Browse Source

增加了教程的代码下载

tags/v0.5.5
ChenXin 5 years ago
parent
commit
347efcedb7
12 changed files with 78 additions and 2 deletions
  1. +5
    -0
      docs/source/tutorials/extend_1_bert_embedding.rst
  2. +6
    -0
      docs/source/tutorials/tutorial_1_data_preprocess.rst
  3. +8
    -1
      docs/source/tutorials/tutorial_2_vocabulary.rst
  4. +7
    -0
      docs/source/tutorials/tutorial_3_embedding.rst
  5. +7
    -0
      docs/source/tutorials/tutorial_4_load_dataset.rst
  6. +6
    -0
      docs/source/tutorials/tutorial_5_loss_optimizer.rst
  7. +6
    -0
      docs/source/tutorials/tutorial_6_datasetiter.rst
  8. +6
    -0
      docs/source/tutorials/tutorial_7_metrics.rst
  9. +7
    -0
      docs/source/tutorials/tutorial_8_modules_models.rst
  10. +6
    -0
      docs/source/tutorials/tutorial_9_callback.rst
  11. +8
    -1
      docs/source/tutorials/序列标注.rst
  12. +6
    -0
      docs/source/tutorials/文本分类.rst

+ 5
- 0
docs/source/tutorials/extend_1_bert_embedding.rst View File

@@ -222,3 +222,8 @@ Bert自从在 `BERT: Pre-training of Deep Bidirectional Transformers for Languag
CMRC2018Metric: f1=85.61, em=66.08


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/extend_1_bert_embedding.ipynb>`_)

+ 6
- 0
docs/source/tutorials/tutorial_1_data_preprocess.rst View File

@@ -162,3 +162,9 @@ fastNLP中field的命名习惯
- **chars**: 表示已经切分为单独的汉字的序列。例如["这", "是", "一", "个", "示", "例", "。"]。但由于神经网络不能识别汉字,所以一般该列会被转为int形式,如[3, 4, 5, 6, ...]。
- **target**: 表示目标值。分类场景下,只有一个值;序列标注场景下是一个序列
- **seq_len**: 表示输入序列的长度

----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_1_data_preprocess.ipynb>`_)

+ 8
- 1
docs/source/tutorials/tutorial_2_vocabulary.rst View File

@@ -128,4 +128,11 @@ fastNLP中的Vocabulary

首先train和test都能够从预训练中找到对应的vector,所以它们是各自的vector表示; only_in_train在预训练中找不到,StaticEmbedding为它
新建了一个entry,所以它有一个单独的vector; 而only_in_test在预训练中找不到改词,因此被指向了unk的值(fastNLP用零向量初始化unk),与最后一行unk的
表示相同。
表示相同。


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_2_vocabulary.ipynb>`_)

+ 7
- 0
docs/source/tutorials/tutorial_3_embedding.rst View File

@@ -451,3 +451,10 @@ fastNLP通过在 :class:`~fastNLP.embeddings.StaticEmbedding` 增加了一个min
tensor([[ 0.6707, -0.5786, -0.6967, 0.0111, 0.1209]], grad_fn=<EmbeddingBackward>) # unk

可以看到a不再和最后一行的unknown共享一个表示了,这是由于a与A都算入了a的词频,且A的表示也是a的表示。


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_3_embedding.ipynb>`_)

+ 7
- 0
docs/source/tutorials/tutorial_4_load_dataset.rst View File

@@ -208,3 +208,10 @@ Part V: 不同格式类型的基础Loader
"A person on a horse jumps over a broken down airplane.", "A person is training his horse for a competition.", "neutral"
"A person on a horse jumps over a broken down airplane.", "A person is at a diner, ordering an omelette.", "contradiction"
"A person on a horse jumps over a broken down airplane.", "A person is outdoors, on a horse.", "entailment"


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_4_load_dataset.ipynb>`_)

+ 6
- 0
docs/source/tutorials/tutorial_5_loss_optimizer.rst View File

@@ -238,3 +238,9 @@
Evaluate data in 0.43 seconds!
[tester]
AccuracyMetric: acc=0.773333

----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_5_loss_optimizer.ipynb>`_)

+ 6
- 0
docs/source/tutorials/tutorial_6_datasetiter.rst View File

@@ -413,3 +413,9 @@ Dataset个性化padding
AccuracyMetric: acc=0.786667



----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_6_datasetiter.ipynb>`_)

+ 6
- 0
docs/source/tutorials/tutorial_7_metrics.rst View File

@@ -125,3 +125,9 @@
self.evaluate将计算一个批次(batch)的评价指标,并累计。 没有返回值
self.get_metric将统计当前的评价指标并返回评价结果, 返回值需要是一个dict, key是指标名称,value是指标的值


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_7_metrics.ipynb>`_)

+ 7
- 0
docs/source/tutorials/tutorial_8_modules_models.rst View File

@@ -182,3 +182,10 @@ FastNLP 中包含的各种模块如下表,您可以点击具体的名称查看
:class:`~fastNLP.modules.viterbi_decode` , 给定一个特征矩阵以及转移分数矩阵,计算出最佳的路径以及对应的分数 (与 :class:`~fastNLP.modules.ConditionalRandomField` 配合使用)
:class:`~fastNLP.modules.allowed_transitions` , 给定一个id到label的映射表,返回所有可以跳转的列表(与 :class:`~fastNLP.modules.ConditionalRandomField` 配合使用)
:class:`~fastNLP.modules.TimestepDropout` , 简单包装过的Dropout 组件


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_8_modules_models.ipynb>`_)

+ 6
- 0
docs/source/tutorials/tutorial_9_callback.rst View File

@@ -130,3 +130,9 @@ fastNLP 中提供了很多常用的 Callback,如梯度裁剪,训练时早停
callbacks = [MyCallBack()]
train_with_callback(callbacks)


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/tutorial_9_callback.ipynb>`_)

+ 8
- 1
docs/source/tutorials/序列标注.rst View File

@@ -196,4 +196,11 @@ fastNLP的数据载入主要是由Loader与Pipe两个基类衔接完成的,您
[tester]
SpanFPreRecMetric: f=0.641774, pre=0.626424, rec=0.657895

可以看出通过使用Bert,效果有明显的提升,从48.2提升到了64.1。
可以看出通过使用Bert,效果有明显的提升,从48.2提升到了64.1。


----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/%E5%BA%8F%E5%88%97%E6%A0%87%E6%B3%A8.ipynb>`_)

+ 6
- 0
docs/source/tutorials/文本分类.rst View File

@@ -368,3 +368,9 @@ fastNLP提供了Trainer对象来组织训练过程,包括完成loss计算(所
{'AccuracyMetric': {'acc': 0.919167}}



----------------------------------
代码下载
----------------------------------

`点击下载 IPython Notebook 文件 <https://sourcegraph.com/github.com/fastnlp/fastNLP@master/-/raw/tutorials/%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB.ipynb>`_)

Loading…
Cancel
Save