|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/yh/miniconda2/envs/python3/lib/python3.6/site-packages/tqdm/autonotebook/__init__.py:14: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
- " \" (e.g. in jupyter console)\", TqdmExperimentalWarning)\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "DataSet({'raw_sent': this is a bad idea . type=str,\n",
- "'label': 0 type=int,\n",
- "'word_str_lst': ['this', 'is', 'a', 'bad', 'idea', '.'] type=list,\n",
- "'words': [4, 2, 5, 6, 7, 3] type=list},\n",
- "{'raw_sent': it is great . type=str,\n",
- "'label': 1 type=int,\n",
- "'word_str_lst': ['it', 'is', 'great', '.'] type=list,\n",
- "'words': [8, 2, 9, 3] type=list})"
- ]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 假设有以下的DataSet, 这里只是为了举例所以只选择了两个sample\n",
- "import sys\n",
- "import os\n",
- "sys.path.append('/Users/yh/Desktop/fastNLP/fastNLP')\n",
- "\n",
- "from fastNLP import DataSet\n",
- "from fastNLP import Instance\n",
- "from fastNLP import Vocabulary\n",
- "\n",
- "dataset = DataSet()\n",
- "dataset.append(Instance(raw_sent='This is a bad idea .', label=0))\n",
- "dataset.append(Instance(raw_sent='It is great .', label=1))\n",
- "\n",
- "# 按照fastNLP_10min_tutorial.ipynb的步骤,对数据进行一些处理。这里为了演示padding操作,把field的名称做了一些改变\n",
- "dataset.apply(lambda x:x['raw_sent'].lower(), new_field_name='raw_sent')\n",
- "dataset.apply(lambda x:x['raw_sent'].split(), new_field_name='word_str_lst')\n",
- "\n",
- "# 建立Vocabulary\n",
- "word_vocab = Vocabulary()\n",
- "dataset.apply(lambda x:word_vocab.update(x['word_str_lst']))\n",
- "dataset.apply(lambda x:[word_vocab.to_index(word) for word in x['word_str_lst']], new_field_name='words')\n",
- "\n",
- "# 检查以下是否得到我们想要的结果了\n",
- "dataset[:2]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "batch_x has: {'word_str_lst': array([list(['this', 'is', 'a', 'bad', 'idea', '.']),\n",
- " list(['it', 'is', 'great', '.'])], dtype=object), 'words': tensor([[4, 2, 5, 6, 7, 3],\n",
- " [8, 2, 9, 3, 0, 0]])}\n",
- "batch_y has: {'label': tensor([0, 1])}\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'\"\\n结果中\\n Batch会对元素类型(元素即最内层的数据,raw_sent为str,word_str_lst为str,words为int, label为int)为int或者float的数据进行默认\\n padding,而非int或float的则不进行padding。但若每个Instance中该field为二维数据,也不进行padding。因为二维数据的padding涉及到\\n 两个维度的padding,不容易自动判断padding的形式。\\n'"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 将field设置为input或者target\n",
- "dataset.set_input('word_str_lst')\n",
- "dataset.set_input('words')\n",
- "dataset.set_target('label')\n",
- "\n",
- "# 使用Batch取出batch数据\n",
- "from fastNLP.core.batch import Batch\n",
- "from fastNLP.core.sampler import RandomSampler\n",
- "\n",
- "batch_iterator = Batch(dataset=dataset, batch_size=2, sampler=RandomSampler())\n",
- "for batch_x, batch_y in batch_iterator:\n",
- " print(\"batch_x has: \", batch_x)\n",
- " print(\"batch_y has: \", batch_y)\n",
- "\"\"\"\"\n",
- "结果中\n",
- " Batch会对元素类型(元素即最内层的数据,raw_sent为str,word_str_lst为str,words为int, label为int)为int或者float的数据进行默认\n",
- " padding,而非int或float的则不进行padding。但若每个Instance中该field为二维数据,也不进行padding。因为二维数据的padding涉及到\n",
- " 两个维度的padding,不容易自动判断padding的形式。\n",
- "\"\"\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "batch_x has: {'word_str_lst': array([list(['it', 'is', 'great', '.']),\n",
- " list(['this', 'is', 'a', 'bad', 'idea', '.'])], dtype=object), 'words': tensor([[ 8, 2, 9, 3, -100, -100],\n",
- " [ 4, 2, 5, 6, 7, 3]])}\n",
- "batch_y has: {'label': tensor([1, 0])}\n"
- ]
- }
- ],
- "source": [
- "# 所有的pad_val都默认为0,如果需要修改某一个field的默认pad值,可以通过DataSet.set_pad_val(field_name, pad_val)进行修改\n",
- "# 若需要将word的padding修改为-100\n",
- "dataset.set_pad_val('words', pad_val=-100)\n",
- "batch_iterator = Batch(dataset=dataset, batch_size=2, sampler=RandomSampler())\n",
- "for batch_x, batch_y in batch_iterator:\n",
- " print(\"batch_x has: \", batch_x)\n",
- " print(\"batch_y has: \", batch_y)\n",
- "# pad的值修改为-100了"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "DataSet({'raw_sent': this is a bad idea . type=str,\n",
- "'label': 0 type=int,\n",
- "'word_str_lst': ['this', 'is', 'a', 'bad', 'idea', '.'] type=list,\n",
- "'words': [4, 2, 5, 6, 7, 3] type=list,\n",
- "'char_str_lst': [['t', 'h', 'i', 's'], ['i', 's'], ['a'], ['b', 'a', 'd'], ['i', 'd', 'e', 'a'], ['.']] type=list,\n",
- "'chars': [[4, 9, 2, 5], [2, 5], [3], [10, 3, 6], [2, 6, 7, 3], [8]] type=list},\n",
- "{'raw_sent': it is great . type=str,\n",
- "'label': 1 type=int,\n",
- "'word_str_lst': ['it', 'is', 'great', '.'] type=list,\n",
- "'words': [8, 2, 9, 3] type=list,\n",
- "'char_str_lst': [['i', 't'], ['i', 's'], ['g', 'r', 'e', 'a', 't'], ['.']] type=list,\n",
- "'chars': [[2, 4], [2, 5], [11, 12, 7, 3, 4], [8]] type=list})"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 若需要使用二维padding或指定padding方式,可以通过设置该field的padder实现,下面以英文的character padding为例。在某些场景下,可能想要\n",
- "# 使用英文word的character作为特征,character的padding为二维padding,fastNLP默认只会进行一维padding。\n",
- "\n",
- "dataset.apply(lambda x: [[c for c in word] for word in x['word_str_lst']], new_field_name='char_str_lst')\n",
- "char_vocab = Vocabulary()\n",
- "dataset.apply(lambda x:[char_vocab.update(chars) for chars in x['char_str_lst']])\n",
- "dataset.apply(lambda x:[[char_vocab.to_index(c) for c in chars] for chars in x['char_str_lst']],new_field_name='chars')\n",
- "dataset[:2]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "batch_x has: {'word_str_lst': array([list(['this', 'is', 'a', 'bad', 'idea', '.']),\n",
- " list(['it', 'is', 'great', '.'])], dtype=object), 'words': tensor([[ 4, 2, 5, 6, 7, 3],\n",
- " [ 8, 2, 9, 3, -100, -100]]), 'chars': array([list([[4, 9, 2, 5], [2, 5], [3], [10, 3, 6], [2, 6, 7, 3], [8]]),\n",
- " list([[2, 4], [2, 5], [11, 12, 7, 3, 4], [8]])], dtype=object)}\n",
- "batch_y has: {'label': tensor([0, 1])}\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'\\n 其它field与之前的是相同的。chars因为存在两个维度需要padding,不能自动决定padding方式,所以直接输出了原始形式。\\n'"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 如果不针对二维的character指定padding方法\n",
- "dataset.set_input('chars')\n",
- "batch_iterator = Batch(dataset=dataset, batch_size=2, sampler=RandomSampler())\n",
- "for batch_x, batch_y in batch_iterator:\n",
- " print(\"batch_x has: \", batch_x)\n",
- " print(\"batch_y has: \", batch_y)\n",
- " \n",
- "\"\"\"\n",
- " 其它field与之前的是相同的。chars因为存在两个维度需要padding,不能自动决定padding方式,所以直接输出了原始形式。\n",
- "\"\"\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "batch_x has: {'word_str_lst': array([list(['this', 'is', 'a', 'bad', 'idea', '.']),\n",
- " list(['it', 'is', 'great', '.'])], dtype=object), 'words': tensor([[ 4, 2, 5, 6, 7, 3],\n",
- " [ 8, 2, 9, 3, -100, -100]]), 'chars': tensor([[[ 4, 9, 2, 5],\n",
- " [ 2, 5, 0, 0],\n",
- " [ 3, 0, 0, 0],\n",
- " [10, 3, 6, 0],\n",
- " [ 2, 6, 7, 3],\n",
- " [ 8, 0, 0, 0]],\n",
- "\n",
- " [[ 2, 4, 0, 0],\n",
- " [ 2, 5, 0, 0],\n",
- " [11, 12, 7, 3],\n",
- " [ 8, 0, 0, 0],\n",
- " [ 0, 0, 0, 0],\n",
- " [ 0, 0, 0, 0]]])}\n",
- "batch_y has: {'label': tensor([0, 1])}\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'\\n chars被正确padding了\\n'"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 若要使用二维padding,需要手动设置padding方式\n",
- "from fastNLP.core.fieldarray import EngChar2DPadder\n",
- "dataset.set_padder('chars', EngChar2DPadder())\n",
- "batch_iterator = Batch(dataset=dataset, batch_size=2, sampler=RandomSampler())\n",
- "for batch_x, batch_y in batch_iterator:\n",
- " print(\"batch_x has: \", batch_x)\n",
- " print(\"batch_y has: \", batch_y)\n",
- " \n",
- "\"\"\"\n",
- " chars被正确padding了\n",
- "\"\"\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "batch_x has: {'raw_sent': ['this is a bad idea .', 'it is great . '], 'word_str_lst': array([list(['this', 'is', 'a', 'bad', 'idea', '.']),\n",
- " list(['it', 'is', 'great', '.'])], dtype=object), 'words': tensor([[ 4, 2, 5, 6, 7, 3],\n",
- " [ 8, 2, 9, 3, -100, -100]]), 'chars': tensor([[[ 4, 9, 2, 5],\n",
- " [ 2, 5, 0, 0],\n",
- " [ 3, 0, 0, 0],\n",
- " [10, 3, 6, 0],\n",
- " [ 2, 6, 7, 3],\n",
- " [ 8, 0, 0, 0]],\n",
- "\n",
- " [[ 2, 4, 0, 0],\n",
- " [ 2, 5, 0, 0],\n",
- " [11, 12, 7, 3],\n",
- " [ 8, 0, 0, 0],\n",
- " [ 0, 0, 0, 0],\n",
- " [ 0, 0, 0, 0]]])}\n",
- "batch_y has: {'label': tensor([0, 1])}\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'\\n raw_sent正确输出,对应内容也进行了pad。\\n'"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 如果AutoPad与EngChar2DPadder不能满足需要,可以自己实现Padder对象。这里举一个例子,比如需要把raw_sentence pad到一样长\n",
- "from fastNLP.core.fieldarray import PadderBase\n",
- "\n",
- "class PadStr(PadderBase):\n",
- " def __init__(self, pad_val=' '):\n",
- " super().__init__(pad_val=pad_val) #让父类管理pad_val的值,这样可以通过DataSet.set_pad_val()修改到该值\n",
- " \n",
- " def __call__(self, contents, field_name, field_ele_dtype):\n",
- " \"\"\"\n",
- " 如果以上面的例子举例,在raw_sent这个field进行pad时,传入的\n",
- " contents:\n",
- " [\n",
- " 'This is a bad idea .',\n",
- " 'It is great .'\n",
- " ]\n",
- " field_name: 'raw_sent',当前field的名称,主要用于帮助debug。\n",
- " field_ele_dtype: np.str. 这个参数基本都用不上,是该field中内部元素的类型\n",
- " \"\"\"\n",
- " max_len = max([len(str_) for str_ in contents])\n",
- " pad_strs = []\n",
- " for content in contents:\n",
- " pad_strs.append(content + (max_len-len(content))*self.pad_val)\n",
- " return pad_strs\n",
- "\n",
- "dataset.set_input('raw_sent')\n",
- "dataset.set_padder('raw_sent', PadStr())\n",
- "batch_iterator = Batch(dataset=dataset, batch_size=2, sampler=RandomSampler())\n",
- "for batch_x, batch_y in batch_iterator:\n",
- " print(\"batch_x has: \", batch_x)\n",
- " print(\"batch_y has: \", batch_y)\n",
- "\n",
- "\"\"\"\n",
- " raw_sent正确输出,对应内容也进行了pad。\n",
- "\"\"\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|