Browse Source

add tutorial

tags/v0.4.10
yh 5 years ago
parent
commit
6d8b4483f1
3 changed files with 875 additions and 0 deletions
  1. BIN
      tutorials/cn_cls_example.png
  2. +41
    -0
      tutorials/命名实体识别.ipynb
  3. +834
    -0
      tutorials/文本分类.ipynb

BIN
tutorials/cn_cls_example.png View File

Before After
Width: 722  |  Height: 317  |  Size: 162 kB

+ 41
- 0
tutorials/命名实体识别.ipynb View File

@@ -0,0 +1,41 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"##1. 命名实体识别(name entity recognition, NER)\n",
"命名实体识别任务是从文本中抽取出具有特殊意义或者指代性非常强的实体,通常包括人名、地名、机构名和时间等。\n",
"如下面的例子中\n",
"\n",
"我来自复旦大学。\n",
"\n",
"其中“复旦大学”就是一个机构名,命名实体识别就是要从中识别出“复旦大学”这四个字是一个整体,且属于机构名这个类别。这个问题现在一般被转换为了\n",
"在本tutorial中我们将通过fastNLP尝试写出一个\n",
"\n",
"##2. 数据\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

+ 834
- 0
tutorials/文本分类.ipynb View File

@@ -0,0 +1,834 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 文本分类(Text classification)\n",
"文本分类任务是将一句话或一段话划分到某个具体的类别。比如垃圾邮件识别,文本情绪分类等。\n",
"\n",
"Example:: \n",
"1,商务大床房,房间很大,床有2M宽,整体感觉经济实惠不错!\n",
"\n",
"\n",
"其中开头的1是只这条评论的标签,表示是正面的情绪。我们将使用到的数据可以通过http://dbcloud.irocn.cn:8989/api/public/dl/dataset/chn_senti_corp.zip 下载并解压,当然也可以通过fastNLP自动下载该数据。\n",
"\n",
"数据中的内容如下图所示。接下来,我们将用fastNLP在这个数据上训练一个分类网络。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![jupyter](./cn_cls_example.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 步骤\n",
"一共有以下的几个步骤 \n",
"(1) 读取数据 \n",
"(2) 预处理数据 \n",
"(3) 选择预训练词向量 \n",
"(4) 创建模型 \n",
"(5) 训练模型 "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (1) 读取数据\n",
"fastNLP提供多种数据的自动下载与自动加载功能,对于这里我们要用到的数据,我们可以用\\ref{Loader}自动下载并加载该数据。更多有关Loader的使用可以参考\\ref{Loader}"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP.io import ChnSentiCorpLoader\n",
"\n",
"loader = ChnSentiCorpLoader() # 初始化一个中文情感分类的loader\n",
"data_dir = loader.download() # 这一行代码将自动下载数据到默认的缓存地址, 并将该地址返回\n",
"data_bundle = loader.load(data_dir) # 这一行代码将从{data_dir}处读取数据至DataBundle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"DataBundle的相关介绍,可以参考\\ref{}。我们可以打印该data_bundle的基本信息。"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In total 3 datasets:\n",
"\tdev has 1200 instances.\n",
"\ttrain has 9600 instances.\n",
"\ttest has 1200 instances.\n",
"In total 0 vocabs:\n",
"\n"
]
}
],
"source": [
"print(data_bundle)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"可以看出,该data_bundle中一个含有三个\\ref{DataSet}。通过下面的代码,我们可以查看DataSet的基本情况"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DataSet({'raw_chars': 选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般 type=str,\n",
"'target': 1 type=str},\n",
"{'raw_chars': 15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错 type=str,\n",
"'target': 1 type=str})\n"
]
}
],
"source": [
"print(data_bundle.get_dataset('train')[:2]) # 查看Train集前两个sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (2) 预处理数据\n",
"在NLP任务中,预处理一般包括: (a)将一整句话切分成汉字或者词; (b)将文本转换为index \n",
"\n",
"fastNLP中也提供了多种数据集的处理类,这里我们直接使用fastNLP的ChnSentiCorpPipe。更多关于Pipe的说明可以参考\\ref{Pipe}。"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP.io import ChnSentiCorpPipe\n",
"\n",
"pipe = ChnSentiCorpPipe()\n",
"data_bundle = pipe.process(data_bundle) # 所有的Pipe都实现了process()方法,且输入输出都为DataBundle类型"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In total 3 datasets:\n",
"\tdev has 1200 instances.\n",
"\ttrain has 9600 instances.\n",
"\ttest has 1200 instances.\n",
"In total 2 vocabs:\n",
"\tchars has 4409 entries.\n",
"\ttarget has 2 entries.\n",
"\n"
]
}
],
"source": [
"print(data_bundle) # 打印data_bundle,查看其变化"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"可以看到除了之前已经包含的3个\\ref{DataSet}, 还新增了两个\\ref{Vocabulary}。我们可以打印DataSet中的内容"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DataSet({'raw_chars': 选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般 type=str,\n",
"'target': 1 type=int,\n",
"'chars': [338, 464, 1400, 784, 468, 739, 3, 289, 151, 21, 5, 88, 143, 2, 9, 81, 134, 2573, 766, 233, 196, 23, 536, 342, 297, 2, 405, 698, 132, 281, 74, 744, 1048, 74, 420, 387, 74, 412, 433, 74, 2021, 180, 8, 219, 1929, 213, 4, 34, 31, 96, 363, 8, 230, 2, 66, 18, 229, 331, 768, 4, 11, 1094, 479, 17, 35, 593, 3, 1126, 967, 2, 151, 245, 12, 44, 2, 6, 52, 260, 263, 635, 5, 152, 162, 4, 11, 336, 3, 154, 132, 5, 236, 443, 3, 2, 18, 229, 761, 700, 4, 11, 48, 59, 653, 2, 8, 230] type=list,\n",
"'seq_len': 106 type=int},\n",
"{'raw_chars': 15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错 type=str,\n",
"'target': 1 type=int,\n",
"'chars': [50, 133, 20, 135, 945, 520, 343, 24, 3, 301, 176, 350, 86, 785, 2, 456, 24, 461, 163, 443, 128, 109, 6, 47, 7, 2, 916, 152, 162, 524, 296, 44, 301, 176, 2, 1384, 524, 296, 259, 88, 143, 2, 92, 67, 26, 12, 277, 269, 2, 188, 223, 26, 228, 83, 6, 63] type=list,\n",
"'seq_len': 56 type=int})\n"
]
}
],
"source": [
"print(data_bundle.get_dataset('train')[:2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"新增了一列为数字列表的chars,以及变为数字的target列。可以看出这两列的名称和刚好与data_bundle中两个Vocabulary的名称是一致的,我们可以打印一下Vocabulary看一下里面的内容。"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vocabulary(['选', '择', '珠', '江', '花']...)\n"
]
}
],
"source": [
"char_vocab = data_bundle.get_vocab('chars')\n",
"print(char_vocab)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Vocabulary是一个记录着词语与index之间映射关系的类,比如"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'选'的index是338\n",
"index:338对应的汉字是选\n"
]
}
],
"source": [
"index = char_vocab.to_index('选')\n",
"print(\"'选'的index是{}\".format(index)) # 这个值与上面打印出来的第一个instance的chars的第一个index是一致的\n",
"print(\"index:{}对应的汉字是{}\".format(index, char_vocab.to_word(index))) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (3) 选择预训练词向量 \n",
"由于Word2vec, Glove, Elmo, Bert等预训练模型可以增强模型的性能,所以在训练具体任务前,选择合适的预训练词向量非常重要。在fastNLP中我们提供了多种Embedding使得加载这些预训练模型的过程变得更加便捷。更多关于Embedding的说明可以参考\\ref{Embedding}。这里我们先给出一个使用word2vec的中文汉字预训练的示例,之后再给出一个使用Bert的文本分类。这里使用的预训练词向量为'cn-fastnlp-100d',fastNLP将自动下载该embedding至本地缓存,fastNLP支持使用名字指定的Embedding以及相关说明可以参见\\ref{Embedding}"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 4321 out of 4409 words in the pre-training embedding.\n"
]
}
],
"source": [
"from fastNLP.embeddings import StaticEmbedding\n",
"\n",
"word2vec_embed = StaticEmbedding(char_vocab, model_dir_or_name='cn-char-fastnlp-100d')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (4) 创建模型\n",
"这里我们使用到的模型结构如下所示,补图"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from torch import nn\n",
"from fastNLP.modules import LSTM\n",
"import torch\n",
"\n",
"# 定义模型\n",
"class BiLSTMMaxPoolCls(nn.Module):\n",
" def __init__(self, embed, num_classes, hidden_size=400, num_layers=1, dropout=0.3):\n",
" super().__init__()\n",
" self.embed = embed\n",
" \n",
" self.lstm = LSTM(self.embed.embedding_dim, hidden_size=hidden_size//2, num_layers=num_layers, \n",
" batch_first=True, bidirectional=True)\n",
" self.dropout_layer = nn.Dropout(dropout)\n",
" self.fc = nn.Linear(hidden_size, num_classes)\n",
" \n",
" def forward(self, chars, seq_len): # 这里的名称必须和DataSet中相应的field对应,比如之前我们DataSet中有chars,这里就必须为chars\n",
" # chars:[batch_size, max_len]\n",
" # seq_len: [batch_size, ]\n",
" chars = self.embed(chars)\n",
" outputs, _ = self.lstm(chars, seq_len)\n",
" outputs = self.dropout_layer(outputs)\n",
" outputs, _ = torch.max(outputs, dim=1)\n",
" outputs = self.fc(outputs)\n",
" \n",
" return {'pred':outputs} # [batch_size,], 返回值必须是dict类型,且预测值的key建议设为pred\n",
"\n",
"# 初始化模型\n",
"model = BiLSTMMaxPoolCls(word2vec_embed, len(data_bundle.get_vocab('target')))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### (5) 训练模型\n",
"fastNLP提供了Trainer对象来组织训练过程,包括完成loss计算(所以在初始化Trainer的时候需要指定loss类型),梯度更新(所以在初始化Trainer的时候需要提供优化器optimizer)以及在验证集上的性能验证(所以在初始化时需要提供一个Metric)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tchars: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 106]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"Evaluate data in 0.01 seconds!\n",
"training epochs started 2019-09-03-23-57-10\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=3000), HTML(value='')), layout=Layout(display…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 1/10. Step:300/3000: \n",
"\r",
"AccuracyMetric: acc=0.81\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 2/10. Step:600/3000: \n",
"\r",
"AccuracyMetric: acc=0.8675\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 3/10. Step:900/3000: \n",
"\r",
"AccuracyMetric: acc=0.878333\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 4/10. Step:1200/3000: \n",
"\r",
"AccuracyMetric: acc=0.873333\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 5/10. Step:1500/3000: \n",
"\r",
"AccuracyMetric: acc=0.878333\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.42 seconds!\n",
"\r",
"Evaluation on dev at Epoch 6/10. Step:1800/3000: \n",
"\r",
"AccuracyMetric: acc=0.895833\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.44 seconds!\n",
"\r",
"Evaluation on dev at Epoch 7/10. Step:2100/3000: \n",
"\r",
"AccuracyMetric: acc=0.8975\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 8/10. Step:2400/3000: \n",
"\r",
"AccuracyMetric: acc=0.894167\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.48 seconds!\n",
"\r",
"Evaluation on dev at Epoch 9/10. Step:2700/3000: \n",
"\r",
"AccuracyMetric: acc=0.8875\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.43 seconds!\n",
"\r",
"Evaluation on dev at Epoch 10/10. Step:3000/3000: \n",
"\r",
"AccuracyMetric: acc=0.895833\n",
"\n",
"\r\n",
"In Epoch:7/Step:2100, got best dev performance:\n",
"AccuracyMetric: acc=0.8975\n",
"Reloaded the best model.\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=19), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 0.34 seconds!\n",
"[tester] \n",
"AccuracyMetric: acc=0.8975\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.8975}}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Trainer\n",
"from fastNLP import CrossEntropyLoss\n",
"from torch.optim import Adam\n",
"from fastNLP import AccuracyMetric\n",
"\n",
"loss = CrossEntropyLoss()\n",
"optimizer = Adam(model.parameters(), lr=0.001)\n",
"metric = AccuracyMetric()\n",
"device = 0 if torch.cuda.is_available() else 'cpu' # 如果有gpu的话在gpu上运行,训练速度会更快\n",
"\n",
"trainer = Trainer(train_data=data_bundle.get_dataset('train'), model=model, loss=loss, \n",
" optimizer=optimizer, batch_size=32, dev_data=data_bundle.get_dataset('dev'),\n",
" metrics=metric, device=device)\n",
"trainer.train() # 开始训练,训练完成之后默认会加载在dev上表现最好的模型\n",
"\n",
"# 在测试集上测试一下模型的性能\n",
"from fastNLP import Tester\n",
"print(\"Performance on test is:\")\n",
"tester = Tester(data=data_bundle.get_dataset('test'), model=model, metrics=metric, batch_size=64, device=device)\n",
"tester.test()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 使用Bert进行文本分类"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"loading vocabulary file /home/yh/.fastNLP/embedding/bert-chinese-wwm/vocab.txt\n",
"Load pre-trained BERT parameters from file /home/yh/.fastNLP/embedding/bert-chinese-wwm/chinese_wwm_pytorch.bin.\n",
"Start to generating word pieces for word.\n",
"Found(Or segment into word pieces) 4286 words out of 4409.\n",
"input fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tchars: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 106]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"Evaluate data in 0.05 seconds!\n",
"training epochs started 2019-09-04-00-02-37\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=3600), HTML(value='')), layout=Layout(display…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 15.89 seconds!\n",
"\r",
"Evaluation on dev at Epoch 1/3. Step:1200/3600: \n",
"\r",
"AccuracyMetric: acc=0.9\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 15.92 seconds!\n",
"\r",
"Evaluation on dev at Epoch 2/3. Step:2400/3600: \n",
"\r",
"AccuracyMetric: acc=0.904167\n",
"\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 15.91 seconds!\n",
"\r",
"Evaluation on dev at Epoch 3/3. Step:3600/3600: \n",
"\r",
"AccuracyMetric: acc=0.918333\n",
"\n",
"\r\n",
"In Epoch:3/Step:3600, got best dev performance:\n",
"AccuracyMetric: acc=0.918333\n",
"Reloaded the best model.\n",
"Performance on test is:\n"
]
},
{
"data": {
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=19), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Evaluate data in 29.24 seconds!\n",
"[tester] \n",
"AccuracyMetric: acc=0.919167\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.919167}}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 只需要切换一下Embedding即可\n",
"from fastNLP.embeddings import BertEmbedding\n",
"\n",
"# 这里为了演示一下效果,所以默认Bert不更新权重\n",
"bert_embed = BertEmbedding(char_vocab, model_dir_or_name='cn', auto_truncate=True, requires_grad=False)\n",
"model = BiLSTMMaxPoolCls(bert_embed, len(data_bundle.get_vocab('target')), )\n",
"\n",
"\n",
"import torch\n",
"from fastNLP import Trainer\n",
"from fastNLP import CrossEntropyLoss\n",
"from torch.optim import Adam\n",
"from fastNLP import AccuracyMetric\n",
"\n",
"loss = CrossEntropyLoss()\n",
"optimizer = Adam(model.parameters(), lr=2e-5)\n",
"metric = AccuracyMetric()\n",
"device = 0 if torch.cuda.is_available() else 'cpu' # 如果有gpu的话在gpu上运行,训练速度会更快\n",
"\n",
"trainer = Trainer(train_data=data_bundle.get_dataset('train'), model=model, loss=loss, \n",
" optimizer=optimizer, batch_size=16, dev_data=data_bundle.get_dataset('test'),\n",
" metrics=metric, device=device, n_epochs=3)\n",
"trainer.train() # 开始训练,训练完成之后默认会加载在dev上表现最好的模型\n",
"\n",
"# 在测试集上测试一下模型的性能\n",
"from fastNLP import Tester\n",
"print(\"Performance on test is:\")\n",
"tester = Tester(data=data_bundle.get_dataset('test'), model=model, metrics=metric, batch_size=64, device=device)\n",
"tester.test()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Loading…
Cancel
Save