You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

seq_labeling.py 3.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. import sys
  2. sys.path.append("..")
  3. from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
  4. from fastNLP.core.trainer import SeqLabelTrainer
  5. from fastNLP.loader.dataset_loader import POSDatasetLoader, BaseLoader
  6. from fastNLP.loader.preprocess import POSPreprocess, load_pickle
  7. from fastNLP.saver.model_saver import ModelSaver
  8. from fastNLP.loader.model_loader import ModelLoader
  9. from fastNLP.core.tester import SeqLabelTester
  10. from fastNLP.models.sequence_modeling import SeqLabeling
  11. from fastNLP.core.predictor import SeqLabelInfer
  12. data_name = "people.txt"
  13. data_path = "data_for_tests/people.txt"
  14. pickle_path = "data_for_tests"
  15. data_infer_path = "data_for_tests/people_infer.txt"
  16. def infer():
  17. # Load infer configuration, the same as test
  18. test_args = ConfigSection()
  19. ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
  20. # fetch dictionary size and number of labels from pickle files
  21. word2index = load_pickle(pickle_path, "word2id.pkl")
  22. test_args["vocab_size"] = len(word2index)
  23. index2label = load_pickle(pickle_path, "id2class.pkl")
  24. test_args["num_classes"] = len(index2label)
  25. # Define the same model
  26. model = SeqLabeling(test_args)
  27. # Dump trained parameters into the model
  28. ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
  29. print("model loaded!")
  30. # Data Loader
  31. raw_data_loader = BaseLoader(data_name, data_infer_path)
  32. infer_data = raw_data_loader.load_lines()
  33. """
  34. Transform strings into list of list of strings.
  35. [
  36. [word_11, word_12, ...],
  37. [word_21, word_22, ...],
  38. ...
  39. ]
  40. In this case, each line in "people_infer.txt" is already a sentence. So load_lines() just splits them.
  41. """
  42. # Inference interface
  43. infer = SeqLabelInfer(pickle_path)
  44. results = infer.predict(model, infer_data)
  45. for res in results:
  46. print(res)
  47. print("Inference finished!")
  48. def train_and_test():
  49. # Config Loader
  50. train_args = ConfigSection()
  51. ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args})
  52. # Data Loader
  53. pos_loader = POSDatasetLoader(data_name, data_path)
  54. train_data = pos_loader.load_lines()
  55. # Preprocessor
  56. p = POSPreprocess(train_data, pickle_path, train_dev_split=0.5)
  57. train_args["vocab_size"] = p.vocab_size
  58. train_args["num_classes"] = p.num_classes
  59. # Trainer
  60. trainer = SeqLabelTrainer(train_args)
  61. # Model
  62. model = SeqLabeling(train_args)
  63. # Start training
  64. trainer.train(model)
  65. print("Training finished!")
  66. # Saver
  67. saver = ModelSaver("./data_for_tests/saved_model.pkl")
  68. saver.save_pytorch(model)
  69. print("Model saved!")
  70. del model, trainer, pos_loader
  71. # Define the same model
  72. model = SeqLabeling(train_args)
  73. # Dump trained parameters into the model
  74. ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl")
  75. print("model loaded!")
  76. # Load test configuration
  77. test_args = ConfigSection()
  78. ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
  79. # Tester
  80. tester = SeqLabelTester(test_args)
  81. # Start testing
  82. tester.test(model)
  83. # print test results
  84. print(tester.show_matrices())
  85. print("model tested!")
  86. if __name__ == "__main__":
  87. train_and_test()
  88. # infer()

一款轻量级的自然语言处理(NLP)工具包,目标是减少用户项目中的工程型代码,例如数据处理循环、训练循环、多卡运行等