@@ -20,6 +20,7 @@ class ProgressCallback(HasMonitorCallback): | |||
must_have_monitor=must_have_monitor) | |||
self.best_monitor_epoch = -1 | |||
self.best_monitor_step = -1 | |||
self.best_results = None | |||
def record_better_monitor(self, trainer): | |||
self.best_monitor_step = trainer.global_forward_batches | |||
@@ -29,6 +30,8 @@ class ProgressCallback(HasMonitorCallback): | |||
if self.best_monitor_epoch != -1: | |||
msg = f"The best performance for monitor {self._real_monitor}:{self.monitor_value} was achieved in" \ | |||
f" Epoch:{self.best_monitor_epoch}, Global Batch:{self.best_monitor_step}." | |||
if self.best_results is not None: | |||
msg = msg + ' The evaluation result: \n' + str(self.best_results) | |||
logger.info(msg) | |||
@property | |||
@@ -147,9 +150,11 @@ class RichCallback(ProgressCallback): | |||
results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | |||
not key.startswith('_')} | |||
if self.format_json: | |||
self.progress_bar.console.print_json(json.dumps(results)) | |||
results = json.dumps(results) | |||
self.progress_bar.console.print_json(results) | |||
else: | |||
self.progress_bar.print(results) | |||
self.best_results = results | |||
def clear_tasks(self): | |||
for key, taskid in self.task2id.items(): | |||
@@ -227,9 +232,9 @@ class RawTextCallback(ProgressCallback): | |||
results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | |||
not key.startswith('_')} | |||
if self.format_json: | |||
logger.info(json.dumps(results)) | |||
else: | |||
logger.info(results) | |||
results = json.dumps(results) | |||
logger.info(results) | |||
self.best_results = results | |||
@property | |||
def name(self): # progress bar的名称 | |||
@@ -316,9 +321,9 @@ class TqdmCallback(ProgressCallback): | |||
results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | |||
not key.startswith('_')} | |||
if self.format_json: | |||
logger.info(json.dumps(results)) | |||
else: | |||
logger.info(results) | |||
results = json.dumps(results) | |||
logger.info(results) | |||
self.best_results = results | |||
def clear_tasks(self): | |||
for key, taskid in self.task2id.items(): | |||
@@ -119,19 +119,6 @@ class Trainer(TrainerEventTrigger): | |||
对于使用 ``TorchDDPDriver`` 的更多细节,请见 :class:`~fastNLP.core.drivers.torch_driver.TorchDDPDriver`。 | |||
:param n_epochs: 训练总共的 epoch 的数量,默认为 20;也可以通过 ``n_batches`` 参数设置总共迭代多少个 ``batch`` 。 | |||
:param overfit_batches: 使用该参数来支持 '过拟合' 的功能;支持的值为 ``-1``、``0`` 或者 大于 0 的整数,表示使用多少 batch 的数据 | |||
来进行过拟合训练;其中 0 为 默认值表示不进行过拟合;-1 表示使用所有的数据进行训练; | |||
.. note:: | |||
您可以使用该参数来简单地查看您的模型是否是 '正确的',即您的模型是否能够在少量的数据上快速进行收敛,从而说明损失函数以及优化器等 | |||
没有问题。当使用该参数时,我们会直接从 ``train_dataloader`` 中提取固定大小的 batch,然后在之后的所有 epoch 中都是用这些数据来进行过拟合训练; | |||
.. warning:: | |||
在使用该参数时,您同样可以指定 ``metrics`` 参数来进行简单的验证,当该参数和 ``metrics`` 同时出现时,我们会将 evaluate_dataloaders | |||
直接替换为在过拟合中所使用的训练数据;因此您需要保证您的 ``metrics`` 是能够在 ``train_dataloader`` 上使用的; | |||
:param evaluate_dataloaders: 验证数据集,其可以是单独的一个数据集,也可以是多个数据集;当为多个数据集时,注意其必须是 Dict;默认 | |||
为 None; | |||
:param batch_step_fn: 定制每次训练时前向运行一个 batch 的数据所执行的函数。该函数应接受两个参数为 ``trainer`` 和 ``batch``, | |||
@@ -258,7 +245,20 @@ class Trainer(TrainerEventTrigger): | |||
注意该参数仅当 ``Trainer`` 内置的 ``Evaluator`` 不为 None 时且有需要该参数但是没有设置该参数的 *callback* 实例才有效; | |||
:param n_batches: 迭代多少个 ``batch`` 的训练结束。当该值不为 -1 时,将直接忽略 ``n_epochs`` 的值。 | |||
:param n_batches: 总共迭代多少个 ``batch`` 的训练结束。当该值不为 -1 时,将直接忽略 ``n_epochs`` 的值。 | |||
:param overfit_batches: 使用该参数来支持 '过拟合' 的功能;支持的值为 ``-1``、``0`` 或者 大于 0 的整数,表示使用多少个 batch 的数据 | |||
来进行过拟合训练;其中 0 为表示不进行任何操作;-1 表示使用所有的数据进行训练; | |||
.. note:: | |||
您可以使用该参数来简单地查看您的模型是否是 '正确的',即您的模型是否能够在少量的数据上快速进行收敛,从而说明损失函数以及优化器等 | |||
没有问题。当使用该参数时,我们会直接从 ``train_dataloader`` 中提取固定数量的 batch,然后在所有 epoch 中都是用这些数据 | |||
来进行训练; | |||
.. warning:: | |||
在使用该参数时,您同样可以指定 ``metrics`` 参数来进行简单的验证,当该参数和 ``metrics`` 同时出现时,我们会将 evaluate_dataloaders | |||
直接替换为在过拟合中所使用的训练数据;因此您需要保证您的 ``metrics`` 是能够在 ``train_dataloader`` 上使用的; | |||
:param marker: 用于标记一个 ``Trainer`` 实例,从而在用户调用 ``Trainer.on`` 函数时,标记该函数属于哪一个具体的 ``Trainer`` 实例;默认为 None; | |||
@@ -370,7 +370,6 @@ class Trainer(TrainerEventTrigger): | |||
optimizers, | |||
device: Optional[Union[int, List[int], str]] = "cpu", | |||
n_epochs: int = 20, | |||
overfit_batches: int = 0, | |||
evaluate_dataloaders=None, | |||
batch_step_fn: Optional[Callable] = None, | |||
evaluate_batch_step_fn: Optional[Callable] = None, | |||
@@ -387,6 +386,7 @@ class Trainer(TrainerEventTrigger): | |||
monitor: Union[str, Callable] = None, | |||
larger_better: bool = True, | |||
n_batches: int = -1, | |||
overfit_batches: int = 0, | |||
marker: Optional[str] = None, | |||
**kwargs | |||
): | |||
@@ -522,8 +522,6 @@ class Trainer(TrainerEventTrigger): | |||
self.larger_better = larger_better | |||
if metrics is not None: | |||
if overfit_batches != 0: | |||
logger.warning("Notice you are trying to 'overfit' the model and also using 'metrics', it may cause error " | |||
"because 'metrics' are prepared for 'evaluate_dataloaders', but now 'train_dataloader'.") | |||
evaluate_dataloaders = self.dataloader | |||
if evaluate_dataloaders is not None: | |||
check_evaluate_every(evaluate_every) | |||
@@ -120,20 +120,13 @@ class OverfitDataLoader: | |||
def __init__(self, dataloader, overfit_batches: int): | |||
self.dataloader = dataloader # 需要将实际的 dataloader 挂载到该对象上,从而应付一些对于实际的 dataloader 的操作; | |||
self.batches = [] | |||
self.overfit_batches = int(overfit_batches) | |||
if isinstance(overfit_batches, int): | |||
if overfit_batches < 0 and overfit_batches != -1: | |||
raise ValueError("Parameter 'overfit_batches' can only be '-1' when it is smaller than 0, and it means" | |||
"that you use all the data to check whether it could be overfitted.") | |||
else: | |||
raise TypeError("Parameter 'overfit_batches' can only be 'int' type, check the parameter you input into 'Trainer'.") | |||
if overfit_batches > len(dataloader): | |||
logger.warning("Parameter 'overfit_batches' is bigger than the real length of 'train dataloader'.") | |||
if self.overfit_batches > len(dataloader): | |||
logger.warning("Parameter 'overfit_batches' is bigger than the length of 'train_dataloader'.") | |||
for idx, batch in enumerate(dataloader): | |||
if idx < overfit_batches or overfit_batches == -1: | |||
if idx < self.overfit_batches or self.overfit_batches < -1: | |||
self.batches.append(batch) | |||
def __len__(self): | |||
@@ -140,9 +140,6 @@ if _NEED_IMPORT_TORCH: | |||
import torch.distributed as dist | |||
from torch.nn.parallel import DistributedDataParallel | |||
from torch.utils.data import BatchSampler | |||
from torch.utils.data import RandomSampler as TorchRandomSampler | |||
from torch.utils.data import SequentialSampler as TorchSequentialSampler | |||
from torch.utils.data import BatchSampler as TorchBatchSampler | |||
__all__ = [ | |||
'TorchDDPDriver' | |||
@@ -181,18 +181,16 @@ def replace_sampler(dataloader: "DataLoader", sampler): | |||
instance_attrs = {k: v for k, v in vars(dataloader).items() if not k.startswith('_')} | |||
# 'multiprocessing_context' 是 user-defined function; | |||
instance_attrs["multiprocessing_context"] = dataloader.multiprocessing_context | |||
if getattr(dataloader, 'multiprocessing_context', None) is not None: | |||
instance_attrs["multiprocessing_context"] = dataloader.multiprocessing_context | |||
# 拿到 dataloader '__init__' 函数的默认函数签名; | |||
init_params = dict(inspect.signature(dataloader.__init__).parameters) | |||
# 这里为什么要单独弄的原因在于,用户在定制自己的 dataloader 的同时可能为了方便只设定一些参数,而后面直接使用 **kwargs 的方式,这时如果 | |||
# 其在初始化自己的 dataloader 实例的时候加入了一些其它的新的参数(首先这一步是必要的,因为我们只能通过这样加 sampler;另一方面,用户 | |||
# 可能确实通过 **kwargs 加入了一些新的参数),如果假设用户是这样使用的: "super().__init__(**kwargs)",那么我们就只能去 DataLoader | |||
# 中寻找; | |||
# 防止用户的 DataLoader 是继承了 pytorch 的 DataLoader,然后还是使用了 **kwargs 的方式对父类传参数 | |||
has_variadic_kwargs = any(v.kind is v.VAR_KEYWORD for k, v in init_params.items()) | |||
if has_variadic_kwargs: | |||
# 这里之所以这样写是因为用户自己定制的 Dataloader 中名字一样的参数所设置的默认值可能不同;因此不能直接使用 update 覆盖掉了; | |||
if has_variadic_kwargs and isinstance(dataloader, DataLoader): | |||
# 防止用户写入了 super().__init__(**kwargs) | |||
for key, value in dict(inspect.signature(DataLoader.__init__).parameters).items(): | |||
if key not in init_params and key != 'self': | |||
init_params[key] = value | |||
@@ -204,7 +202,8 @@ def replace_sampler(dataloader: "DataLoader", sampler): | |||
non_default_params.add("dataset") | |||
reconstruct_args = {k: v for k, v in instance_attrs.items() if k in non_default_params} | |||
reconstruct_args.update({"sampler": sampler, "shuffle": False, "batch_sampler": None}) | |||
if isinstance(dataloader, DataLoader): | |||
reconstruct_args.update({"sampler": sampler, "shuffle": False, "batch_sampler": None}) | |||
batch_sampler = getattr(dataloader, "batch_sampler") | |||
if batch_sampler is not None and isinstance(batch_sampler, ReproducibleBatchSampler): | |||
@@ -218,35 +217,31 @@ def replace_sampler(dataloader: "DataLoader", sampler): | |||
and p.name not in reconstruct_args | |||
} | |||
# 这种错误针对的是 __init__ 中的参数没有用同样名字的 self 挂上; | |||
# 在 attribute 中没有找到这些参数,导致了没有办法重新初始化 | |||
if required_args: | |||
required_args = sorted(required_args) | |||
dataloader_self_name = dataloader.__class__.__name__ | |||
raise Exception( | |||
f"Trying to inject `DistributedSampler` into the `{dataloader_self_name}` instance. " | |||
"This would fail as some of the `__init__` arguments are not available as instance attributes. " | |||
f"The missing attributes are {required_args}. " | |||
f"HINT: If you wrote the `{dataloader_self_name}` class, define `self.missing_arg_name` or " | |||
"manually add the `DistributedSampler` as: " | |||
f"`{dataloader_self_name}(dataset, sampler=DistributedSampler(dataset))`." | |||
f"Need to inject arguments {required_args} into the __init__ of `{dataloader_self_name}`. " | |||
f"But they are not found in the attribute of `{dataloader_self_name}`, fastNLP cannot determine its " | |||
f"value when try to reinitialize `{dataloader_self_name}`, please add `{required_args}` to be " | |||
f"`{dataloader_self_name}`'s attribute." | |||
) | |||
# 这种错误针对的是传入的 dataloader 不是直接的 DataLoader,而是定制了 DataLoader,但是 __init__ 中没有 **kwargs; | |||
if not has_variadic_kwargs: | |||
# the dataloader signature does not allow keyword arguments that need to be passed | |||
missing_kwargs = reconstruct_args.keys() - init_params.keys() | |||
if missing_kwargs: | |||
missing_kwargs = sorted(missing_kwargs) | |||
dataloader_self_name = dataloader.__class__.__name__ | |||
raise Exception( | |||
f"Trying to inject `DistributedSampler` into the `{dataloader_self_name}` instance. " | |||
"This would fail as it doesn't expose all its attributes in the `__init__` signature. " | |||
f"The missing arguments are {missing_kwargs}. " | |||
f"HINT: If you wrote the `{dataloader_self_name}` class, add the `__init__` arguments or " | |||
"manually add the `DistributedSampler` as: " | |||
f"`{dataloader_self_name}(dataset, sampler=DistributedSampler(dataset))`." | |||
f"The parameter:{missing_kwargs} needed to reinitialize `{dataloader_self_name}` is not found." | |||
) | |||
# 如果没有kwargs,则保证一下只传入需要的参数 | |||
if not isinstance(dataloader, DataLoader): | |||
reconstruct_args = {key:value for key,value in reconstruct_args.items() if key in init_params} | |||
return type(dataloader)(**reconstruct_args) | |||
@@ -260,6 +255,13 @@ def replace_batch_sampler(dataloader, new_batch_sampler): | |||
params_keys.remove(k) | |||
params = {k: getattr(dataloader, k) for k in params_keys} | |||
params["batch_sampler"] = new_batch_sampler | |||
if not isinstance(dataloader, DataLoader): | |||
init_params = dict(inspect.signature(dataloader.__init__).parameters) | |||
has_variadic_kwargs = any(v.kind is v.VAR_KEYWORD for k, v in init_params.items()) | |||
if not has_variadic_kwargs: | |||
params = {key:value for key,value in params.items() if key in init_params} | |||
return type(dataloader)(**params) | |||
@@ -98,7 +98,7 @@ class Metric: | |||
return _wrap_get_metric | |||
def __setattr__(self, key, value): | |||
if hasattr(self, '_cannot_change_element') and self._cannot_change_element is True: | |||
if getattr(self, '_cannot_change_element', False): | |||
if key in self.elements and isinstance(value, (float, int, bool)): | |||
self.elements[key].fill_value(value) | |||
return | |||
@@ -109,6 +109,14 @@ class Metric: | |||
raise RuntimeError("Please use register_element() function to add Element.") | |||
object.__setattr__(self, key, value) | |||
# 当调用 __getattribute__ 没有找到时才会触发这个, 保留这个的目的只是为了防止 ide 的 warning | |||
def __getattr__(self, name: str) -> Element: | |||
if 'elements' in self.__dict__: | |||
elements = self.__dict__['elements'] | |||
if name in elements: | |||
return elements[name] | |||
raise AttributeError("`{}` object has no attribute `{}`.".format(type(self).__name__, name)) | |||
def _wrap_update(self, update): | |||
@functools.wraps(update) | |||
def _wrap_update(*args, **kwargs): | |||