|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 使用 Callback 自定义你的训练过程"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "- 什么是 Callback\n",
- "- 使用 Callback \n",
- "- 一些常用的 Callback\n",
- "- 自定义实现 Callback"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "什么是Callback\n",
- "------\n",
- "\n",
- "Callback 是与 Trainer 紧密结合的模块,利用 Callback 可以在 Trainer 训练时,加入自定义的操作,比如梯度裁剪,学习率调节,测试模型的性能等。定义的 Callback 会在训练的特定阶段被调用。\n",
- "\n",
- "fastNLP 中提供了很多常用的 Callback ,开箱即用。"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "使用 Callback\n",
- " ------\n",
- "\n",
- "使用 Callback 很简单,将需要的 callback 按 list 存储,以对应参数 ``callbacks`` 传入对应的 Trainer。Trainer 在训练时就会自动执行这些 Callback 指定的操作了。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2019-09-17T07:34:46.465871Z",
- "start_time": "2019-09-17T07:34:30.648758Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "In total 3 datasets:\n",
- "\ttest has 1200 instances.\n",
- "\ttrain has 9600 instances.\n",
- "\tdev has 1200 instances.\n",
- "In total 2 vocabs:\n",
- "\tchars has 4409 entries.\n",
- "\ttarget has 2 entries.\n",
- "\n",
- "training epochs started 2019-09-17-03-34-34\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.1 seconds!\n",
- "Evaluation on dev at Epoch 1/3. Step:300/900: \n",
- "AccuracyMetric: acc=0.863333\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.11 seconds!\n",
- "Evaluation on dev at Epoch 2/3. Step:600/900: \n",
- "AccuracyMetric: acc=0.886667\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.1 seconds!\n",
- "Evaluation on dev at Epoch 3/3. Step:900/900: \n",
- "AccuracyMetric: acc=0.890833\n",
- "\n",
- "\r\n",
- "In Epoch:3/Step:900, got best dev performance:\n",
- "AccuracyMetric: acc=0.890833\n",
- "Reloaded the best model.\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import (Callback, EarlyStopCallback,\n",
- " Trainer, CrossEntropyLoss, AccuracyMetric)\n",
- "from fastNLP.models import CNNText\n",
- "import torch.cuda\n",
- "\n",
- "# prepare data\n",
- "def get_data():\n",
- " from fastNLP.io import ChnSentiCorpPipe as pipe\n",
- " data = pipe().process_from_file()\n",
- " print(data)\n",
- " data.rename_field('chars', 'words')\n",
- " train_data = data.datasets['train']\n",
- " dev_data = data.datasets['dev']\n",
- " test_data = data.datasets['test']\n",
- " vocab = data.vocabs['words']\n",
- " tgt_vocab = data.vocabs['target']\n",
- " return train_data, dev_data, test_data, vocab, tgt_vocab\n",
- "\n",
- "# prepare model\n",
- "train_data, dev_data, _, vocab, tgt_vocab = get_data()\n",
- "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n",
- "model = CNNText((len(vocab),50), num_classes=len(tgt_vocab))\n",
- "\n",
- "# define callback\n",
- "callbacks=[EarlyStopCallback(5)]\n",
- "\n",
- "# pass callbacks to Trainer\n",
- "def train_with_callback(cb_list):\n",
- " trainer = Trainer(\n",
- " device=device,\n",
- " n_epochs=3,\n",
- " model=model, \n",
- " train_data=train_data, \n",
- " dev_data=dev_data, \n",
- " loss=CrossEntropyLoss(), \n",
- " metrics=AccuracyMetric(), \n",
- " callbacks=cb_list, \n",
- " check_code_level=-1\n",
- " )\n",
- " trainer.train()\n",
- "\n",
- "train_with_callback(callbacks)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "fastNLP 中的 Callback\n",
- "-------\n",
- "fastNLP 中提供了很多常用的 Callback,如梯度裁剪,训练时早停和测试验证集,fitlog 等等。具体 Callback 请参考 fastNLP.core.callbacks"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2019-09-17T07:35:02.182727Z",
- "start_time": "2019-09-17T07:34:49.443863Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "training epochs started 2019-09-17-03-34-49\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.13 seconds!\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.12 seconds!\n",
- "Evaluation on data-test:\n",
- "AccuracyMetric: acc=0.890833\n",
- "Evaluation on dev at Epoch 1/3. Step:300/900: \n",
- "AccuracyMetric: acc=0.890833\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.09 seconds!\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.09 seconds!\n",
- "Evaluation on data-test:\n",
- "AccuracyMetric: acc=0.8875\n",
- "Evaluation on dev at Epoch 2/3. Step:600/900: \n",
- "AccuracyMetric: acc=0.8875\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.11 seconds!\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.1 seconds!\n",
- "Evaluation on data-test:\n",
- "AccuracyMetric: acc=0.885\n",
- "Evaluation on dev at Epoch 3/3. Step:900/900: \n",
- "AccuracyMetric: acc=0.885\n",
- "\n",
- "\r\n",
- "In Epoch:1/Step:300, got best dev performance:\n",
- "AccuracyMetric: acc=0.890833\n",
- "Reloaded the best model.\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import EarlyStopCallback, GradientClipCallback, EvaluateCallback\n",
- "callbacks = [\n",
- " EarlyStopCallback(5),\n",
- " GradientClipCallback(clip_value=5, clip_type='value'),\n",
- " EvaluateCallback(dev_data)\n",
- "]\n",
- "\n",
- "train_with_callback(callbacks)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "自定义 Callback\n",
- "------\n",
- "\n",
- "这里我们以一个简单的 Callback作为例子,它的作用是打印每一个 Epoch 平均训练 loss。\n",
- "\n",
- "#### 创建 Callback\n",
- " \n",
- "要自定义 Callback,我们要实现一个类,继承 fastNLP.Callback。\n",
- "\n",
- "这里我们定义 MyCallBack ,继承 fastNLP.Callback 。\n",
- "\n",
- "#### 指定 Callback 调用的阶段\n",
- " \n",
- "Callback 中所有以 on_ 开头的类方法会在 Trainer 的训练中在特定阶段调用。 如 on_train_begin() 会在训练开始时被调用,on_epoch_end() 会在每个 epoch 结束时调用。 具体有哪些类方法,参见 Callback 文档。\n",
- "\n",
- "这里, MyCallBack 在求得loss时调用 on_backward_begin() 记录当前 loss ,在每一个 epoch 结束时调用 on_epoch_end() ,求当前 epoch 平均loss并输出。\n",
- "\n",
- "#### 使用 Callback 的属性访问 Trainer 的内部信息\n",
- " \n",
- "为了方便使用,可以使用 Callback 的属性,访问 Trainer 中的对应信息,如 optimizer, epoch, n_epochs,分别对应训练时的优化器,当前 epoch 数,和总 epoch 数。 具体可访问的属性,参见文档 Callback 。\n",
- "\n",
- "这里, MyCallBack 为了求平均 loss ,需要知道当前 epoch 的总步数,可以通过 self.step 属性得到当前训练了多少步。\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2019-09-17T07:43:10.907139Z",
- "start_time": "2019-09-17T07:42:58.488177Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "training epochs started 2019-09-17-03-42-58\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.11 seconds!\n",
- "Evaluation on dev at Epoch 1/3. Step:300/900: \n",
- "AccuracyMetric: acc=0.883333\n",
- "\n",
- "Avg loss at epoch 1, 0.100254\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.1 seconds!\n",
- "Evaluation on dev at Epoch 2/3. Step:600/900: \n",
- "AccuracyMetric: acc=0.8775\n",
- "\n",
- "Avg loss at epoch 2, 0.183511\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate data in 0.13 seconds!\n",
- "Evaluation on dev at Epoch 3/3. Step:900/900: \n",
- "AccuracyMetric: acc=0.875833\n",
- "\n",
- "Avg loss at epoch 3, 0.257103\n",
- "\r\n",
- "In Epoch:1/Step:300, got best dev performance:\n",
- "AccuracyMetric: acc=0.883333\n",
- "Reloaded the best model.\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import Callback\n",
- "from fastNLP import logger\n",
- "\n",
- "class MyCallBack(Callback):\n",
- " \"\"\"Print average loss in each epoch\"\"\"\n",
- " def __init__(self):\n",
- " super().__init__()\n",
- " self.total_loss = 0\n",
- " self.start_step = 0\n",
- " \n",
- " def on_backward_begin(self, loss):\n",
- " self.total_loss += loss.item()\n",
- " \n",
- " def on_epoch_end(self):\n",
- " n_steps = self.step - self.start_step\n",
- " avg_loss = self.total_loss / n_steps\n",
- " logger.info('Avg loss at epoch %d, %.6f', self.epoch, avg_loss)\n",
- " self.start_step = self.step\n",
- "\n",
- "callbacks = [MyCallBack()]\n",
- "train_with_callback(callbacks)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.3"
- },
- "varInspector": {
- "cols": {
- "lenName": 16,
- "lenType": 16,
- "lenVar": 40
- },
- "kernels_config": {
- "python": {
- "delete_cmd_postfix": "",
- "delete_cmd_prefix": "del ",
- "library": "var_list.py",
- "varRefreshCmd": "print(var_dic_list())"
- },
- "r": {
- "delete_cmd_postfix": ") ",
- "delete_cmd_prefix": "rm(",
- "library": "var_list.r",
- "varRefreshCmd": "cat(var_dic_list()) "
- }
- },
- "types_to_exclude": [
- "module",
- "function",
- "builtin_function_or_method",
- "instance",
- "_Feature"
- ],
- "window_display": false
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
- }
|