|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "cdc25fcd",
- "metadata": {},
- "source": [
- "# T1. dataset 和 vocabulary 的基本使用\n",
- "\n",
- "  1   dataset 的使用与结构\n",
- " \n",
- "    1.1   dataset 的结构与创建\n",
- "\n",
- "    1.2   dataset 的数据预处理\n",
- "\n",
- "    1.3   延伸:instance 和 field\n",
- "\n",
- "  2   vocabulary 的结构与使用\n",
- "\n",
- "    2.1   vocabulary 的创建与修改\n",
- "\n",
- "    2.2   vocabulary 与 OOV 问题\n",
- "\n",
- "  3   dataset 和 vocabulary 的组合使用\n",
- " \n",
- "    3.1   从 dataframe 中加载 dataset\n",
- "\n",
- "    3.2   从 dataset 中获取 vocabulary"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0eb18a22",
- "metadata": {},
- "source": [
- "## 1. dataset 的基本使用\n",
- "\n",
- "### 1.1 dataset 的结构与创建\n",
- "\n",
- "在`fastNLP 0.8`中,使用`DataSet`模块表示数据集,**`dataset`类似于关系型数据库中的数据表**(下文统一为小写`dataset`)\n",
- "\n",
- "  **主要包含`field`字段和`instance`实例两个元素**,对应`table`中的`field`字段和`record`记录\n",
- "\n",
- "在`fastNLP 0.8`中,`DataSet`模块被定义在`fastNLP.core.dataset`路径下,导入该模块后,最简单的\n",
- "\n",
- "  初始化方法,即将字典形式的表格 **`{'field1': column1, 'field2': column2, ...}`** 传入构造函数"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "a1d69ad2",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+------------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n",
- "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n",
- "+-----+------------------------+------------------------+-----+\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import DataSet\n",
- "\n",
- "data = {'idx': [0, 1, 2], \n",
- " 'sentence':[\"This is an apple .\", \"I like apples .\", \"Apples are good for our health .\"],\n",
- " 'words': [['This', 'is', 'an', 'apple', '.'], \n",
- " ['I', 'like', 'apples', '.'], \n",
- " ['Apples', 'are', 'good', 'for', 'our', 'health', '.']],\n",
- " 'num': [5, 4, 7]}\n",
- "\n",
- "dataset = DataSet(data)\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9260fdc6",
- "metadata": {},
- "source": [
- "  在`dataset`的实例中,字段`field`的名称和实例`instance`中的字符串也可以中文"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "3d72ef00",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+------+--------------------+------------------------+------+\n",
- "| 序号 | 句子 | 字符 | 长度 |\n",
- "+------+--------------------+------------------------+------+\n",
- "| 0 | 生活就像海洋, | ['生', '活', '就', ... | 7 |\n",
- "| 1 | 只有意志坚强的人, | ['只', '有', '意', ... | 9 |\n",
- "| 2 | 才能到达彼岸。 | ['才', '能', '到', ... | 7 |\n",
- "+------+--------------------+------------------------+------+\n"
- ]
- }
- ],
- "source": [
- "temp = {'序号': [0, 1, 2], \n",
- " '句子':[\"生活就像海洋,\", \"只有意志坚强的人,\", \"才能到达彼岸。\"],\n",
- " '字符': [['生', '活', '就', '像', '海', '洋', ','], \n",
- " ['只', '有', '意', '志', '坚', '强', '的', '人', ','], \n",
- " ['才', '能', '到', '达', '彼', '岸', '。']],\n",
- " '长度': [7, 9, 7]}\n",
- "\n",
- "chinese = DataSet(temp)\n",
- "print(chinese)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "202e5490",
- "metadata": {},
- "source": [
- "在`dataset`中,使用`drop`方法可以删除满足条件的实例,这里使用了python中的`lambda`表达式\n",
- "\n",
- "  注一:在`drop`方法中,通过设置`inplace`参数将删除对应实例后的`dataset`作为一个新的实例生成"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "09b478f8",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2492313174344 2491986424200\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n",
- "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n",
- "+-----+------------------------+------------------------+-----+\n"
- ]
- }
- ],
- "source": [
- "dropped = dataset\n",
- "dropped = dropped.drop(lambda ins:ins['num'] < 5, inplace=False)\n",
- "print(id(dropped), id(dataset))\n",
- "print(dropped)\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "aa277674",
- "metadata": {},
- "source": [
- "  注二:**对对象使用等号一般表示传引用**,所以对`dataset`使用等号,是传引用而不是赋值\n",
- "\n",
- "    如下所示,**`dropped`和`dataset`具有相同`id`**,**对`dropped`执行删除操作`dataset`同时会被修改**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "77c8583a",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2491986424200 2491986424200\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n",
- "+-----+------------------------+------------------------+-----+\n"
- ]
- }
- ],
- "source": [
- "dropped = dataset\n",
- "dropped.drop(lambda ins:ins['num'] < 5)\n",
- "print(id(dropped), id(dataset))\n",
- "print(dropped)\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a76199dc",
- "metadata": {},
- "source": [
- "在`dataset`中,使用`delet_instance`方法可以删除对应序号的`instance`实例,序号从0开始"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "d8824b40",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+--------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+--------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n",
- "+-----+--------------------+------------------------+-----+\n"
- ]
- }
- ],
- "source": [
- "dataset = DataSet(data)\n",
- "dataset.delete_instance(2)\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f4fa9f33",
- "metadata": {},
- "source": [
- "在`dataset`中,使用`delet_field`方法可以删除对应名称的`field`字段"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "f68ddb40",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+--------------------+------------------------------+\n",
- "| idx | sentence | words |\n",
- "+-----+--------------------+------------------------------+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n",
- "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n",
- "+-----+--------------------+------------------------------+\n"
- ]
- }
- ],
- "source": [
- "dataset.delete_field('num')\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b1e9d42c",
- "metadata": {},
- "source": [
- "### 1.2 dataset 的数据预处理\n",
- "\n",
- "在`dataset`模块中,`apply`、`apply_field`、`apply_more`和`apply_field_more`函数可以进行简单的数据预处理\n",
- "\n",
- "  **`apply`和`apply_more`输入整条实例**,**`apply_field`和`apply_field_more`仅输入实例的部分字段**\n",
- "\n",
- "  **`apply`和`apply_field`仅输出单个字段**,**`apply_more`和`apply_field_more`则是输出多个字段**\n",
- "\n",
- "  **`apply`和`apply_field`返回的是个列表**,**`apply_more`和`apply_field_more`返回的是个字典**\n",
- "\n",
- "    预处理过程中,通过`progress_bar`参数设置显示进度条类型,通过`num_proc`设置多进程\n",
- "***\n",
- "\n",
- "`apply`的参数包括一个函数`func`和一个新字段名`new_field_name`,函数`func`的处理对象是`dataset`模块中\n",
- "\n",
- "  的每个`instance`实例,函数`func`的处理结果存放在`new_field_name`对应的新建字段内"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "72a0b5f9",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/3 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+------------------------------+------------------------------+\n",
- "| idx | sentence | words |\n",
- "+-----+------------------------------+------------------------------+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n",
- "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n",
- "| 2 | Apples are good for our h... | ['Apples', 'are', 'good',... |\n",
- "+-----+------------------------------+------------------------------+\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import DataSet\n",
- "\n",
- "data = {'idx': [0, 1, 2], \n",
- " 'sentence':[\"This is an apple .\", \"I like apples .\", \"Apples are good for our health .\"], }\n",
- "dataset = DataSet(data)\n",
- "dataset.apply(lambda ins: ins['sentence'].split(), new_field_name='words', progress_bar=\"tqdm\") #\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c10275ee",
- "metadata": {},
- "source": [
- "  **`apply`使用的函数可以是一个基于`lambda`表达式的匿名函数**,**也可以是一个自定义的函数**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "b1a8631f",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/3 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+------------------------------+------------------------------+\n",
- "| idx | sentence | words |\n",
- "+-----+------------------------------+------------------------------+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n",
- "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n",
- "| 2 | Apples are good for our h... | ['Apples', 'are', 'good',... |\n",
- "+-----+------------------------------+------------------------------+\n"
- ]
- }
- ],
- "source": [
- "dataset = DataSet(data)\n",
- "\n",
- "def get_words(instance):\n",
- " sentence = instance['sentence']\n",
- " words = sentence.split()\n",
- " return words\n",
- "\n",
- "dataset.apply(get_words, new_field_name='words', progress_bar=\"tqdm\")\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "64abf745",
- "metadata": {},
- "source": [
- "`apply_field`的参数,除了函数`func`外还有`field_name`和`new_field_name`,该函数`func`的处理对象仅\n",
- "\n",
- "  是`dataset`模块中的每个`field_name`对应的字段内容,处理结果存放在`new_field_name`对应的新建字段内"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "057c1d2c",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/3 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+------------------------------+------------------------------+\n",
- "| idx | sentence | words |\n",
- "+-----+------------------------------+------------------------------+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n",
- "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n",
- "| 2 | Apples are good for our h... | ['Apples', 'are', 'good',... |\n",
- "+-----+------------------------------+------------------------------+\n"
- ]
- }
- ],
- "source": [
- "dataset = DataSet(data)\n",
- "dataset.apply_field(lambda sent:sent.split(), field_name='sentence', new_field_name='words', \n",
- " progress_bar=\"tqdm\")\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5a9cc8b2",
- "metadata": {},
- "source": [
- "`apply_more`的参数只有函数`func`,函数`func`的处理对象是`dataset`模块中的每个`instance`实例\n",
- "\n",
- "  要求函数`func`返回一个字典,根据字典的`key-value`确定存储在`dataset`中的字段名称与内容"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "51e2f02c",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/3 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+------------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n",
- "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n",
- "+-----+------------------------+------------------------+-----+\n"
- ]
- }
- ],
- "source": [
- "dataset = DataSet(data)\n",
- "dataset.apply_more(lambda ins:{'words': ins['sentence'].split(), 'num': len(ins['sentence'].split())}, \n",
- " progress_bar=\"tqdm\")\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "02d2b7ef",
- "metadata": {},
- "source": [
- "`apply_more`的参数只有函数`func`,函数`func`的处理对象是`dataset`模块中的每个`instance`实例\n",
- "\n",
- "  要求函数`func`返回一个字典,根据字典的`key-value`确定存储在`dataset`中的字段名称与内容"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "db4295d5",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/3 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-----+------------------------+------------------------+-----+\n",
- "| idx | sentence | words | num |\n",
- "+-----+------------------------+------------------------+-----+\n",
- "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n",
- "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n",
- "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n",
- "+-----+------------------------+------------------------+-----+\n"
- ]
- }
- ],
- "source": [
- "dataset = DataSet(data)\n",
- "dataset.apply_field_more(lambda sent:{'words': sent.split(), 'num': len(sent.split())}, \n",
- " field_name='sentence', progress_bar=\"tqdm\")\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9c09e592",
- "metadata": {},
- "source": [
- "### 1.3 延伸:instance 和 field\n",
- "\n",
- "在`fastNLP 0.8`中,使用`Instance`模块表示数据集`dataset`中的每条数据,被称为实例\n",
- "\n",
- "  构造方式类似于构造一个字典,通过键值相同的`Instance`列表,也可以初始化一个`dataset`,代码如下"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "012f537c",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import DataSet\n",
- "from fastNLP import Instance\n",
- "\n",
- "dataset = DataSet([\n",
- " Instance(sentence=\"This is an apple .\",\n",
- " words=['This', 'is', 'an', 'apple', '.'],\n",
- " num=5),\n",
- " Instance(sentence=\"I like apples .\",\n",
- " words=['I', 'like', 'apples', '.'],\n",
- " num=4),\n",
- " Instance(sentence=\"Apples are good for our health .\",\n",
- " words=['Apples', 'are', 'good', 'for', 'our', 'health', '.'],\n",
- " num=7),\n",
- " ])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2fafb1ef",
- "metadata": {},
- "source": [
- "  通过`items`、`keys`和`values`方法,可以分别获得`dataset`的`item`列表、`key`列表、`value`列表"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "a4c1c10d",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dict_items([('sentence', 'This is an apple .'), ('words', ['This', 'is', 'an', 'apple', '.']), ('num', 5)])\n",
- "dict_keys(['sentence', 'words', 'num'])\n",
- "dict_values(['This is an apple .', ['This', 'is', 'an', 'apple', '.'], 5])\n"
- ]
- }
- ],
- "source": [
- "ins = Instance(sentence=\"This is an apple .\", words=['This', 'is', 'an', 'apple', '.'], num=5)\n",
- "\n",
- "print(ins.items())\n",
- "print(ins.keys())\n",
- "print(ins.values())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b5459a2d",
- "metadata": {},
- "source": [
- "  通过`add_field`方法,可以在`Instance`实例中,通过参数`field_name`添加字段,通过参数`field`赋值"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "55376402",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+--------------------+------------------------+-----+-----+\n",
- "| sentence | words | num | idx |\n",
- "+--------------------+------------------------+-----+-----+\n",
- "| This is an apple . | ['This', 'is', 'an'... | 5 | 0 |\n",
- "+--------------------+------------------------+-----+-----+\n"
- ]
- }
- ],
- "source": [
- "ins.add_field(field_name='idx', field=0)\n",
- "print(ins)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "49caaa9c",
- "metadata": {},
- "source": [
- "在`fastNLP 0.8`中,使用`FieldArray`模块表示数据集`dataset`中的每条字段名(注:没有`field`类)\n",
- "\n",
- "  通过`get_all_fields`方法可以获取`dataset`的字段列表\n",
- "\n",
- "  通过`get_field_names`方法可以获取`dataset`的字段名称列表,代码如下"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "fe15f4c1",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'sentence': <fastNLP.core.dataset.field.FieldArray at 0x2444977fe88>,\n",
- " 'words': <fastNLP.core.dataset.field.FieldArray at 0x2444977ff08>,\n",
- " 'num': <fastNLP.core.dataset.field.FieldArray at 0x2444977ff88>}"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dataset.get_all_fields()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "5433815c",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "['num', 'sentence', 'words']"
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dataset.get_field_names()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4964eeed",
- "metadata": {},
- "source": [
- "其他`dataset`的基本使用:通过`in`或者`has_field`方法可以判断`dataset`的是否包含某种字段\n",
- "\n",
- "  通过`rename_field`方法可以更改`dataset`中的字段名称;通过`concat`方法可以实现两个`dataset`中的拼接\n",
- "\n",
- "  通过`len`可以统计`dataset`中的实例数目;`dataset`的全部变量与函数可以通过`dir(dataset)`查询"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "25ce5488",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "3 False\n",
- "6 True\n",
- "+------------------------------+------------------------------+--------+\n",
- "| sentence | words | length |\n",
- "+------------------------------+------------------------------+--------+\n",
- "| This is an apple . | ['This', 'is', 'an', 'app... | 5 |\n",
- "| I like apples . | ['I', 'like', 'apples', '... | 4 |\n",
- "| Apples are good for our h... | ['Apples', 'are', 'good',... | 7 |\n",
- "| This is an apple . | ['This', 'is', 'an', 'app... | 5 |\n",
- "| I like apples . | ['I', 'like', 'apples', '... | 4 |\n",
- "| Apples are good for our h... | ['Apples', 'are', 'good',... | 7 |\n",
- "+------------------------------+------------------------------+--------+\n"
- ]
- }
- ],
- "source": [
- "print(len(dataset), dataset.has_field('length')) \n",
- "if 'num' in dataset:\n",
- " dataset.rename_field('num', 'length')\n",
- "elif 'length' in dataset:\n",
- " dataset.rename_field('length', 'num')\n",
- "dataset.concat(dataset)\n",
- "print(len(dataset), dataset.has_field('length')) \n",
- "print(dataset) "
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e30a6cd7",
- "metadata": {},
- "source": [
- "## 2. vocabulary 的结构与使用\n",
- "\n",
- "### 2.1 vocabulary 的创建与修改\n",
- "\n",
- "在`fastNLP 0.8`中,使用`Vocabulary`模块表示词汇表,**`vocabulary`的核心是从单词到序号的映射**\n",
- "\n",
- "  可以直接通过构造函数实例化,通过查找`word2idx`属性,可以找到`vocabulary`映射对应的字典实现\n",
- "\n",
- "  **默认补零`padding`用`<pad>`表示**,**对应序号为0**;**未知单词`unknown`用`<unk>`表示**,**对应序号1**\n",
- "\n",
- "  通过打印`vocabulary`可以看到词汇表中的单词列表,其中,`padding`和`unknown`不会显示"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "3515e096",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Vocabulary([]...)\n",
- "{'<pad>': 0, '<unk>': 1}\n",
- "<pad> 0\n",
- "<unk> 1\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import Vocabulary\n",
- "\n",
- "vocab = Vocabulary()\n",
- "print(vocab)\n",
- "print(vocab.word2idx)\n",
- "print(vocab.padding, vocab.padding_idx)\n",
- "print(vocab.unknown, vocab.unknown_idx)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "640be126",
- "metadata": {},
- "source": [
- "在`vocabulary`中,通过`add_word`方法或`add_word_lst`方法,可以单独或批量添加单词\n",
- "\n",
- "  通过`len`或`word_count`属性,可以显示`vocabulary`的单词量和每个单词添加的次数"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "88c7472a",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "5 Counter({'生活': 1, '就像': 1, '海洋': 1})\n",
- "6 Counter({'生活': 1, '就像': 1, '海洋': 1, '只有': 1})\n",
- "6 {'<pad>': 0, '<unk>': 1, '生活': 2, '就像': 3, '海洋': 4, '只有': 5}\n"
- ]
- }
- ],
- "source": [
- "vocab.add_word_lst(['生活', '就像', '海洋'])\n",
- "print(len(vocab), vocab.word_count)\n",
- "vocab.add_word('只有')\n",
- "print(len(vocab), vocab.word_count)\n",
- "print(len(vocab), vocab.word2idx)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f9ec8b28",
- "metadata": {},
- "source": [
- "  **通过`to_word`方法可以找到单词对应的序号**,**通过`to_index`方法可以找到序号对应的单词**\n",
- "\n",
- "    由于序号0和序号1已经被占用,所以**新加入的词的序号从2开始计数**,如`'生活'`对应2\n",
- "\n",
- "    通过`has_word`方法可以判断单词是否在词汇表中,没有的单词被判做`<unk>`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "3447acde",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<pad> 0\n",
- "<unk> 1\n",
- "生活 2\n",
- "彼岸 1 False\n"
- ]
- }
- ],
- "source": [
- "print(vocab.to_word(0), vocab.to_index('<pad>'))\n",
- "print(vocab.to_word(1), vocab.to_index('<unk>'))\n",
- "print(vocab.to_word(2), vocab.to_index('生活'))\n",
- "print('彼岸', vocab.to_index('彼岸'), vocab.has_word('彼岸'))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b4e36850",
- "metadata": {},
- "source": [
- "**`vocabulary`允许反复添加相同单词**,**可以通过`word_count`方法看到相应单词被添加的次数**\n",
- "\n",
- "  但其中没有`<unk>`和`<pad>`,`vocabulary`的全部变量与函数可以通过`dir(vocabulary)`查询\n",
- "\n",
- "  注:**使用`add_word_lst`添加单词**,**单词对应序号不会动态调整**,**使用`dataset`添加单词的情况不同**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "490b101c",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "生活 2\n",
- "彼岸 12 True\n",
- "13 Counter({'人': 4, '生活': 2, '就像': 2, '海洋': 2, '只有': 2, '意志': 1, '坚强的': 1, '才': 1, '能': 1, '到达': 1, '彼岸': 1})\n",
- "13 {'<pad>': 0, '<unk>': 1, '生活': 2, '就像': 3, '海洋': 4, '只有': 5, '人': 6, '意志': 7, '坚强的': 8, '才': 9, '能': 10, '到达': 11, '彼岸': 12}\n"
- ]
- }
- ],
- "source": [
- "vocab.add_word_lst(['生活', '就像', '海洋', '只有', '意志', '坚强的', '人', '人', '人', '人', '才', '能', '到达', '彼岸'])\n",
- "print(vocab.to_word(2), vocab.to_index('生活'))\n",
- "print('彼岸', vocab.to_index('彼岸'), vocab.has_word('彼岸'))\n",
- "print(len(vocab), vocab.word_count)\n",
- "print(len(vocab), vocab.word2idx)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "23e32a63",
- "metadata": {},
- "source": [
- "### 2.2 vocabulary 与 OOV 问题\n",
- "\n",
- "在`vocabulary`模块初始化的时候,可以通过指定`unknown`和`padding`为`None`,限制其存在\n",
- "\n",
- "  此时添加单词直接从0开始标号,如果遇到未知单词会直接报错,即 out of vocabulary"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "id": "a99ff909",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'positive': 0, 'negative': 1}\n",
- "ValueError: word `neutral` not in vocabulary\n"
- ]
- }
- ],
- "source": [
- "vocab = Vocabulary(unknown=None, padding=None)\n",
- "\n",
- "vocab.add_word_lst(['positive', 'negative'])\n",
- "print(vocab.word2idx)\n",
- "\n",
- "try:\n",
- " print(vocab.to_index('neutral'))\n",
- "except ValueError:\n",
- " print(\"ValueError: word `neutral` not in vocabulary\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "618da6bd",
- "metadata": {},
- "source": [
- "  相应的,如果只指定其中的`unknown`,则编号会后移一个,同时遇到未知单词全部当做`<unk>`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "id": "432f74c1",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'<unk>': 0, 'positive': 1, 'negative': 2}\n",
- "0 <unk>\n"
- ]
- }
- ],
- "source": [
- "vocab = Vocabulary(unknown='<unk>', padding=None)\n",
- "\n",
- "vocab.add_word_lst(['positive', 'negative'])\n",
- "print(vocab.word2idx)\n",
- "\n",
- "print(vocab.to_index('neutral'), vocab.to_word(vocab.to_index('neutral')))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b6263f73",
- "metadata": {},
- "source": [
- "## 3 dataset 和 vocabulary 的组合使用\n",
- " \n",
- "### 3.1 从 dataframe 中加载 dataset\n",
- "\n",
- "以下通过 [NLP-beginner](https://github.com/FudanNLP/nlp-beginner) 实践一中 [Rotten Tomatoes 影评数据集](https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews) 的部分训练数据组成`test4dataset.tsv`文件\n",
- "\n",
- "  介绍如何使用`dataset`、`vocabulary`简单加载并处理数据集,首先使用`pandas`模块,读取原始数据的`dataframe`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "id": "3dbd985d",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<div>\n",
- "<style scoped>\n",
- " .dataframe tbody tr th:only-of-type {\n",
- " vertical-align: middle;\n",
- " }\n",
- "\n",
- " .dataframe tbody tr th {\n",
- " vertical-align: top;\n",
- " }\n",
- "\n",
- " .dataframe thead th {\n",
- " text-align: right;\n",
- " }\n",
- "</style>\n",
- "<table border=\"1\" class=\"dataframe\">\n",
- " <thead>\n",
- " <tr style=\"text-align: right;\">\n",
- " <th></th>\n",
- " <th>SentenceId</th>\n",
- " <th>Sentence</th>\n",
- " <th>Sentiment</th>\n",
- " </tr>\n",
- " </thead>\n",
- " <tbody>\n",
- " <tr>\n",
- " <th>0</th>\n",
- " <td>1</td>\n",
- " <td>A series of escapades demonstrating the adage ...</td>\n",
- " <td>negative</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>1</th>\n",
- " <td>2</td>\n",
- " <td>This quiet , introspective and entertaining in...</td>\n",
- " <td>positive</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>2</th>\n",
- " <td>3</td>\n",
- " <td>Even fans of Ismail Merchant 's work , I suspe...</td>\n",
- " <td>negative</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>3</th>\n",
- " <td>4</td>\n",
- " <td>A positively thrilling combination of ethnogra...</td>\n",
- " <td>neutral</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>4</th>\n",
- " <td>5</td>\n",
- " <td>A comedy-drama of nearly epic proportions root...</td>\n",
- " <td>positive</td>\n",
- " </tr>\n",
- " <tr>\n",
- " <th>5</th>\n",
- " <td>6</td>\n",
- " <td>The Importance of Being Earnest , so thick wit...</td>\n",
- " <td>neutral</td>\n",
- " </tr>\n",
- " </tbody>\n",
- "</table>\n",
- "</div>"
- ],
- "text/plain": [
- " SentenceId Sentence Sentiment\n",
- "0 1 A series of escapades demonstrating the adage ... negative\n",
- "1 2 This quiet , introspective and entertaining in... positive\n",
- "2 3 Even fans of Ismail Merchant 's work , I suspe... negative\n",
- "3 4 A positively thrilling combination of ethnogra... neutral\n",
- "4 5 A comedy-drama of nearly epic proportions root... positive\n",
- "5 6 The Importance of Being Earnest , so thick wit... neutral"
- ]
- },
- "execution_count": 24,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "df = pd.read_csv('./data/test4dataset.tsv', sep='\\t')\n",
- "df"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "919ab350",
- "metadata": {},
- "source": [
- "接着,通过`dataset`中的`from_pandas`方法填充数据集,并使用`apply_more`方法对文本进行分词操作"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "id": "4f634586",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/6 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+------------+------------------------------+-----------+\n",
- "| SentenceId | Sentence | Sentiment |\n",
- "+------------+------------------------------+-----------+\n",
- "| 1 | ['a', 'series', 'of', 'es... | negative |\n",
- "| 2 | ['this', 'quiet', ',', 'i... | positive |\n",
- "| 3 | ['even', 'fans', 'of', 'i... | negative |\n",
- "| 4 | ['a', 'positively', 'thri... | neutral |\n",
- "| 5 | ['a', 'comedy-drama', 'of... | positive |\n",
- "| 6 | ['the', 'importance', 'of... | neutral |\n",
- "+------------+------------------------------+-----------+\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import DataSet\n",
- "\n",
- "dataset = DataSet()\n",
- "dataset = dataset.from_pandas(df)\n",
- "dataset.apply_more(lambda ins:{'SentenceId': ins['SentenceId'], \n",
- " 'Sentence': ins['Sentence'].lower().split(), 'Sentiment': ins['Sentiment']}, \n",
- " progress_bar=\"tqdm\")\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5c1ae192",
- "metadata": {},
- "source": [
- "  如果需要保存中间结果,也可以使用`dataset`的`to_csv`方法,生成`.csv`或`.tsv`文件"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "id": "46722efc",
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset.to_csv('./data/test4dataset.csv')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5ba13989",
- "metadata": {},
- "source": [
- "### 3.2 从 dataset 中获取 vocabulary\n",
- "\n",
- "然后,初始化`vocabulary`,使用`vocabulary`中的`from_dataset`方法,从`dataset`的指定字段中\n",
- "\n",
- "  获取字段中的所有元素,然后编号;如果指定字段是个列表,则针对字段中所有列表包含的元素编号\n",
- "\n",
- "  注:**使用`dataset`添加单词**,**不同于`add_word_list`**,**单词被添加次数越多**,**序号越靠前**,例如案例中的`a`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "a2de615b",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Counter({'a': 9, 'of': 9, ',': 7, 'the': 6, '.': 5, 'is': 3, 'and': 3, 'good': 2, 'for': 2, 'which': 2, 'this': 2, \"'s\": 2, 'series': 1, 'escapades': 1, 'demonstrating': 1, 'adage': 1, 'that': 1, 'what': 1, 'goose': 1, 'also': 1, 'gander': 1, 'some': 1, 'occasionally': 1, 'amuses': 1, 'but': 1, 'none': 1, 'amounts': 1, 'to': 1, 'much': 1, 'story': 1, 'quiet': 1, 'introspective': 1, 'entertaining': 1, 'independent': 1, 'worth': 1, 'seeking': 1, 'even': 1, 'fans': 1, 'ismail': 1, 'merchant': 1, 'work': 1, 'i': 1, 'suspect': 1, 'would': 1, 'have': 1, 'hard': 1, 'time': 1, 'sitting': 1, 'through': 1, 'one': 1, 'positively': 1, 'thrilling': 1, 'combination': 1, 'ethnography': 1, 'all': 1, 'intrigue': 1, 'betrayal': 1, 'deceit': 1, 'murder': 1, 'shakespearean': 1, 'tragedy': 1, 'or': 1, 'juicy': 1, 'soap': 1, 'opera': 1, 'comedy-drama': 1, 'nearly': 1, 'epic': 1, 'proportions': 1, 'rooted': 1, 'in': 1, 'sincere': 1, 'performance': 1, 'by': 1, 'title': 1, 'character': 1, 'undergoing': 1, 'midlife': 1, 'crisis': 1, 'importance': 1, 'being': 1, 'earnest': 1, 'so': 1, 'thick': 1, 'with': 1, 'wit': 1, 'it': 1, 'plays': 1, 'like': 1, 'reading': 1, 'from': 1, 'bartlett': 1, 'familiar': 1, 'quotations': 1}) \n",
- "\n",
- "{'<pad>': 0, '<unk>': 1, 'a': 2, 'of': 3, ',': 4, 'the': 5, '.': 6, 'is': 7, 'and': 8, 'good': 9, 'for': 10, 'which': 11, 'this': 12, \"'s\": 13, 'series': 14, 'escapades': 15, 'demonstrating': 16, 'adage': 17, 'that': 18, 'what': 19, 'goose': 20, 'also': 21, 'gander': 22, 'some': 23, 'occasionally': 24, 'amuses': 25, 'but': 26, 'none': 27, 'amounts': 28, 'to': 29, 'much': 30, 'story': 31, 'quiet': 32, 'introspective': 33, 'entertaining': 34, 'independent': 35, 'worth': 36, 'seeking': 37, 'even': 38, 'fans': 39, 'ismail': 40, 'merchant': 41, 'work': 42, 'i': 43, 'suspect': 44, 'would': 45, 'have': 46, 'hard': 47, 'time': 48, 'sitting': 49, 'through': 50, 'one': 51, 'positively': 52, 'thrilling': 53, 'combination': 54, 'ethnography': 55, 'all': 56, 'intrigue': 57, 'betrayal': 58, 'deceit': 59, 'murder': 60, 'shakespearean': 61, 'tragedy': 62, 'or': 63, 'juicy': 64, 'soap': 65, 'opera': 66, 'comedy-drama': 67, 'nearly': 68, 'epic': 69, 'proportions': 70, 'rooted': 71, 'in': 72, 'sincere': 73, 'performance': 74, 'by': 75, 'title': 76, 'character': 77, 'undergoing': 78, 'midlife': 79, 'crisis': 80, 'importance': 81, 'being': 82, 'earnest': 83, 'so': 84, 'thick': 85, 'with': 86, 'wit': 87, 'it': 88, 'plays': 89, 'like': 90, 'reading': 91, 'from': 92, 'bartlett': 93, 'familiar': 94, 'quotations': 95} \n",
- "\n",
- "Vocabulary(['a', 'series', 'of', 'escapades', 'demonstrating']...)\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import Vocabulary\n",
- "\n",
- "vocab = Vocabulary()\n",
- "vocab = vocab.from_dataset(dataset, field_name='Sentence')\n",
- "print(vocab.word_count, '\\n')\n",
- "print(vocab.word2idx, '\\n')\n",
- "print(vocab)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f0857ccb",
- "metadata": {},
- "source": [
- "之后,**通过`vocabulary`的`index_dataset`方法**,**调整`dataset`中指定字段的元素**,**使用编号将之代替**\n",
- "\n",
- "  使用上述方法,可以将影评数据集中的单词序列转化为词编号序列,为接下来转化为词嵌入序列做准备"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "id": "2f9a04b2",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+------------+------------------------------+-----------+\n",
- "| SentenceId | Sentence | Sentiment |\n",
- "+------------+------------------------------+-----------+\n",
- "| 1 | [2, 14, 3, 15, 16, 5, 17,... | negative |\n",
- "| 2 | [12, 32, 4, 33, 8, 34, 35... | positive |\n",
- "| 3 | [38, 39, 3, 40, 41, 13, 4... | negative |\n",
- "| 4 | [2, 52, 53, 54, 3, 55, 8,... | neutral |\n",
- "| 5 | [2, 67, 3, 68, 69, 70, 71... | positive |\n",
- "| 6 | [5, 81, 3, 82, 83, 4, 84,... | neutral |\n",
- "+------------+------------------------------+-----------+\n"
- ]
- }
- ],
- "source": [
- "vocab.index_dataset(dataset, field_name='Sentence')\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6b26b707",
- "metadata": {},
- "source": [
- "最后,使用相同方法,再将`dataset`中`Sentiment`字段中的`negative`、`neutral`、`positive`转化为数字编号"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "id": "5f5eed18",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'negative': 0, 'positive': 1, 'neutral': 2}\n",
- "+------------+------------------------------+-----------+\n",
- "| SentenceId | Sentence | Sentiment |\n",
- "+------------+------------------------------+-----------+\n",
- "| 1 | [2, 14, 3, 15, 16, 5, 17,... | 0 |\n",
- "| 2 | [12, 32, 4, 33, 8, 34, 35... | 1 |\n",
- "| 3 | [38, 39, 3, 40, 41, 13, 4... | 0 |\n",
- "| 4 | [2, 52, 53, 54, 3, 55, 8,... | 2 |\n",
- "| 5 | [2, 67, 3, 68, 69, 70, 71... | 1 |\n",
- "| 6 | [5, 81, 3, 82, 83, 4, 84,... | 2 |\n",
- "+------------+------------------------------+-----------+\n"
- ]
- }
- ],
- "source": [
- "target_vocab = Vocabulary(padding=None, unknown=None)\n",
- "\n",
- "target_vocab.from_dataset(dataset, field_name='Sentiment')\n",
- "print(target_vocab.word2idx)\n",
- "target_vocab.index_dataset(dataset, field_name='Sentiment')\n",
- "print(dataset)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "eed7ea64",
- "metadata": {},
- "source": [
- "在最后的最后,通过以下的一张图,来总结本章关于`dataset`和`vocabulary`主要知识点的讲解,以及两者的联系\n",
- "\n",
- "<img src=\"./figures/T1-fig-dataset-and-vocabulary.png\" width=\"80%\" height=\"80%\" align=\"center\"></img>"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "35b4f0f7",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.13"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|