evaluator = Evaluator(\n",
- " model=model, # 模型基于 torch.nn.Module\n",
- " dataloaders=evaluate_dataloader, # 加载模块基于 torch.utils.data.DataLoader\n",
- " metrics={'acc': Accuracy()}, # 测评方法使用 fastNLP.core.metrics.Accuracy \n",
- " ...\n",
- " driver=trainer.driver, # 保持同 trainer 的 driver 一致\n",
- " device=None,\n",
- " ...\n",
- " )\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3c11fe1a",
- "metadata": {},
- "source": [
- "### 1.2 driver 的含义与使用要求\n",
- "\n",
- "在`fastNLP 0.8`中,**`driver`**这一概念被用来表示**控制具体训练的各个步骤的最终执行部分**\n",
- "\n",
- "  例如神经网络前向、后向传播的具体执行、网络参数的优化和数据在设备间的迁移等\n",
- "\n",
- "在`fastNLP 0.8`中,**`Trainer`和`Evaluator`都依赖于具体的`driver`来完成整体的工作流程**\n",
- "\n",
- "  具体`driver`与`Trainer`以及`Evaluator`之间的关系之后`tutorial 4`中的详细介绍\n",
- "\n",
- "注:这里给出一条建议:**在同一脚本中**,**所有的`Trainer`和`Evaluator`使用的`driver`应当保持一致**\n",
- "\n",
- "  尽量不出现,之前使用单卡的`driver`,后面又使用多卡的`driver`,这是因为,当脚本执行至\n",
- "\n",
- "  多卡`driver`处时,会重启一个进程执行之前所有内容,如此一来可能会造成一些意想不到的麻烦"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2cac4a1a",
- "metadata": {},
- "source": [
- "### 1.3 Trainer 内部初始化 Evaluator\n",
- "\n",
- "在`fastNLP 0.8`中,如果在**初始化`Trainer`时**,**传入参数`evaluator_dataloaders`和`metrics`**\n",
- "\n",
- "  则在`Trainer`内部,也会初始化单独的`Evaluator`来帮助训练过程中对验证集的评测\n",
- "\n",
- "```python\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " train_dataloader=train_dataloader,\n",
- " optimizers=optimizer,\n",
- " ...\n",
- " driver=\"torch\",\n",
- " device='cuda',\n",
- " ...\n",
- " evaluate_dataloaders=evaluate_dataloader, # 传入参数 evaluator_dataloaders\n",
- " metrics={'acc': Accuracy()}, # 传入参数 metrics\n",
- " ...\n",
- " )\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0c9c7dda",
- "metadata": {},
- "source": [
- "## 2. argmax 模型的搭建实例"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "524ac200",
- "metadata": {},
- "source": [
- "### 2.1 trainer_step 和 evaluator_step\n",
- "\n",
- "在`fastNLP 0.8`中,使用`pytorch.nn.Module`搭建需要训练的模型,在搭建模型过程中,除了\n",
- "\n",
- "  添加`pytorch`要求的`forward`方法外,还需要添加 **`train_step`** 和 **`evaluate_step`** 这两个方法\n",
- "\n",
- "```python\n",
- "class Model(torch.nn.Module):\n",
- " def __init__(self):\n",
- " super(Model, self).__init__()\n",
- " self.loss_fn = torch.nn.CrossEntropyLoss()\n",
- " pass\n",
- "\n",
- " def forward(self, x):\n",
- " pass\n",
- "\n",
- " def train_step(self, x, y):\n",
- " pred = self(x)\n",
- " return {\"loss\": self.loss_fn(pred, y)}\n",
- "\n",
- " def evaluate_step(self, x, y):\n",
- " pred = self(x)\n",
- " pred = torch.max(pred, dim=-1)[1]\n",
- " return {\"pred\": pred, \"target\": y}\n",
- "```\n",
- "***\n",
- "在`fastNLP 0.8`中,**函数`train_step`是`Trainer`中参数`train_fn`的默认值**\n",
- "\n",
- "  由于,在`Trainer`训练时,**`Trainer`通过参数`train_fn`对应的模型方法获得当前数据批次的损失值**\n",
- "\n",
- "  因此,在`Trainer`训练时,`Trainer`首先会寻找模型是否定义了`train_step`这一方法\n",
- "\n",
- "    如果没有找到,那么`Trainer`会默认使用模型的`forward`函数来进行训练的前向传播过程\n",
- "\n",
- "注:在`fastNLP 0.8`中,**`Trainer`要求模型通过`train_step`来返回一个字典**,**满足如`{\"loss\": loss}`的形式**\n",
- "\n",
- "  此外,这里也可以通过传入`Trainer`的参数`output_mapping`来实现输出的转换,详见(trainer的详细讲解,待补充)\n",
- "\n",
- "同样,在`fastNLP 0.8`中,**函数`evaluate_step`是`Evaluator`中参数`evaluate_fn`的默认值**\n",
- "\n",
- "  在`Evaluator`测试时,**`Evaluator`通过参数`evaluate_fn`对应的模型方法获得当前数据批次的评测结果**\n",
- "\n",
- "  从用户角度,模型通过`evaluate_step`方法来返回一个字典,内容与传入`Evaluator`的`metrics`一致\n",
- "\n",
- "  从模块角度,该字典的键值和`metric`中的`update`函数的签名一致,这样的机制在传参时被称为“**参数匹配**”\n",
- "\n",
- "<img src=\"./figures/T0-fig-training-structure.png\" width=\"68%\" height=\"68%\" align=\"center\"></img>"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fb3272eb",
- "metadata": {},
- "source": [
- "### 2.2 trainer 和 evaluator 的参数匹配\n",
- "\n",
- "在`fastNLP 0.8`中,参数匹配涉及到两个方面,分别是在\n",
- "\n",
- "  一方面,**在模型的前向传播中**,**`dataloader`向`train_step`或`evaluate_step`函数传递`batch`**\n",
- "\n",
- "  另方面,**在模型的评测过程中**,**`evaluate_dataloader`向`metric`的`update`函数传递`batch`**\n",
- "\n",
- "对于前者,在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`False`时\n",
- "\n",
- "    **`fastNLP 0.8`要求`dataloader`生成的每个`batch`**,**满足如`{\"x\": x, \"y\": y}`的形式**\n",
- "\n",
- "  同时,`fastNLP 0.8`会查看模型的`train_step`和`evaluate_step`方法的参数签名,并为对应参数传入对应数值\n",
- "\n",
- "    **字典形式的定义**,**对应在`Dataset`定义的`__getitem__`方法中**,例如下方的`ArgMaxDatset`\n",
- "\n",
- "  而在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`True`时\n",
- "\n",
- "    `fastNLP 0.8`会将`batch`直接传给模型的`train_step`、`evaluate_step`或`forward`函数\n",
- "\n",
- "```python\n",
- "class Dataset(torch.utils.data.Dataset):\n",
- " def __init__(self, x, y):\n",
- " self.x = x\n",
- " self.y = y\n",
- "\n",
- " def __len__(self):\n",
- " return len(self.x)\n",
- "\n",
- " def __getitem__(self, item):\n",
- " return {\"x\": self.x[item], \"y\": self.y[item]}\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f5f1a6aa",
- "metadata": {},
- "source": [
- "对于后者,首先要明确,在`Trainer`和`Evaluator`中,`metrics`的计算分为`update`和`get_metric`两步\n",
- "\n",
- "    **`update`函数**,**针对一个`batch`的预测结果**,计算其累计的评价指标\n",
- "\n",
- "    **`get_metric`函数**,**统计`update`函数累计的评价指标**,来计算最终的评价结果\n",
- "\n",
- "  例如对于`Accuracy`来说,`update`函数会更新一个`batch`的正例数量`right_num`和负例数量`total_num`\n",
- "\n",
- "    而`get_metric`函数则会返回所有`batch`的评测值`right_num / total_num`\n",
- "\n",
- "  在此基础上,**`fastNLP 0.8`要求`evaluate_dataloader`生成的每个`batch`传递给对应的`metric`**\n",
- "\n",
- "    **以`{\"pred\": y_pred, \"target\": y_true}`的形式**,对应其`update`函数的函数签名\n",
- "\n",
- "<img src=\"./figures/T0-fig-parameter-matching.png\" width=\"75%\" height=\"75%\" align=\"center\"></img>"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f62b7bb1",
- "metadata": {},
- "source": [
- "### 2.3 示例:argmax 模型的搭建\n",
- "\n",
- "下文将通过训练`argmax`模型,简单介绍如何`Trainer`模块的使用方式\n",
- "\n",
- "  首先,使用`pytorch.nn.Module`定义`argmax`模型,目标是输入一组固定维度的向量,输出其中数值最大的数的索引"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "5314482b",
- "metadata": {
- "pycharm": {
- "is_executing": true
- }
- },
- "outputs": [],
- "source": [
- "import torch\n",
- "import torch.nn as nn\n",
- "\n",
- "class ArgMaxModel(nn.Module):\n",
- " def __init__(self, num_labels, feature_dimension):\n",
- " nn.Module.__init__(self)\n",
- " self.num_labels = num_labels\n",
- "\n",
- " self.linear1 = nn.Linear(in_features=feature_dimension, out_features=10)\n",
- " self.ac1 = nn.ReLU()\n",
- " self.linear2 = nn.Linear(in_features=10, out_features=10)\n",
- " self.ac2 = nn.ReLU()\n",
- " self.output = nn.Linear(in_features=10, out_features=num_labels)\n",
- " self.loss_fn = nn.CrossEntropyLoss()\n",
- "\n",
- " def forward(self, x):\n",
- " pred = self.ac1(self.linear1(x))\n",
- " pred = self.ac2(self.linear2(pred))\n",
- " pred = self.output(pred)\n",
- " return pred\n",
- "\n",
- " def train_step(self, x, y):\n",
- " pred = self(x)\n",
- " return {\"loss\": self.loss_fn(pred, y)}\n",
- "\n",
- " def evaluate_step(self, x, y):\n",
- " pred = self(x)\n",
- " pred = torch.max(pred, dim=-1)[1]\n",
- " return {\"pred\": pred, \"target\": y}"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "71f3fa6b",
- "metadata": {},
- "source": [
- "  接着,使用`torch.utils.data.Dataset`定义`ArgMaxDataset`数据集\n",
- "\n",
- "    数据集包含三个参数:维度`feature_dimension`、数据量`data_num`和随机种子`seed`\n",
- "\n",
- "    数据及初始化是,自动生成指定维度的向量,并为每个向量标注出其中最大值的索引作为预测标签"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "fe612e61",
- "metadata": {
- "pycharm": {
- "is_executing": false
- }
- },
- "outputs": [],
- "source": [
- "from torch.utils.data import Dataset\n",
- "\n",
- "class ArgMaxDataset(Dataset):\n",
- " def __init__(self, feature_dimension, data_num=1000, seed=0):\n",
- " self.num_labels = feature_dimension\n",
- " self.feature_dimension = feature_dimension\n",
- " self.data_num = data_num\n",
- " self.seed = seed\n",
- "\n",
- " g = torch.Generator()\n",
- " g.manual_seed(1000)\n",
- " self.x = torch.randint(low=-100, high=100, size=[data_num, feature_dimension], generator=g).float()\n",
- " self.y = torch.max(self.x, dim=-1)[1]\n",
- "\n",
- " def __len__(self):\n",
- " return self.data_num\n",
- "\n",
- " def __getitem__(self, item):\n",
- " return {\"x\": self.x[item], \"y\": self.y[item]}"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2cb96332",
- "metadata": {},
- "source": [
- "  然后,根据`ArgMaxModel`类初始化模型实例,保持输入维度`feature_dimension`和输出标签数量`num_labels`一致\n",
- "\n",
- "    再根据`ArgMaxDataset`类初始化两个数据集实例,分别用来模型测试和模型评测,数据量各1000笔"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "76172ef8",
- "metadata": {
- "pycharm": {
- "is_executing": false
- }
- },
- "outputs": [],
- "source": [
- "model = ArgMaxModel(num_labels=10, feature_dimension=10)\n",
- "\n",
- "train_dataset = ArgMaxDataset(feature_dimension=10, data_num=1000)\n",
- "evaluate_dataset = ArgMaxDataset(feature_dimension=10, data_num=100)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4e7d25ee",
- "metadata": {},
- "source": [
- "  此外,使用`torch.utils.data.DataLoader`初始化两个数据加载模块,批量大小同为8,分别用于训练和测评"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "363b5b09",
- "metadata": {},
- "outputs": [],
- "source": [
- "from torch.utils.data import DataLoader\n",
- "\n",
- "train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True)\n",
- "evaluate_dataloader = DataLoader(evaluate_dataset, batch_size=8)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c8d4443f",
- "metadata": {},
- "source": [
- "  最后,使用`torch.optim.SGD`初始化一个优化模块,基于随机梯度下降法"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "dc28a2d9",
- "metadata": {
- "pycharm": {
- "is_executing": false
- }
- },
- "outputs": [],
- "source": [
- "from torch.optim import SGD\n",
- "\n",
- "optimizer = SGD(model.parameters(), lr=0.001)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "eb8ca6cf",
- "metadata": {},
- "source": [
- "## 3. 使用 fastNLP 0.8 训练 argmax 模型\n",
- "\n",
- "### 3.1 trainer 外部初始化的 evaluator"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "55145553",
- "metadata": {},
- "source": [
- "通过从`fastNLP`库中导入`Trainer`类,初始化`trainer`实例,对模型进行训练\n",
- "\n",
- "  需要导入预先定义好的模型`model`、对应的数据加载模块`train_dataloader`、优化模块`optimizer`\n",
- "\n",
- "  通过`progress_bar`设定进度条格式,默认为`\"auto\"`,此外还有`\"rich\"`、`\"raw\"`和`None`\n",
- "\n",
- "    但对于`\"auto\"`和`\"rich\"`格式,在`jupyter`中,进度条会在训练结束后会被丢弃\n",
- "\n",
- "  通过`n_epochs`设定优化迭代轮数,默认为20;全部`Trainer`的全部变量与函数可以通过`dir(trainer)`查询"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "b51b7a2d",
- "metadata": {
- "pycharm": {
- "is_executing": false
- }
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "import sys\n",
- "sys.path.append('..')\n",
- "\n",
- "from fastNLP import Trainer\n",
- "\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " driver=\"torch\",\n",
- " device='cuda',\n",
- " train_dataloader=train_dataloader,\n",
- " optimizers=optimizer,\n",
- " n_epochs=10, # 设定迭代轮数 \n",
- " progress_bar=\"auto\" # 设定进度条格式\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6e202d6e",
- "metadata": {},
- "source": [
- "通过使用`Trainer`类的`run`函数,进行训练\n",
- "\n",
- "  其中,可以通过参数`num_train_batch_per_epoch`决定每个`epoch`运行多少个`batch`后停止,默认全部\n",
- "\n",
- "  `run`函数完成后在`jupyter`中没有输出保留,此外,通过`help(trainer.run)`可以查询`run`函数的详细内容"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "ba047ead",
- "metadata": {
- "pycharm": {
- "is_executing": true
- }
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "trainer.run()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c16c5fa4",
- "metadata": {},
- "source": [
- "通过从`fastNLP`库中导入`Evaluator`类,初始化`evaluator`实例,对模型进行评测\n",
- "\n",
- "  需要导入预先定义好的模型`model`、对应的数据加载模块`evaluate_dataloader`\n",
- "\n",
- "  需要注意的是评测方法`metrics`,设定为形如`{'acc': fastNLP.core.metrics.Accuracy()}`的字典\n",
- "\n",
- "  类似地,也可以通过`progress_bar`限定进度条格式,默认为`\"auto\"`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "1c6b6b36",
- "metadata": {
- "pycharm": {
- "is_executing": true
- }
- },
- "outputs": [],
- "source": [
- "from fastNLP import Evaluator\n",
- "from fastNLP import Accuracy\n",
- "\n",
- "evaluator = Evaluator(\n",
- " model=model,\n",
- " driver=trainer.driver, # 需要使用 trainer 已经启动的 driver\n",
- " device=None,\n",
- " dataloaders=evaluate_dataloader,\n",
- " metrics={'acc': Accuracy()} # 需要严格使用此种形式的字典\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8157bb9b",
- "metadata": {},
- "source": [
- "通过使用`Evaluator`类的`run`函数,进行训练\n",
- "\n",
- "  其中,可以通过参数`num_eval_batch_per_dl`决定每个`evaluate_dataloader`运行多少个`batch`停止,默认全部\n",
- "\n",
- "  最终,输出形如`{'acc#acc': acc}`的字典,在`jupyter`中,进度条会在评测结束后会被丢弃"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "f7cb0165",
- "metadata": {
- "pycharm": {
- "is_executing": true
- }
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'acc#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.31</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'total#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'correct#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">31.0</span><span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.31\u001b[0m, \u001b[32m'total#acc'\u001b[0m: \u001b[1;36m100.0\u001b[0m, \u001b[32m'correct#acc'\u001b[0m: \u001b[1;36m31.0\u001b[0m\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "{'acc#acc': 0.31, 'total#acc': 100.0, 'correct#acc': 31.0}"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "evaluator.run()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "dd9f68fa",
- "metadata": {},
- "source": [
- "### 3.2 trainer 内部初始化的 evaluator \n",
- "\n",
- "通过在初始化`trainer`实例时加入`evaluate_dataloaders`和`metrics`,可以实现在训练过程中进行评测\n",
- "\n",
- "  通过`progress_bar`同时设定训练和评估进度条格式,在`jupyter`中,在进度条训练结束后会被丢弃\n",
- "\n",
- "  但是中间的评估结果仍会保留;**通过`evaluate_every`设定评估频率**,可以为负数、正数或者函数:\n",
- "\n",
- "    **为负数时**,**表示每隔几个`epoch`评估一次**;**为正数时**,**则表示每隔几个`batch`评估一次**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "183c7d19",
- "metadata": {
- "pycharm": {
- "is_executing": true
- }
- },
- "outputs": [],
- "source": [
- "trainer = Trainer(\n",
- " model=model,\n",
- " driver=trainer.driver, # 因为是在同个脚本中,这里的 driver 同样需要重用\n",
- " train_dataloader=train_dataloader,\n",
- " evaluate_dataloaders=evaluate_dataloader,\n",
- " metrics={'acc': Accuracy()},\n",
- " optimizers=optimizer,\n",
- " n_epochs=10, \n",
- " evaluate_every=-1, # 表示每个 epoch 的结束进行评估\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "714cc404",
- "metadata": {},
- "source": [
- "通过使用`Trainer`类的`run`函数,进行训练\n",
- "\n",
- "  还可以通过**参数`num_eval_sanity_batch`决定每次训练前运行多少个`evaluate_batch`进行评测**,**默认为`2`**\n",
- "\n",
- "  之所以“先评测后训练”,是为了保证训练很长时间的数据,不会在评测阶段出问题,故作此**试探性评测**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "2e4daa2c",
- "metadata": {
- "pycharm": {
- "is_executing": true
- }
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #7fbfbf; text-decoration-color: #7fbfbf\">[18:28:25] </span><span style=\"color: #000080; text-decoration-color: #000080\">INFO </span> Running evaluator sanity check for <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span> batches. <a href=\"file://../fastNLP/core/controllers/trainer.py\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">trainer.py</span></a><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">:</span><a href=\"file://../fastNLP/core/controllers/trainer.py#592\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">592</span></a>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[2;36m[18:28:25]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=549287;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=645362;file://../fastNLP/core/controllers/trainer.py#592\u001b\\\u001b[2m592\u001b[0m\u001b]8;;\u001b\\\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.31</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">31.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.31\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m31.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.33</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">33.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.33\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m33.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.34</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">34.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.34\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m34.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.36</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">36.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">5</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.36</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">36.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">6</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.36</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">36.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">7</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.36</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">36.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.36</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">36.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">9</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.37</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">37.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.37\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m37.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">---------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">10</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n",
- "</pre>\n"
- ],
- "text/plain": [
- "---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.4</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>,\n",
- " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">40.0</span>\n",
- "<span style=\"font-weight: bold\">}</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m{\u001b[0m\n",
- " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.4\u001b[0m,\n",
- " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n",
- " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m40.0\u001b[0m\n",
- "\u001b[1m}\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "trainer.run()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "c4e9c619",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
- ],
- "text/plain": []
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "{'acc#acc': 0.4, 'total#acc': 100.0, 'correct#acc': 40.0}"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainer.evaluator.run()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1bc7cb4a",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.13"
- },
- "pycharm": {
- "stem_cell": {
- "cell_type": "raw",
- "metadata": {
- "collapsed": false
- },
- "source": []
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|