|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "213d538c",
- "metadata": {},
- "source": [
- "# T3. dataloader 的内部结构和基本使用\n",
- "\n",
- "  1   fastNLP 中的 dataloader\n",
- " \n",
- "    1.1   dataloader 的基本介绍\n",
- "\n",
- "    1.2   dataloader 的函数创建\n",
- "\n",
- "  2   fastNLP 中 dataloader 的延伸\n",
- "\n",
- "    2.1   collator 的概念与使用\n",
- "\n",
- "    2.2   结合 datasets 框架"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "85857115",
- "metadata": {},
- "source": [
- "## 1. fastNLP 中的 dataloader\n",
- "\n",
- "### 1.1 dataloader 的基本介绍\n",
- "\n",
- "在`fastNLP 0.8`的开发中,最关键的开发目标就是**实现`fastNLP`对当前主流机器学习框架**,例如\n",
- "\n",
- "  **较为火热的`pytorch`**,以及**国产的`paddle`和`jittor`的兼容**,扩大受众的同时,也是助力国产\n",
- "\n",
- "本着分而治之的思想,我们可以将`fastNLP 0.8`对`pytorch`、`paddle`、`jittor`框架的兼容,划分为\n",
- "\n",
- "    **对数据预处理**、**批量`batch`的划分与补齐**、**模型训练**、**模型评测**,**四个部分的兼容**\n",
- "\n",
- "  针对数据预处理,我们已经在`tutorial-1`中介绍了`dataset`和`vocabulary`的使用\n",
- "\n",
- "    而结合`tutorial-0`,我们可以发现**数据预处理环节本质上是框架无关的**\n",
- "\n",
- "    因为在不同框架下,读取的原始数据格式都差异不大,彼此也很容易转换\n",
- "\n",
- "只有涉及到张量、模型,不同框架才展现出其各自的特色:**`pytorch`中的`tensor`和`nn.Module`**\n",
- "\n",
- "    **在`paddle`中称为`tensor`和`nn.Layer`**,**在`jittor`中则称为`Var`和`Module`**\n",
- "\n",
- "    因此,**模型训练、模型评测**,**是兼容的重难点**,我们将会在`tutorial-5`中详细介绍\n",
- "\n",
- "  针对批量`batch`的处理,作为`fastNLP 0.8`中框架无关部分想框架相关部分的过渡\n",
- "\n",
- "    就是`dataloader`模块的职责,这也是本篇教程`tutorial-3`讲解的重点\n",
- "\n",
- "**`dataloader`模块的职责**,详细划分可以包含以下三部分,**采样划分、补零对齐、框架匹配**\n",
- "\n",
- "    第一,确定`batch`大小,确定采样方式,划分后通过迭代器即可得到`batch`序列\n",
- "\n",
- "    第二,对于序列处理,这也是`fastNLP`主要针对的,将同个`batch`内的数据对齐\n",
- "\n",
- "    第三,**`batch`内数据格式要匹配框架**,**但`batch`结构需保持一致**,**参数匹配机制**\n",
- "\n",
- "  对此,`fastNLP 0.8`给出了 **`TorchDataLoader`、`PaddleDataLoader`和`JittorDataLoader`**\n",
- "\n",
- "    分别针对并匹配不同框架,但彼此之间参数名、属性、方法仍然类似,前两者大致如下表所示\n",
- "\n",
- "| <div align=\"center\">名称</div> | <div align=\"center\">参数</div> | <div align=\"center\">属性</div> | <div align=\"center\">功能</div> | <div align=\"center\">内容</div> |\n",
- "|:--|:--:|:--:|:--|:--|\n",
- "| **`dataset`** | √ | √ | 指定`dataloader`的数据内容 | |\n",
- "| `batch_size` | √ | √ | 指定`dataloader`的`batch`大小 | 默认`16` |\n",
- "| `shuffle` | √ | √ | 指定`dataloader`的数据是否打乱 | 默认`False` |\n",
- "| `collate_fn` | √ | √ | 指定`dataloader`的`batch`打包方法 | 视框架而定 |\n",
- "| `sampler` | √ | √ | 指定`dataloader`的`__len__`和`__iter__`函数的实现 | 默认`None` |\n",
- "| `batch_sampler` | √ | √ | 指定`dataloader`的`__len__`和`__iter__`函数的实现 | 默认`None` |\n",
- "| `drop_last` | √ | √ | 指定`dataloader`划分`batch`时是否丢弃剩余的 | 默认`False` |\n",
- "| `cur_batch_indices` | | √ | 记录`dataloader`当前遍历批量序号 | |\n",
- "| `num_workers` | √ | √ | 指定`dataloader`开启子进程数量 | 默认`0` |\n",
- "| `worker_init_fn` | √ | √ | 指定`dataloader`子进程初始方法 | 默认`None` |\n",
- "| `generator` | √ | √ | 指定`dataloader`子进程随机种子 | 默认`None` |\n",
- "| `prefetch_factor` | | √ | 指定为每个`worker`装载的`sampler`数量 | 默认`2` |"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "60a8a224",
- "metadata": {},
- "source": [
- "  论及`dataloader`的函数,其中,`get_batch_indices`用来获取当前遍历到的`batch`序号,其他函数\n",
- "\n",
- "    包括`set_ignore`、`set_pad`和`databundle`类似,请参考`tutorial-2`,此处不做更多介绍\n",
- "\n",
- "    以下是`tutorial-2`中已经介绍过的数据预处理流程,接下来是对相关数据进行`dataloader`处理"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "aca72b49",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[38;5;2m[i 0604 15:44:29.773860 92 log.cc:351] Load log_sync: 1\u001b[m\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/4 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/2 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/2 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+------------+----------------+-----------+----------------+--------------------+--------------------+--------+\n",
- "| SentenceId | Sentence | Sentiment | input_ids | token_type_ids | attention_mask | target |\n",
- "+------------+----------------+-----------+----------------+--------------------+--------------------+--------+\n",
- "| 1 | A series of... | negative | [101, 1037,... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... | 1 |\n",
- "| 4 | A positivel... | neutral | [101, 1037,... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... | 2 |\n",
- "| 3 | Even fans o... | negative | [101, 2130,... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... | 1 |\n",
- "| 5 | A comedy-dr... | positive | [101, 1037,... | [0, 0, 0, 0, 0,... | [1, 1, 1, 1, 1,... | 0 |\n",
- "+------------+----------------+-----------+----------------+--------------------+--------------------+--------+\n"
- ]
- }
- ],
- "source": [
- "import sys\n",
- "sys.path.append('..')\n",
- "\n",
- "import pandas as pd\n",
- "from functools import partial\n",
- "from fastNLP.transformers.torch import BertTokenizer\n",
- "\n",
- "from fastNLP import DataSet\n",
- "from fastNLP import Vocabulary\n",
- "from fastNLP.io import DataBundle\n",
- "\n",
- "\n",
- "class PipeDemo:\n",
- " def __init__(self, tokenizer='bert-base-uncased'):\n",
- " self.tokenizer = BertTokenizer.from_pretrained(tokenizer)\n",
- "\n",
- " def process_from_file(self, path='./data/test4dataset.tsv'):\n",
- " datasets = DataSet.from_pandas(pd.read_csv(path, sep='\\t'))\n",
- " train_ds, test_ds = datasets.split(ratio=0.7)\n",
- " train_ds, dev_ds = datasets.split(ratio=0.8)\n",
- " data_bundle = DataBundle(datasets={'train': train_ds, 'dev': dev_ds, 'test': test_ds})\n",
- "\n",
- " encode = partial(self.tokenizer.encode_plus, max_length=100, truncation=True,\n",
- " return_attention_mask=True)\n",
- " data_bundle.apply_field_more(encode, field_name='Sentence', progress_bar='tqdm')\n",
- " \n",
- " target_vocab = Vocabulary(padding=None, unknown=None)\n",
- "\n",
- " target_vocab.from_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='Sentiment')\n",
- " target_vocab.index_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='Sentiment',\n",
- " new_field_name='target')\n",
- "\n",
- " data_bundle.set_pad('input_ids', pad_val=self.tokenizer.pad_token_id)\n",
- " data_bundle.set_ignore('SentenceId', 'Sentence', 'Sentiment') \n",
- " return data_bundle\n",
- "\n",
- " \n",
- "pipe = PipeDemo(tokenizer='bert-base-uncased')\n",
- "\n",
- "data_bundle = pipe.process_from_file('./data/test4dataset.tsv')\n",
- "\n",
- "print(data_bundle.get_dataset('train'))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "76e6b8ab",
- "metadata": {},
- "source": [
- "### 1.2 dataloader 的函数创建\n",
- "\n",
- "在`fastNLP 0.8`中,**更方便、可能更常用的`dataloader`创建方法是通过`prepare_xx_dataloader`函数**\n",
- "\n",
- "  例如下方的`prepare_torch_dataloader`函数,指定必要参数,读取数据集,生成对应`dataloader`\n",
- "\n",
- "  类型为`TorchDataLoader`,只能适用于`pytorch`框架,因此对应`trainer`初始化时`driver='torch'`\n",
- "\n",
- "同时我们看还可以发现,在`fastNLP 0.8`中,**`batch`表示为字典`dict`类型**,**`key`值就是原先数据集中各个字段**\n",
- "\n",
- "  **除去经过`DataBundle.set_ignore`函数隐去的部分**,而`value`值为`pytorch`框架对应的`torch.Tensor`类型"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "5fd60e42",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<class 'fastNLP.core.dataloaders.torch_dataloader.fdl.TorchDataLoader'>\n",
- "<class 'dict'> <class 'torch.Tensor'> ['input_ids', 'token_type_ids', 'attention_mask', 'target']\n",
- "{'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
- " [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),\n",
- " 'input_ids': tensor([[ 101, 1037, 4038, 1011, 3689, 1997, 3053, 8680, 19173, 15685,\n",
- " 1999, 1037, 18006, 2836, 2011, 1996, 2516, 2839, 14996, 3054,\n",
- " 15509, 5325, 1012, 102, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0],\n",
- " [ 101, 1037, 2186, 1997, 9686, 17695, 18673, 14313, 1996, 15262,\n",
- " 3351, 2008, 2054, 2003, 2204, 2005, 1996, 13020, 2003, 2036,\n",
- " 2204, 2005, 1996, 25957, 4063, 1010, 2070, 1997, 2029, 5681,\n",
- " 2572, 25581, 2021, 3904, 1997, 2029, 8310, 2000, 2172, 1997,\n",
- " 1037, 2466, 1012, 102],\n",
- " [ 101, 2130, 4599, 1997, 19214, 6432, 1005, 1055, 2147, 1010,\n",
- " 1045, 8343, 1010, 2052, 2031, 1037, 2524, 2051, 3564, 2083,\n",
- " 2023, 2028, 1012, 102, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0],\n",
- " [ 101, 1037, 13567, 26162, 5257, 1997, 3802, 7295, 9888, 1998,\n",
- " 2035, 1996, 20014, 27611, 1010, 14583, 1010, 11703, 20175, 1998,\n",
- " 4028, 1997, 1037, 8101, 2319, 10576, 2030, 1037, 28900, 7815,\n",
- " 3850, 1012, 102, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0]]),\n",
- " 'target': tensor([0, 1, 1, 2]),\n",
- " 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])}\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "train_dataset = data_bundle.get_dataset('train')\n",
- "evaluate_dataset = data_bundle.get_dataset('dev')\n",
- "\n",
- "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
- "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)\n",
- "\n",
- "print(type(train_dataloader))\n",
- "\n",
- "import pprint\n",
- "\n",
- "for batch in train_dataloader:\n",
- " print(type(batch), type(batch['input_ids']), list(batch))\n",
- " pprint.pprint(batch, width=1)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "9f457a6e",
- "metadata": {},
- "source": [
- "之所以说`prepare_xx_dataloader`函数更方便,是因为其**导入对象不仅可也是`DataSet`类型**,**还可以**\n",
- "\n",
- "  **是`DataBundle`类型**,不过数据集名称需要是`'train'`、`'dev'`、`'test'`供`fastNLP`识别\n",
- "\n",
- "例如下方就是**直接通过`prepare_paddle_dataloader`函数生成基于`PaddleDataLoader`的字典**\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "7827557d",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<class 'fastNLP.core.dataloaders.paddle_dataloader.fdl.PaddleDataLoader'>\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import prepare_paddle_dataloader\n",
- "\n",
- "dl_bundle = prepare_paddle_dataloader(data_bundle, batch_size=16, shuffle=True)\n",
- "\n",
- "print(type(dl_bundle['train']))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d898cf40",
- "metadata": {},
- "source": [
- "  而在接下来`trainer`的初始化过程中,按如下方式使用即可,除了初始化时`driver='paddle'`外\n",
- "\n",
- "  这里也可以看出`trainer`模块中,**`evaluate_dataloaders`的设计允许评测可以针对多个数据集**\n",
- "\n",
- "```python\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " train_dataloader=dl_bundle['train'],\n",
- " optimizers=optimizer,\n",
- "\t...\n",
- "\tdriver='paddle',\n",
- "\tdevice='gpu',\n",
- "\t...\n",
- " evaluate_dataloaders={'dev': dl_bundle['dev'], 'test': dl_bundle['test']}, \n",
- " metrics={'acc': Accuracy()},\n",
- "\t...\n",
- ")\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d74d0523",
- "metadata": {},
- "source": [
- "## 2. fastNLP 中 dataloader 的延伸\n",
- "\n",
- "### 2.1 collator 的概念与使用\n",
- "\n",
- "在`fastNLP 0.8`中,在数据加载模块`dataloader`内部,如之前表格所列举的,还存在其他的一些模块\n",
- "\n",
- "  例如,**实现序列的补零对齐的核对器`collator`模块**;注:`collate vt. 整理(文件或书等);核对,校勘`\n",
- "\n",
- "在`fastNLP 0.8`中,虽然`dataloader`随框架不同,但`collator`模块却是统一的,主要属性、方法如下表所示\n",
- "\n",
- "| <div align=\"center\">名称</div> | <div align=\"center\">属性</div> | <div align=\"center\">方法</div> | <div align=\"center\">功能</div> | <div align=\"center\">内容</div> |\n",
- "|:--|:--:|:--:|:--|:--|\n",
- "| `backend` | √ | | 记录`collator`对应框架 | 字符串型,如`'torch'` |\n",
- "| `padders` | √ | | 记录各字段对应的`padder`,每个负责具体补零对齐  | 字典类型 |\n",
- "| `ignore_fields` | √ | | 记录`dataloader`采样`batch`时不予考虑的字段 | 集合类型 |\n",
- "| `input_fields` | √ | | 记录`collator`每个字段的补零值、数据类型等 | 字典类型 |\n",
- "| `set_backend` | | √ | 设置`collator`对应框架 | 字符串型,如`'torch'` |\n",
- "| `set_ignore` | | √ | 设置`dataloader`采样`batch`时不予考虑的字段 | 字符串型,表示`field_name`  |\n",
- "| `set_pad` | | √ | 设置`collator`每个字段的补零值、数据类型等 | |"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "d0795b3e",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<class 'function'>\n"
- ]
- }
- ],
- "source": [
- "train_dataloader.collate_fn\n",
- "\n",
- "print(type(train_dataloader.collate_fn))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5f816ef5",
- "metadata": {},
- "source": [
- "此外,还可以**手动定义`dataloader`中的`collate_fn`**,而不是使用`fastNLP 0.8`中自带的`collator`模块\n",
- "\n",
- "  该函数的定义可以大致如下,需要注意的是,**定义`collate_fn`之前需要了解`batch`作为字典的格式**\n",
- "\n",
- "  该函数通过`collate_fn`参数传入`dataloader`,**在`batch`分发**(**而不是`batch`划分**)**时调用**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "ff8e405e",
- "metadata": {},
- "outputs": [],
- "source": [
- "import torch\n",
- "\n",
- "def collate_fn(batch):\n",
- " input_ids, atten_mask, labels = [], [], []\n",
- " max_length = [0] * 3\n",
- " for each_item in batch:\n",
- " input_ids.append(each_item['input_ids'])\n",
- " max_length[0] = max(len(each_item['input_ids']), max_length[0])\n",
- " atten_mask.append(each_item['token_type_ids'])\n",
- " max_length[1] = max(len(each_item['token_type_ids']), max_length[1])\n",
- " labels.append(each_item['attention_mask'])\n",
- " max_length[2] = max(len(each_item['attention_mask']), max_length[2])\n",
- "\n",
- " for i in range(3):\n",
- " each = (input_ids, atten_mask, labels)[i]\n",
- " for item in each:\n",
- " item.extend([0] * (max_length[i] - len(item)))\n",
- " return {'input_ids': torch.cat([torch.tensor([item]) for item in input_ids], dim=0),\n",
- " 'token_type_ids': torch.cat([torch.tensor([item]) for item in atten_mask], dim=0),\n",
- " 'attention_mask': torch.cat([torch.tensor(item) for item in labels], dim=0)}"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "487b75fb",
- "metadata": {},
- "source": [
- "注意:使用自定义的`collate_fn`函数,`trainer`的`collate_fn`变量也会自动调整为`function`类型"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "e916d1ac",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "<class 'fastNLP.core.dataloaders.torch_dataloader.fdl.TorchDataLoader'>\n",
- "<class 'function'>\n",
- "{'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,\n",
- " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
- " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0]),\n",
- " 'input_ids': tensor([[ 101, 1037, 4038, 1011, 3689, 1997, 3053, 8680, 19173, 15685,\n",
- " 1999, 1037, 18006, 2836, 2011, 1996, 2516, 2839, 14996, 3054,\n",
- " 15509, 5325, 1012, 102, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0],\n",
- " [ 101, 1037, 2186, 1997, 9686, 17695, 18673, 14313, 1996, 15262,\n",
- " 3351, 2008, 2054, 2003, 2204, 2005, 1996, 13020, 2003, 2036,\n",
- " 2204, 2005, 1996, 25957, 4063, 1010, 2070, 1997, 2029, 5681,\n",
- " 2572, 25581, 2021, 3904, 1997, 2029, 8310, 2000, 2172, 1997,\n",
- " 1037, 2466, 1012, 102],\n",
- " [ 101, 2130, 4599, 1997, 19214, 6432, 1005, 1055, 2147, 1010,\n",
- " 1045, 8343, 1010, 2052, 2031, 1037, 2524, 2051, 3564, 2083,\n",
- " 2023, 2028, 1012, 102, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0],\n",
- " [ 101, 1037, 13567, 26162, 5257, 1997, 3802, 7295, 9888, 1998,\n",
- " 2035, 1996, 20014, 27611, 1010, 14583, 1010, 11703, 20175, 1998,\n",
- " 4028, 1997, 1037, 8101, 2319, 10576, 2030, 1037, 28900, 7815,\n",
- " 3850, 1012, 102, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0]]),\n",
- " 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
- " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])}\n"
- ]
- }
- ],
- "source": [
- "train_dataloader = prepare_torch_dataloader(train_dataset, collate_fn=collate_fn, shuffle=True)\n",
- "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, collate_fn=collate_fn, shuffle=True)\n",
- "\n",
- "print(type(train_dataloader))\n",
- "print(type(train_dataloader.collate_fn))\n",
- "\n",
- "for batch in train_dataloader:\n",
- " pprint.pprint(batch, width=1)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0bd98365",
- "metadata": {},
- "source": [
- "### 2.2 fastNLP 与 datasets 的结合\n",
- "\n",
- "从`tutorial-1`至`tutorial-3`,我们已经完成了对`fastNLP v0.8`数据读取、预处理、加载,整个流程的介绍\n",
- "\n",
- "  不过在实际使用中,我们往往也会采取更为简便的方法读取数据,例如使用`huggingface`的`datasets`模块\n",
- "\n",
- "**使用`datasets`模块中的`load_dataset`函数**,通过指定数据集两级的名称,示例中即是**`GLUE`标准中的`SST-2`数据集**\n",
- "\n",
- "  即可以快速从网上下载好`SST-2`数据集读入,之后以`pandas.DataFrame`作为中介,再转化成`fastNLP.DataSet`\n",
- "\n",
- "  之后的步骤就和其他关于`dataset`、`databundle`、`vocabulary`、`dataloader`中介绍的相关使用相同了"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "91879c30",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Reusing dataset glue (/remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "639a0ad3c63944c6abef4e8ee1f7bf7c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/3 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "from datasets import load_dataset\n",
- "\n",
- "sst2data = load_dataset('glue', 'sst2')\n",
- "\n",
- "dataset = DataSet.from_pandas(sst2data['train'].to_pandas())"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.13"
- },
- "pycharm": {
- "stem_cell": {
- "cell_type": "raw",
- "metadata": {
- "collapsed": false
- },
- "source": []
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|