From 7398f2b0b20b7725295ca01feaaad437d3d331d2 Mon Sep 17 00:00:00 2001 From: yh_cc Date: Sat, 11 Apr 2020 22:55:54 +0800 Subject: [PATCH] =?UTF-8?q?1.=E5=A2=9E=E5=8A=A0RobertaEmbedding=E4=B8=8EGP?= =?UTF-8?q?T2Embedding?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- fastNLP/core/batch.py | 29 +- fastNLP/core/dist_trainer.py | 7 +- fastNLP/core/tester.py | 4 +- fastNLP/core/trainer.py | 4 +- fastNLP/embeddings/__init__.py | 11 +- fastNLP/embeddings/bert_embedding.py | 244 ++- fastNLP/embeddings/gpt2_embedding.py | 649 ++++++++ fastNLP/embeddings/roberta_embedding.py | 316 +++- fastNLP/io/file_utils.py | 67 +- fastNLP/modules/__init__.py | 11 +- fastNLP/modules/decoder/seq2seq_decoder.py | 109 ++ fastNLP/modules/encoder/__init__.py | 4 + fastNLP/modules/encoder/bert.py | 483 +----- fastNLP/modules/encoder/gpt2.py | 1664 ++++++++++++-------- fastNLP/modules/encoder/roberta.py | 221 +-- fastNLP/modules/generator/__init__.py | 0 fastNLP/modules/generator/seq2seq_generator.py | 444 ++++++ fastNLP/modules/tokenizer/__init__.py | 14 + fastNLP/modules/tokenizer/bert_tokenizer.py | 447 ++++++ fastNLP/modules/tokenizer/gpt2_tokenizer.py | 758 +++++++++ fastNLP/modules/tokenizer/roberta_tokenizer.py | 102 ++ fastNLP/modules/utils.py | 12 +- .../Summarization/Baseline/train_origin.py | 6 +- reproduction/multi-criteria-cws/main.py | 14 +- test/core/test_batch.py | 11 +- test/core/test_dataset.py | 1 - .../embedding/small_gpt2/config.json | 1 + .../data_for_tests/embedding/small_gpt2/merges.txt | 39 + .../embedding/small_gpt2/small_pytorch_model.bin | Bin 0 -> 40749 bytes .../data_for_tests/embedding/small_gpt2/vocab.json | 1 + .../embedding/small_roberta/config.json | 1 + .../embedding/small_roberta/merges.txt | 39 + .../small_roberta/small_pytorch_model.bin | Bin 0 -> 29928 bytes .../embedding/small_roberta/vocab.json | 1 + test/embeddings/test_bert_embedding.py | 75 +- test/embeddings/test_gpt2_embedding.py | 268 ++++ test/embeddings/test_roberta_embedding.py | 252 +++ test/modules/encoder/test_bert.py | 24 + 38 files changed, 4793 insertions(+), 1540 deletions(-) create mode 100644 fastNLP/embeddings/gpt2_embedding.py create mode 100755 fastNLP/modules/decoder/seq2seq_decoder.py create mode 100644 fastNLP/modules/generator/__init__.py create mode 100755 fastNLP/modules/generator/seq2seq_generator.py create mode 100644 fastNLP/modules/tokenizer/__init__.py create mode 100644 fastNLP/modules/tokenizer/bert_tokenizer.py create mode 100644 fastNLP/modules/tokenizer/gpt2_tokenizer.py create mode 100644 fastNLP/modules/tokenizer/roberta_tokenizer.py create mode 100644 test/data_for_tests/embedding/small_gpt2/config.json create mode 100644 test/data_for_tests/embedding/small_gpt2/merges.txt create mode 100644 test/data_for_tests/embedding/small_gpt2/small_pytorch_model.bin create mode 100644 test/data_for_tests/embedding/small_gpt2/vocab.json create mode 100644 test/data_for_tests/embedding/small_roberta/config.json create mode 100644 test/data_for_tests/embedding/small_roberta/merges.txt create mode 100644 test/data_for_tests/embedding/small_roberta/small_pytorch_model.bin create mode 100644 test/data_for_tests/embedding/small_roberta/vocab.json create mode 100644 test/embeddings/test_gpt2_embedding.py create mode 100644 test/embeddings/test_roberta_embedding.py create mode 100644 test/modules/encoder/test_bert.py diff --git a/fastNLP/core/batch.py b/fastNLP/core/batch.py index 7c1e64ee..94942f09 100644 --- a/fastNLP/core/batch.py +++ b/fastNLP/core/batch.py @@ -217,7 +217,8 @@ class BatchIter: class DataSetIter(BatchIter): r""" - DataSetIter 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出, + DataSetIter 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出,通过使用DataSetIter,可以不需要考虑 + 输入的padding(由DataSet中每列的Padder决定了)以及不需要考虑将数据转为tensor。 组成 `x` 和 `y`:: batch = DataSetIter(data_set, batch_size=16, sampler=SequentialSampler()) @@ -226,10 +227,8 @@ class DataSetIter(BatchIter): # do stuff ... """ - def __init__(self, dataset, batch_size=1, sampler=None, as_numpy=False, - num_workers=0, pin_memory=False, drop_last=False, - timeout=0, worker_init_fn=None, collate_fn=None, - batch_sampler=None): + def __init__(self, dataset, batch_size=1, sampler=None, as_numpy=False, num_workers=0, pin_memory=False, + drop_last=False, timeout=0, worker_init_fn=None, batch_sampler=None): r""" :param dataset: :class:`~fastNLP.DataSet` 对象, 数据集 @@ -245,13 +244,12 @@ class DataSetIter(BatchIter): :param bool drop_last: 如果最后一个batch没有batch_size这么多sample,就扔掉最后一个 :param timeout: 生成一个batch的timeout值 :param worker_init_fn: 在每个worker启动时调用该函数,会传入一个值,该值是worker的index。 - :param collate_fn: 用于将样本组合成batch的函数 :param batch_sampler: 当每次batch取出的数据数量不一致时,可以使用该sampler。batch_sampler每次iter应该输出一个list的index。 当batch_sampler不为None时,参数batch_size, sampler, drop_last会被忽略。 """ assert isinstance(dataset, DataSet) dataset = DataSetGetter(dataset, as_numpy) - collate_fn = dataset.collate_fn if collate_fn is None else collate_fn + collate_fn = dataset.collate_fn if batch_sampler is not None: batch_size = 1 sampler = None @@ -272,8 +270,9 @@ class DataSetIter(BatchIter): class TorchLoaderIter(BatchIter): r""" - 与DataSetIter类似,但可以用于非fastNLP的数据容器对象,然后将其传入到Trainer中。 - 只需要保证数据容器实现了实现了以下的方法 + 与DataSetIter类似,但可以用于非fastNLP的数据容器对象,以及可以实现完全自定义的生成batch的方式,然后与Trainer,Tester可以实现 + 与DataSetIter一样的对接。 + 需要保证传入的数据容器实现了实现了以下的方法 Example:: @@ -293,7 +292,7 @@ class TorchLoaderIter(BatchIter): return self.num_samples # 需要实现collact_fn将数据转换为tensor - def collact_fn(data_list): + def collate_fn(data_list): # [(x1,y1), (x2,y2), ...], 这里的输入实际上是将UdfDataSet的__getitem__输入结合为list xs, ys = [], [] for l in data_list: @@ -302,10 +301,10 @@ class TorchLoaderIter(BatchIter): ys.append(y) # 不需要转移到gpu,Trainer或Tester会将其转移到model所在的device x,y = torch.FloatTensor(xs), torch.FloatTensor(ys) - return {'x':x, 'y':y}, {'y':y} + return {'x':x, 'y':y}, {'y':y} # 第一个dict中内容类似于DataSet中的input列,第二个dict的内容类似于target列 udf_dataset = UdfDataSet(10) - dataset = TorchLoaderIter(udf_dataset, collate_fn=collact_fn) + dataset = TorchLoaderIter(udf_dataset, collate_fn=collate_fn) class Model(nn.Module): def __init__(self): super().__init__() @@ -362,7 +361,7 @@ class TorchLoaderIter(BatchIter): def __len__(self): return self.num_samples - def collact_fn(data_list): + def collate_fn(data_list): # [(x1,y1), (x2,y2), ...], 这里的输入实际上是将UdfDataSet的__getitem__输入结合为list xs, ys = [], [] for l in data_list: @@ -370,10 +369,10 @@ class TorchLoaderIter(BatchIter): xs.append(x) ys.append(y) x, y = torch.FloatTensor(xs), torch.FloatTensor(ys) - return {'x': x, 'y': y}, {'y': y} + return {'x': x, 'y': y}, {'y': y} # 第一个dict中内容类似于DataSet中的input列,第二个dict的内容类似于target列 file_data = FileDataSet(tmp_file_path) - dataset = TorchLoaderIter(file_data, collate_fn=collact_fn) + dataset = TorchLoaderIter(file_data, collate_fn=collate_fn) class Model(nn.Module): def __init__(self): diff --git a/fastNLP/core/dist_trainer.py b/fastNLP/core/dist_trainer.py index f5c0f229..680c4f80 100644 --- a/fastNLP/core/dist_trainer.py +++ b/fastNLP/core/dist_trainer.py @@ -205,11 +205,8 @@ class DistTrainer(): def _get_data_iter(self, dataset): if isinstance(dataset, DataSet): - return DataSetIter( - dataset=dataset, batch_size=self.batch_size_per_gpu, - num_workers=self.num_data_workers, sampler=self.sampler, - drop_last=self.drop_last - ) + return DataSetIter(dataset=dataset, batch_size=self.batch_size_per_gpu, sampler=self.sampler, + num_workers=self.num_data_workers, drop_last=self.drop_last) elif isinstance(dataset, BatchIter): return dataset else: diff --git a/fastNLP/core/tester.py b/fastNLP/core/tester.py index b223d35f..680782b1 100644 --- a/fastNLP/core/tester.py +++ b/fastNLP/core/tester.py @@ -107,8 +107,8 @@ class Tester(object): self.logger = logger if isinstance(data, DataSet): - self.data_iterator = DataSetIter( - dataset=data, batch_size=batch_size, num_workers=num_workers, sampler=SequentialSampler()) + self.data_iterator = DataSetIter(dataset=data, batch_size=batch_size, sampler=SequentialSampler(), + num_workers=num_workers) elif isinstance(data, BatchIter): self.data_iterator = data else: diff --git a/fastNLP/core/trainer.py b/fastNLP/core/trainer.py index c6390b22..b16f5ddb 100644 --- a/fastNLP/core/trainer.py +++ b/fastNLP/core/trainer.py @@ -487,8 +487,8 @@ class Trainer(object): sampler.set_batch_size(batch_size) if isinstance(train_data, DataSet): - self.data_iterator = DataSetIter( - dataset=train_data, batch_size=batch_size, num_workers=num_workers, sampler=sampler, drop_last=drop_last) + self.data_iterator = DataSetIter(dataset=train_data, batch_size=batch_size, sampler=sampler, + num_workers=num_workers, drop_last=drop_last) elif isinstance(train_data, BatchIter): self.data_iterator = train_data train_data = train_data.dataset diff --git a/fastNLP/embeddings/__init__.py b/fastNLP/embeddings/__init__.py index 3b3b2dce..bf35b7d4 100644 --- a/fastNLP/embeddings/__init__.py +++ b/fastNLP/embeddings/__init__.py @@ -12,17 +12,26 @@ __all__ = [ "ElmoEmbedding", "BertEmbedding", "BertWordPieceEncoder", + + "RobertaEmbedding", + "RobertaWordPieceEncoder", + + "GPT2Embedding", + "GPT2WordPieceEncoder", + "StackEmbedding", "LSTMCharEmbedding", "CNNCharEmbedding", "get_embeddings", + ] from .embedding import Embedding, TokenEmbedding from .static_embedding import StaticEmbedding from .elmo_embedding import ElmoEmbedding from .bert_embedding import BertEmbedding, BertWordPieceEncoder -from .roberta_embedding import RobertaEmbedding +from .roberta_embedding import RobertaEmbedding, RobertaWordPieceEncoder +from .gpt2_embedding import GPT2WordPieceEncoder, GPT2Embedding from .char_embedding import CNNCharEmbedding, LSTMCharEmbedding from .stack_embedding import StackEmbedding from .utils import get_embeddings diff --git a/fastNLP/embeddings/bert_embedding.py b/fastNLP/embeddings/bert_embedding.py index 3bd448aa..3ad8cd39 100644 --- a/fastNLP/embeddings/bert_embedding.py +++ b/fastNLP/embeddings/bert_embedding.py @@ -11,6 +11,7 @@ __all__ = [ import collections import warnings from itertools import chain +from functools import partial import numpy as np import torch @@ -20,7 +21,8 @@ from .contextual_embedding import ContextualEmbedding from ..core import logger from ..core.vocabulary import Vocabulary from ..io.file_utils import PRETRAINED_BERT_MODEL_DIR -from ..modules.encoder.bert import _WordPieceBertModel, BertModel, BertTokenizer +from ..modules.encoder.bert import BertModel +from ..modules.tokenizer import BertTokenizer class BertEmbedding(ContextualEmbedding): @@ -31,6 +33,7 @@ class BertEmbedding(ContextualEmbedding): BertEmbedding可以支持自动下载权重,当前支持的模型: en: base-cased + en-base-uncased: en-large-cased-wwm: en-large-cased: en-large-uncased: @@ -63,7 +66,8 @@ class BertEmbedding(ContextualEmbedding): :param str model_dir_or_name: 模型所在目录或者模型的名称。当传入模型所在目录时,目录中应该包含一个词表文件(以.txt作为后缀名), 权重文件(以.bin作为文件后缀名), 配置文件(以.json作为后缀名)。 :param str layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,层的序号是 - 从0开始,可以以负数去索引倒数几层。 + 从0开始,可以以负数去索引倒数几层。 layer=0为embedding层(包括wordpiece embedding, + position embedding和segment embedding) :param str pool_method: 因为在bert中,每个word会被表示为多个word pieces, 当获取一个word的表示的时候,怎样从它的word pieces 中计算得到它对应的表示。支持 ``last`` , ``first`` , ``avg`` , ``max``。 :param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。 @@ -80,6 +84,8 @@ class BertEmbedding(ContextualEmbedding): :param kwargs: bool only_use_pretrain_bpe: 仅使用出现在pretrain词表中的bpe,如果该词没法tokenize则使用unk。如果embedding不需要更新 建议设置为True。 + int min_freq: 仅在only_use_pretrain_bpe为False有效,大于等于该次数的词会被新加入BERT的BPE词表中 + bool truncate_embed: 是否仅保留用到的bpe(这样会减内存占用和加快速度) """ super(BertEmbedding, self).__init__(vocab, word_dropout=word_dropout, dropout=dropout) @@ -92,25 +98,28 @@ class BertEmbedding(ContextualEmbedding): " faster speed.") warnings.warn("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" " faster speed.") - - self._word_sep_index = None + + self._word_sep_index = -100 if '[SEP]' in vocab: self._word_sep_index = vocab['[SEP]'] + self._word_cls_index = -100 + if '[CLS]' in vocab: + self._word_cls_index = vocab['CLS'] only_use_pretrain_bpe = kwargs.get('only_use_pretrain_bpe', False) - - self.model = _WordBertModel(model_dir_or_name=model_dir_or_name, vocab=vocab, layers=layers, + truncate_embed = kwargs.get('truncate_embed', True) + min_freq = kwargs.get('min_freq', 2) + + self.model = _BertWordModel(model_dir_or_name=model_dir_or_name, vocab=vocab, layers=layers, pool_method=pool_method, include_cls_sep=include_cls_sep, - pooled_cls=pooled_cls, auto_truncate=auto_truncate, min_freq=2, - only_use_pretrain_bpe=only_use_pretrain_bpe) - self._sep_index = self.model._sep_index - self._cls_index = self.model._cls_index + pooled_cls=pooled_cls, auto_truncate=auto_truncate, min_freq=min_freq, + only_use_pretrain_bpe=only_use_pretrain_bpe, truncate_embed=truncate_embed) self.requires_grad = requires_grad self._embed_size = len(self.model.layers) * self.model.encoder.hidden_size - + def _delete_model_weights(self): del self.model - + def forward(self, words): r""" 计算words的bert embedding表示。计算之前会在每句话的开始增加[CLS]在结束增加[SEP], 并根据include_cls_sep判断要不要 @@ -125,9 +134,9 @@ class BertEmbedding(ContextualEmbedding): return self.dropout(outputs) outputs = self.model(words) outputs = torch.cat([*outputs], dim=-1) - + return self.dropout(outputs) - + def drop_word(self, words): r""" 按照设定随机将words设置为unknown_index。 @@ -137,15 +146,16 @@ class BertEmbedding(ContextualEmbedding): """ if self.word_dropout > 0 and self.training: with torch.no_grad(): - not_sep_mask = words.ne(self._sep_index) - not_cls_mask = words.ne(self._cls_index) - if self._word_sep_index: - not_sep_mask = not_sep_mask.__and__(words.ne(self._word_sep_index)) - replaceable_mask = not_sep_mask.__and__(not_cls_mask) mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device) mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1 - pad_mask = words.ne(0) - mask = pad_mask.__and__(mask).__and__(replaceable_mask) # pad的位置不为unk + pad_mask = words.ne(self._word_pad_index) + mask = pad_mask.__and__(mask) # pad的位置不为unk + if self._word_sep_index!=-100: + not_sep_mask = words.ne(self._word_sep_index) + mask = mask.__and__(not_sep_mask) + if self._word_cls_index!=-100: + not_cls_mask = words.ne(self._word_cls_index) + mask = mask.__and__(not_cls_mask) words = words.masked_fill(mask, self._word_unk_index) return words @@ -167,21 +177,22 @@ class BertWordPieceEncoder(nn.Module): multi-base-uncased: multilingual uncased """ - + def __init__(self, model_dir_or_name: str = 'en-base-uncased', layers: str = '-1', pooled_cls: bool = False, word_dropout=0, dropout=0, requires_grad: bool = True): r""" - + :param str model_dir_or_name: 模型所在目录或者模型的名称。默认值为 ``en-base-uncased`` - :param str layers: 最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层 + :param str layers: 最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层。layer=0为embedding层(包括wordpiece embedding, + position embedding和segment embedding) :param bool pooled_cls: 返回的句子开头的[CLS]是否使用预训练中的BertPool映射一下。如果下游任务取[CLS]做预测,一般该值为True。 :param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。 :param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。 :param bool requires_grad: 是否需要gradient。 """ super().__init__() - - self.model = _WordPieceBertModel(model_dir_or_name=model_dir_or_name, layers=layers, pooled_cls=pooled_cls) + + self.model = _BertWordPieceModel(model_dir_or_name=model_dir_or_name, layers=layers, pooled_cls=pooled_cls) self._sep_index = self.model._sep_index self._cls_index = self.model._cls_index self._wordpiece_pad_index = self.model._wordpiece_pad_index @@ -190,19 +201,19 @@ class BertWordPieceEncoder(nn.Module): self.requires_grad = requires_grad self.word_dropout = word_dropout self.dropout_layer = nn.Dropout(dropout) - + @property def embed_size(self): return self._embed_size - + @property def embedding_dim(self): return self._embed_size - + @property def num_embedding(self): return self.model.encoder.config.vocab_size - + def index_datasets(self, *datasets, field_name, add_cls_sep=True): r""" 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input,且将word_pieces这一列的pad value设置为了 @@ -213,8 +224,8 @@ class BertWordPieceEncoder(nn.Module): :param bool add_cls_sep: 如果首尾不是[CLS]与[SEP]会在首尾额外加入[CLS]与[SEP]。 :return: """ - self.model.index_dataset(*datasets, field_name=field_name, add_cls_sep=add_cls_sep) - + self.model.index_datasets(*datasets, field_name=field_name, add_cls_sep=add_cls_sep) + def forward(self, word_pieces, token_type_ids=None): r""" 计算words的bert embedding表示。传入的words中应该自行包含[CLS]与[SEP]的tag。 @@ -224,20 +235,20 @@ class BertWordPieceEncoder(nn.Module): 第一个[SEP]及之前为0, 第二个[SEP]及到第一个[SEP]之间为1; 第三个[SEP]及到第二个[SEP]之间为0,依次往后推。 :return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers)) """ - with torch.no_grad(): - sep_mask = word_pieces.eq(self._sep_index) # batch_size x max_len - if token_type_ids is None: + if token_type_ids is None: + with torch.no_grad(): + sep_mask = word_pieces.eq(self._sep_index) # batch_size x max_len sep_mask_cumsum = sep_mask.long().flip(dims=[-1]).cumsum(dim=-1).flip(dims=[-1]) token_type_ids = sep_mask_cumsum.fmod(2) if token_type_ids[0, 0].item(): # 如果开头是奇数,则需要flip一下结果,因为需要保证开头为0 token_type_ids = token_type_ids.eq(0).long() - + word_pieces = self.drop_word(word_pieces) outputs = self.model(word_pieces, token_type_ids) outputs = torch.cat([*outputs], dim=-1) - + return self.dropout_layer(outputs) - + def drop_word(self, words): r""" 按照设定随机将words设置为unknown_index。 @@ -258,38 +269,45 @@ class BertWordPieceEncoder(nn.Module): return words -class _WordBertModel(nn.Module): +class _BertWordModel(nn.Module): def __init__(self, model_dir_or_name: str, vocab: Vocabulary, layers: str = '-1', pool_method: str = 'first', include_cls_sep: bool = False, pooled_cls: bool = False, auto_truncate: bool = False, min_freq=2, - only_use_pretrain_bpe=False): + only_use_pretrain_bpe=False, truncate_embed=True): super().__init__() - + self.tokenzier = BertTokenizer.from_pretrained(model_dir_or_name) self.encoder = BertModel.from_pretrained(model_dir_or_name) self._max_position_embeddings = self.encoder.config.max_position_embeddings # 检查encoder_layer_number是否合理 encoder_layer_number = len(self.encoder.encoder.layer) - self.layers = list(map(int, layers.split(','))) + if isinstance(layers, list): + self.layers = [int(l) for l in layers] + elif isinstance(layers, str): + self.layers = list(map(int, layers.split(','))) + else: + raise TypeError("`layers` only supports str or list[int]") for layer in self.layers: if layer < 0: assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ f"a bert model with {encoder_layer_number} layers." else: - assert layer < encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ f"a bert model with {encoder_layer_number} layers." - + assert pool_method in ('avg', 'max', 'first', 'last') self.pool_method = pool_method self.include_cls_sep = include_cls_sep self.pooled_cls = pooled_cls self.auto_truncate = auto_truncate - + # 将所有vocab中word的wordpiece计算出来, 需要额外考虑[CLS]和[SEP] logger.info("Start to generate word pieces for word.") + self._has_sep_in_vocab = '[SEP]' in vocab # 用来判断传入的数据是否需要生成token_ids + # 第一步统计出需要的word_piece, 然后创建新的embed和word_piece_vocab, 然后填入值 word_piece_dict = {'[CLS]': 1, '[SEP]': 1} # 用到的word_piece以及新增的 - found_count = 0 - self._has_sep_in_vocab = '[SEP]' in vocab # 用来判断传入的数据是否需要生成token_ids + new_add_to_bpe_vocab = 0 + unsegment_count = 0 if '[sep]' in vocab: warnings.warn("Lower cased [sep] detected, it cannot be correctly recognized as [SEP] by BertEmbedding.") if "[CLS]" in vocab: @@ -311,27 +329,42 @@ class _WordBertModel(nn.Module): if vocab.word_count[word] >= min_freq and not vocab._is_word_no_create_entry( word) and not only_use_pretrain_bpe: # 出现次数大于这个次数才新增 word_piece_dict[word] = 1 # 新增一个值 + new_add_to_bpe_vocab += 1 + unsegment_count += 1 continue for word_piece in word_pieces: word_piece_dict[word_piece] = 1 - found_count += 1 original_embed = self.encoder.embeddings.word_embeddings.weight.data + # 特殊词汇要特殊处理 + if not truncate_embed:# 如果不删除的话需要将已有的加上 + word_piece_dict.update(self.tokenzier.vocab) embed = nn.Embedding(len(word_piece_dict), original_embed.size(1)) # 新的embed new_word_piece_vocab = collections.OrderedDict() + for index, token in enumerate(['[PAD]', '[UNK]']): - word_piece_dict.pop(token, None) - embed.weight.data[index] = original_embed[self.tokenzier.vocab[token]] - new_word_piece_vocab[token] = index + index = word_piece_dict.pop(token, None) + if index is not None: + new_word_piece_vocab[token] = len(new_word_piece_vocab) + embed.weight.data[new_word_piece_vocab[token]] = original_embed[self.tokenzier.vocab[token]] for token in word_piece_dict.keys(): + if token not in new_word_piece_vocab: + new_word_piece_vocab[token] = len(new_word_piece_vocab) + index = new_word_piece_vocab[token] if token in self.tokenzier.vocab: - embed.weight.data[len(new_word_piece_vocab)] = original_embed[self.tokenzier.vocab[token]] + embed.weight.data[index] = original_embed[self.tokenzier.vocab[token]] else: - embed.weight.data[len(new_word_piece_vocab)] = original_embed[self.tokenzier.vocab['[UNK]']] - new_word_piece_vocab[token] = len(new_word_piece_vocab) + embed.weight.data[index] = original_embed[self.tokenzier.vocab['[UNK]']] + self.tokenzier._reinit_on_new_vocab(new_word_piece_vocab) self.encoder.embeddings.word_embeddings = embed - + self.encoder.config.vocab_size = len(new_word_piece_vocab) + if unsegment_count>0: + if only_use_pretrain_bpe or new_add_to_bpe_vocab==0: + logger.info(f"{unsegment_count} words are unsegmented.") + else: + logger.info(f"{unsegment_count} words are unsegmented. Among them, {new_add_to_bpe_vocab} added to the BPE vocab.") + word_to_wordpieces = [] word_pieces_lengths = [] for word, index in vocab: @@ -347,11 +380,10 @@ class _WordBertModel(nn.Module): self._sep_index = self.tokenzier.vocab['[SEP]'] self._word_pad_index = vocab.padding_idx self._wordpiece_pad_index = self.tokenzier.vocab['[PAD]'] # 需要用于生成word_piece - logger.info("Found(Or segment into word pieces) {} words out of {}.".format(found_count, len(vocab))) self.word_to_wordpieces = np.array(word_to_wordpieces) self.register_buffer('word_pieces_lengths', torch.LongTensor(word_pieces_lengths)) logger.debug("Successfully generate word pieces.") - + def forward(self, words): r""" @@ -365,8 +397,8 @@ class _WordBertModel(nn.Module): batch_word_pieces_length = self.word_pieces_lengths[words].masked_fill(word_mask.eq(False), 0) # batch_size x max_len word_pieces_lengths = batch_word_pieces_length.sum(dim=-1) # batch_size - word_piece_length = batch_word_pieces_length.sum(dim=-1).max().item() # 表示word piece的长度(包括padding) - if word_piece_length + 2 > self._max_position_embeddings: + max_word_piece_length = batch_word_pieces_length.sum(dim=-1).max().item() # 表示word piece的长度(包括padding) + if max_word_piece_length + 2 > self._max_position_embeddings: if self.auto_truncate: word_pieces_lengths = word_pieces_lengths.masked_fill( word_pieces_lengths + 2 > self._max_position_embeddings, @@ -376,9 +408,9 @@ class _WordBertModel(nn.Module): "After split words into word pieces, the lengths of word pieces are longer than the " f"maximum allowed sequence length:{self._max_position_embeddings} of bert. You can set " f"`auto_truncate=True` for BertEmbedding to automatically truncate overlong input.") - + # +2是由于需要加入[CLS]与[SEP] - word_pieces = words.new_full((batch_size, min(word_piece_length + 2, self._max_position_embeddings)), + word_pieces = words.new_full((batch_size, min(max_word_piece_length + 2, self._max_position_embeddings)), fill_value=self._wordpiece_pad_index) attn_masks = torch.zeros_like(word_pieces) # 1. 获取words的word_pieces的id,以及对应的span范围 @@ -406,7 +438,7 @@ class _WordBertModel(nn.Module): bert_outputs, pooled_cls = self.encoder(word_pieces, token_type_ids=token_type_ids, attention_mask=attn_masks, output_all_encoded_layers=True) # output_layers = [self.layers] # len(self.layers) x batch_size x real_word_piece_length x hidden_size - + if self.include_cls_sep: s_shift = 1 outputs = bert_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len + 2, @@ -421,19 +453,19 @@ class _WordBertModel(nn.Module): if self.pool_method == 'first': batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, :seq_len.max()] - batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(word_piece_length), 0) + batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0) _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1))) elif self.pool_method == 'last': batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, 1:seq_len.max()+1] - 1 - batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(word_piece_length), 0) + batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0) _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1))) for l_index, l in enumerate(self.layers): output_layer = bert_outputs[l] real_word_piece_length = output_layer.size(1) - 2 - if word_piece_length > real_word_piece_length: # 如果实际上是截取出来的 + if max_word_piece_length > real_word_piece_length: # 如果实际上是截取出来的 paddings = output_layer.new_zeros(batch_size, - word_piece_length - real_word_piece_length, + max_word_piece_length - real_word_piece_length, output_layer.size(2)) output_layer = torch.cat((output_layer, paddings), dim=1).contiguous() # 从word_piece collapse到word的表示 @@ -462,7 +494,85 @@ class _WordBertModel(nn.Module): outputs[l_index, :, 0] = pooled_cls else: outputs[l_index, :, 0] = output_layer[:, 0] - outputs[l_index, batch_indexes, seq_len + s_shift] = output_layer[batch_indexes, seq_len + s_shift] + outputs[l_index, batch_indexes, seq_len + s_shift] = output_layer[batch_indexes, word_pieces_lengths + s_shift] # 3. 最终的embedding结果 return outputs + + +class _BertWordPieceModel(nn.Module): + r""" + 这个模块用于直接计算word_piece的结果. + + """ + + def __init__(self, model_dir_or_name: str, layers: str = '-1', pooled_cls: bool=False): + super().__init__() + + self.tokenzier = BertTokenizer.from_pretrained(model_dir_or_name) + self.encoder = BertModel.from_pretrained(model_dir_or_name) + # 检查encoder_layer_number是否合理 + encoder_layer_number = len(self.encoder.encoder.layer) + + if isinstance(layers, list): + self.layers = [int(l) for l in layers] + elif isinstance(layers, str): + self.layers = list(map(int, layers.split(','))) + else: + raise TypeError("`layers` only supports str or list[int]") + + for layer in self.layers: + if layer < 0: + assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a bert model with {encoder_layer_number} layers." + else: + assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a bert model with {encoder_layer_number} layers." + + self._cls_index = self.tokenzier.cls_index + self._sep_index = self.tokenzier.sep_index + self._wordpiece_unknown_index = self.tokenzier.unk_index + self._wordpiece_pad_index = self.tokenzier.pad_index # 需要用于生成word_piece + self.pooled_cls = pooled_cls + + def index_datasets(self, *datasets, field_name, add_cls_sep=True): + r""" + 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是 + [CLS]与[SEP]会在首尾额外加入[CLS]与[SEP], 且将word_pieces这一列的pad value设置为了bert的pad value。 + + :param datasets: DataSet对象 + :param field_name: 基于哪一列index + :return: + """ + + encode_func = partial(self.tokenzier.encode, add_special_tokens=add_cls_sep) + + for index, dataset in enumerate(datasets): + try: + dataset.apply_field(encode_func, field_name=field_name, new_field_name='word_pieces', + is_input=True) + dataset.set_pad_val('word_pieces', self._wordpiece_pad_index) + except Exception as e: + logger.error(f"Exception happens when processing the {index} dataset.") + raise e + + def forward(self, word_pieces, token_type_ids=None): + r""" + + :param word_pieces: torch.LongTensor, batch_size x max_len + :param token_type_ids: torch.LongTensor, batch_size x max_len + :return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size + """ + batch_size, max_len = word_pieces.size() + + attn_masks = word_pieces.ne(self._wordpiece_pad_index) + bert_outputs, pooled_cls = self.encoder(word_pieces, token_type_ids=token_type_ids, attention_mask=attn_masks, + output_all_encoded_layers=True) + # output_layers = [self.layers] # len(self.layers) x batch_size x max_word_piece_length x hidden_size + outputs = bert_outputs[0].new_zeros((len(self.layers), batch_size, max_len, bert_outputs[0].size(-1))) + for l_index, l in enumerate(self.layers): + bert_output = bert_outputs[l] + if l in (len(bert_outputs)-1, -1) and self.pooled_cls: + bert_output[:, 0] = pooled_cls + outputs[l_index] = bert_output + return outputs \ No newline at end of file diff --git a/fastNLP/embeddings/gpt2_embedding.py b/fastNLP/embeddings/gpt2_embedding.py new file mode 100644 index 00000000..fdae4240 --- /dev/null +++ b/fastNLP/embeddings/gpt2_embedding.py @@ -0,0 +1,649 @@ +""" +.. todo:: + doc +""" + +__all__ = [ + "GPT2Embedding", + "GPT2WordPieceEncoder" +] + +import warnings +from functools import partial +from itertools import chain +from collections import OrderedDict + +import torch +from torch import nn +import numpy as np + +from .contextual_embedding import ContextualEmbedding +from ..core import logger +from ..core.utils import _get_model_device +from ..core.vocabulary import Vocabulary +from ..io.file_utils import PRETRAINED_BERT_MODEL_DIR +from ..modules.tokenizer import GPT2Tokenizer +from ..modules.encoder.gpt2 import GPT2LMHeadModel, GPT2Model + + +class GPT2Embedding(ContextualEmbedding): + """ + 使用GPT2对words进行编码的Embedding。 + + Example:: + + >>> import torch + >>> from fastNLP import Vocabulary + >>> from fastNLP.embeddings import BertEmbedding + >>> vocab = Vocabulary().add_word_lst("The whether is good .".split()) + >>> embed = GPT2Embedding(vocab, model_dir_or_name='en-small', requires_grad=False, layers='4,-2,-1') + >>> words = torch.LongTensor([[vocab.to_index(word) for word in "The whether is good .".split()]]) + >>> outputs = embed(words) + >>> outputs.size() + >>> # torch.Size([1, 5, 3096]) + """ + + def __init__(self, vocab: Vocabulary, model_dir_or_name: str = 'en-small', layers: str = '-1', + pool_method: str = 'first', dropout=0, requires_grad: bool = True, + auto_truncate: bool = False, language_model: bool = False, **kwargs): + """ + + :param ~fastNLP.Vocabulary vocab: 词表 + :param str model_dir_or_name: 模型所在目录或者模型的名称。当传入模型所在目录时,目录中应该包含一个词表文件(以.txt作为后缀名), + 权重文件(以.bin作为文件后缀名), 配置文件(以.json作为后缀名)。 + :param str layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,层的序号是 + 从0开始,可以以负数去索引倒数几层。 + :param str pool_method: 因为在bert中,每个word会被表示为多个word pieces, 当获取一个word的表示的时候,怎样从它的word pieces + 中计算得到它对应的表示。支持 ``last`` , ``first`` , ``avg`` , ``max``。 + :param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。 + :param bool requires_grad: 是否需要gradient以更新Bert的权重。 + :param bool auto_truncate: 当句子words拆分为word pieces长度超过bert最大允许长度(一般为512), 自动截掉拆分后的超过510个 + word pieces后的内容,并将第512个word piece置为[SEP]。超过长度的部分的encode结果直接全部置零。一般仅有只使用[CLS] + 来进行分类的任务将auto_truncate置为True。 + :param bool language_model: 是否计算gpt2的lm loss,可以通过get_loss()获取,输入一个batch之后的get_loss调用即为batch的language + model的loss + :param **kwargs: + bool only_use_pretrain_bpe: 仅使用出现在pretrain词表中的bpe,如果该词没法tokenize则使用unk。如果embedding不需要更新 + 建议设置为True。 + int min_freq: 仅在only_use_pretrain_bpe为False有效,大于等于该次数的词会被新加入GPT2的BPE词表中 + bool truncate_embed: 是否仅保留用到的bpe(这样会减内存占用和加快速度) + """ + super().__init__(vocab, word_dropout=0, dropout=dropout) + + if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: + if 'cn' in model_dir_or_name.lower() and pool_method not in ('first', 'last'): + logger.warning("For Chinese GPT, pooled_method should choose from 'first', 'last' in order to achieve" + " faster speed.") + warnings.warn("For Chinese GPT, pooled_method should choose from 'first', 'last' in order to achieve" + " faster speed.") + + only_use_pretrain_bpe = kwargs.get('only_use_pretrain_bpe', False) + truncate_embed = kwargs.get('truncate_embed', True) + min_freq = kwargs.get('min_freq', 2) + + self.lm_loss =language_model + self.model = _GPT2Model(model_dir_or_name=model_dir_or_name, vocab=vocab, layers=layers, + pool_method=pool_method, auto_truncate=auto_truncate, language_model=language_model, + only_use_pretrain_bpe=only_use_pretrain_bpe, truncate_embed=truncate_embed, + min_freq=min_freq) + + self.requires_grad = requires_grad + self._embed_size = len(self.model.layers) * self.model.encoder.config.n_embd + + def _delete_model_weights(self): + del self.model + + def forward(self, words): + """ + 计算words的bert embedding表示。计算之前会在每句话的开始增加[CLS]在结束增加[SEP], 并根据include_cls_sep判断要不要 + 删除这两个token的表示。 + + :param torch.LongTensor words: [batch_size, max_len] + :return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers)) + """ + outputs = self._get_sent_reprs(words) + if outputs is not None: + return self.dropout(outputs) + outputs = self.model(words) + outputs = torch.cat([*outputs], dim=-1) + + return self.dropout(outputs) + + def drop_word(self, words): + """ + :param torch.LongTensor words: batch_size x max_len + :return: + """ + if self.word_dropout > 0 and self.training: + with torch.no_grad(): + mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device) + mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1 + words = words.masked_fill(mask, self._word_unk_index) + return words + + def get_lm_loss(self, release=True): + """ + 当language_model=True时,可以通过该接口获取当前batch的language model loss的大小 + + :param bool release: 如果为True,获取了lm_loss后在下一次forward完成之前都无法获取lm_loss了 + :return: torch.FloatTensor([]) + """ + if hasattr(self.model, '_lm_loss_value'): + lm_loss_value = self.model._lm_loss_value + if release: + delattr(self.model, '_lm_loss_value') + return lm_loss_value + elif self.lm_loss: + raise RuntimeError("Make sure you have passed a batch into GPT2Embdding before accessing loss.") + else: + raise RuntimeError("Initialize your GPT2Embedding with language_model=True.") + + +class GPT2WordPieceEncoder(nn.Module): + """ + GPT2模型,使用时先使用本模型对应的Tokenizer对数据进行tokenize + + """ + + def __init__(self, model_dir_or_name: str = 'en-small', layers: str = '-1', + word_dropout=0, dropout=0, requires_grad: bool = True, language_model:bool=False): + """ + + :param str model_dir_or_name: 模型所在目录或者模型的名称。 + :param str,list layers: 最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层 + :param float word_dropout: 多大概率将word piece置为<|endoftext|> + :param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。 + :param bool language_model: 是否使用language model + :param bool requires_grad: 是否需要gradient。 + """ + super().__init__() + + self.model = _GPT2WordPieceModel(model_dir_or_name=model_dir_or_name, layers=layers, language_model=language_model) + self._wordpiece_pad_index = self.model._wordpiece_pad_index + self._embed_size = len(self.model.layers) * self.model.encoder.config.n_embd + self.requires_grad = requires_grad + self.dropout_layer = nn.Dropout(dropout) + self._wordpiece_endoftext_index = self.model._endoftext_index + self.word_dropout = word_dropout + self.language_model = language_model + + @property + def embed_size(self): + return self._embed_size + + @property + def embedding_dim(self): + return self._embed_size + + @property + def num_embedding(self): + return self.model.encoder.config.vocab_size + + def index_datasets(self, *datasets, field_name, add_endoftext=False, add_prefix_space=True): + """ + 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input,且将word_pieces这一列的pad value设置为了 + bert的pad value。 + + :param ~fastNLP.DataSet datasets: DataSet对象 + :param list[str] field_name: 基于哪一列的内容生成word_pieces列。这一列中每个数据应该是List[str]的形式。 + :param bool add_endoftext: 在句子开头加入<|endofline|>。 + :param bool add_prefix_space: 是否在句首增加空格 + :return: + """ + self.model.index_datasets(*datasets, field_name=field_name, add_endoftext=add_endoftext, + add_prefix_space=add_prefix_space) + + def forward(self, word_pieces, token_type_ids=None): + """ + 计算words的bert embedding表示。传入的words中应该在开头包含<|endofline|>。 + + :param word_pieces: batch_size x max_len + :param token_type_ids: batch_size x max_len, + :return: torch.FloatTensor. + """ + + outputs = self.model(word_pieces) + outputs = torch.cat([*outputs], dim=-1) + + return self.dropout_layer(outputs) + + def drop_word(self, words): + """ + + :param torch.LongTensor words: batch_size x max_len + :return: + """ + if self.word_dropout > 0 and self.training: + with torch.no_grad(): + mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device) + mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1 + endoftext_mask = words.ne(self._wordpiece_endoftext_index) + mask = endoftext_mask.__and__(mask) # pad的位置不为unk + words = words.masked_fill(mask, self._wordpiece_unk_index) + return words + + def generate_from_str(self, text='', max_len=40, do_sample=True, num_beams=1, temperature=1, top_k=50, top_p=1.0, + repetition_penalty=1.0, length_penalty=1.0): + """ + + :param str text: 故事的开头 + :param int max_len: 生成多长的句子 + :param bool do_sample: 是否使用采样的方式生成,如果使用采样,相同的参数可能出现不同的句子。 + :param int num_beams: 使用多大的beam size + :param float temperature: 用以调节采样分布的 + :param int top_k: 只保留此表中top_k个词进行生成。范围1-infinity + :param float top_p: 保留概率累积为top_p的词汇,范围0-1. + :param float repetition_penalty: 对重复token的惩罚 + :param float length_penalty: 惩罚过长的句子 + :return: list[str] + """ + if len(text)==0: + word_pieces = torch.LongTensor([[self.model.tokenizer.bos_index]]) + start_idx = 1 + else: + assert isinstance(text, str), "Only string input allowed." + assert self.language_model, "You must set `language_model=True`." + word_pieces = self.model.convert_words_to_word_pieces(text, add_prefix_space=True) + word_pieces = torch.LongTensor([word_pieces]) + start_idx = 0 + device = _get_model_device(self) + word_pieces = word_pieces.to(device) + outputs = self.model.encoder.generate(input_ids=word_pieces, + max_length=max_len, + do_sample=do_sample, + num_beams=num_beams, + temperature=temperature, + top_k=top_k, + top_p=top_p, + repetition_penalty=repetition_penalty, + bos_token_id=self.model.tokenizer.bos_index, + pad_token_id=self.model.tokenizer.eos_index, # 使用<|endoftext|>代替pad + eos_token_ids=self.model.tokenizer.eos_index, + length_penalty=length_penalty).squeeze(0) + + output_strs = [] + if outputs.dim()==1: + outputs = outputs[None] + outputs = outputs[:, start_idx:] + for i in range(len(outputs)): + str_ = self.model.tokenizer.convert_tokens_to_string(self.model.tokenizer.convert_ids_to_tokens(outputs[i].tolist())) + output_strs.append(str_) + + return output_strs + + def generate(self, word_pieces, max_len=40, do_sample=True, num_beams=1, temperature=1, top_k=50, top_p=1.0, + repetition_penalty=1.0, length_penalty=1.0): + """ + + :param word_pieces: + :param int max_len: 生成多长的句子 + :param bool do_sample: 是否使用采样的方式生成,如果使用采样,相同的参数可能出现不同的句子。 + :param int num_beams: 使用多大的beam size + :param float temperature: 用以调节采样分布的 + :param int top_k: 只保留此表中top_k个词进行生成。范围1-infinity + :param float top_p: 保留概率累积为top_p的词汇,范围0-1. + :param float repetition_penalty: 对重复token的惩罚 + :param float length_penalty: 惩罚过长的句子 + :return: + """ + pass + + def get_lm_loss(self, release=True): + """ + 当language_model=True时,可以通过该接口获取当前batch的language model loss的大小 + + :param bool release: 如果为True,获取了lm_loss后在下一次forward完成之前都无法获取lm_loss了 + :return: torch.FloatTensor([]) + """ + if hasattr(self.model, '_lm_loss_value'): + lm_loss_value = self.model._lm_loss_value + if release: + delattr(self.model, '_lm_loss_value') + return lm_loss_value + elif self.lm_loss: + raise RuntimeError("Make sure you have passed a batch into GPT2Embdding before accessing loss.") + else: + raise RuntimeError("Initialize your GPT2Embedding with language_model=True.") + + +class _GPT2Model(nn.Module): + def __init__(self, model_dir_or_name, vocab, layers, pool_method='first', auto_truncate=True, language_model=False, + only_use_pretrain_bpe=False, min_freq=2, truncate_embed=False): + super().__init__() + + self.tokenzier = GPT2Tokenizer.from_pretrained(model_dir_or_name) + if language_model: + self.encoder = GPT2LMHeadModel.from_pretrained(model_dir_or_name) + else: + self.encoder = GPT2Model.from_pretrained(model_dir_or_name) + + self.lm_loss = language_model + self._max_position_embeddings = self.encoder.config.max_position_embeddings + # 检查encoder_layer_number是否合理 + encoder_layer_number = self.encoder.config.n_layer + if isinstance(layers, list): + self.layers = [int(l) for l in layers] + elif isinstance(layers, str): + self.layers = list(map(int, layers.split(','))) + else: + raise TypeError("`layers` only supports str or list[int]") + for layer in self.layers: + if layer < 0: + assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a GPT2 model with {encoder_layer_number} layers." + else: + assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a GPT2 model with {encoder_layer_number} layers." + + assert pool_method in ('avg', 'max', 'first', 'last') + self.pool_method = pool_method + self.auto_truncate = auto_truncate + + # 将所有vocab中word的wordpiece计算出来, 需要额外考虑 + logger.info("Start to generate word pieces for word.") + # 第一步统计出需要的word_piece, 然后创建新的embed和word_piece_vocab, 然后填入值 + word_piece_dict = {'<|endoftext|>': 1} # 用到的word_piece以及新增的 + found_count = 0 + new_add_to_bpe_vocab = 0 + unsegment_count = 0 + + for word, index in vocab: + if index == vocab.padding_idx: # pad是个特殊的符号 + word = '<|endoftext|>' + elif index == vocab.unknown_idx: + word = '<|endoftext|>' + # _words = self.tokenzier.basic_tokenizer._tokenize_chinese_chars(word).split() # 这里暂时不考虑中文内容 + word_pieces = [] + word_pieces.extend(self.tokenzier.tokenize(word, add_prefix_space=True)) + if len(word_pieces) == 1: + if not vocab._is_word_no_create_entry(word): # 如果是train中的值, 但是却没有找到 + if index not in (vocab.unknown_idx, vocab.padding_idx) and word_pieces[0] == '<|endoftext|>': # 说明这个词不在原始的word里面 + if vocab.word_count[word] >= min_freq and not vocab._is_word_no_create_entry( + word) and not only_use_pretrain_bpe: # 出现次数大于这个次数才新增 + word_piece_dict[word] = 1 # 新增一个值 + new_add_to_bpe_vocab += 1 + unsegment_count += 1 + continue + for word_piece in word_pieces: + word_piece_dict[word_piece] = 1 + found_count += 1 + + if unsegment_count>0: + if only_use_pretrain_bpe or new_add_to_bpe_vocab==0: + logger.info(f"{unsegment_count} words are unsegmented.") + else: + logger.info(f"{unsegment_count} words are unsegmented. Among them, {new_add_to_bpe_vocab} added to the BPE vocab.") + + original_embed = self.encoder.get_input_embeddings().weight + # 特殊词汇要特殊处理 + if not truncate_embed: # 如果不删除的话需要将已有的加上 + word_piece_dict.update(self.tokenzier.encoder) + + embed = nn.Embedding(len(word_piece_dict), original_embed.size(1)) # 新的embed + new_word_piece_vocab = OrderedDict() + + for index, token in enumerate(['<|endoftext|>']): + index = word_piece_dict.pop(token, None) + if index is not None: + new_word_piece_vocab[token] = len(new_word_piece_vocab) + embed.weight.data[new_word_piece_vocab[token]] = original_embed[self.tokenzier.encoder[token]] + + for token in word_piece_dict.keys(): + if token not in new_word_piece_vocab: + new_word_piece_vocab[token] = len(new_word_piece_vocab) + index = new_word_piece_vocab[token] + if token in self.tokenzier.encoder: + embed.weight.data[index] = original_embed[self.tokenzier.encoder[token]] + else: + embed.weight.data[index] = original_embed[self.tokenzier.encoder['<|endoftext|>']] + + self.tokenzier._reinit_on_new_vocab(new_word_piece_vocab) + self.encoder.set_input_embeddings(embed) + self.encoder.tie_weights() + self.encoder.config.vocab_size = len(new_word_piece_vocab) + + word_to_wordpieces = [] + word_pieces_lengths = [] + for word, index in vocab: + if index == vocab.padding_idx: # pad是个特殊的符号 + word = '<|endoftext|>' + elif index == vocab.unknown_idx: + word = '<|endoftext|>' + word_pieces = self.tokenzier.tokenize(word) + word_pieces = self.tokenzier.convert_tokens_to_ids(word_pieces) + word_to_wordpieces.append(word_pieces) + word_pieces_lengths.append(len(word_pieces)) + self._word_pad_index = vocab.padding_idx + self._endoftext_index = self.tokenzier.encoder.get('<|endoftext|>') + self._wordpiece_pad_index = self.tokenzier.encoder.get('<|endoftext|>') # 需要用于生成word_piece + self.word_to_wordpieces = np.array(word_to_wordpieces) + self.register_buffer('word_pieces_lengths', torch.LongTensor(word_pieces_lengths)) + logger.debug("Successfully generate word pieces.") + + def forward(self, words): + """ + + :param words: torch.LongTensor, batch_size x max_len + :return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size + """ + with torch.no_grad(): + batch_size, max_word_len = words.size() + word_mask = words.ne(self._word_pad_index) # 为1的地方有word + seq_len = word_mask.sum(dim=-1) + batch_word_pieces_length = self.word_pieces_lengths[words].masked_fill(word_mask.eq(False), + 0) # batch_size x max_len + word_pieces_lengths = batch_word_pieces_length.sum(dim=-1) # batch_size + max_word_piece_length = batch_word_pieces_length.sum(dim=-1).max().item() # 表示word piece的长度(包括padding) + if max_word_piece_length > self._max_position_embeddings: + if self.auto_truncate: + word_pieces_lengths = word_pieces_lengths.masked_fill( + word_pieces_lengths > self._max_position_embeddings, + self._max_position_embeddings) + else: + raise RuntimeError( + "After split words into word pieces, the lengths of word pieces are longer than the " + f"maximum allowed sequence length:{self._max_position_embeddings} of GPT2. You can set " + f"`auto_truncate=True` for BertEmbedding to automatically truncate overlong input.") + + word_pieces = words.new_full((batch_size, min(max_word_piece_length, self._max_position_embeddings)), + fill_value=self._wordpiece_pad_index) + word_labels = word_pieces.clone() + attn_masks = torch.zeros_like(word_pieces) + # 1. 获取words的word_pieces的id,以及对应的span范围 + word_indexes = words.cpu().numpy() + for i in range(batch_size): + word_pieces_i = list(chain(*self.word_to_wordpieces[word_indexes[i, :seq_len[i]]])) + if self.auto_truncate and len(word_pieces_i) > self._max_position_embeddings: + word_pieces_i = word_pieces_i[:self._max_position_embeddings] + word_pieces[i, :word_pieces_lengths[i]] = torch.LongTensor(word_pieces_i) + word_labels[i, word_pieces_lengths[i]:].fill_(-100) # 计算lm_loss用的 + attn_masks[i, :word_pieces_lengths[i]].fill_(1) + # 添加<|endoftext|>, 默认不添加了 + # word_pieces[:, 0].fill_(self._endoftext_index) + batch_indexes = torch.arange(batch_size).to(words) + # 2. 获取hidden的结果,根据word_pieces进行对应的pool计算 + # all_outputs: [batch_size x max_len x hidden_size, batch_size x max_len x hidden_size, ...] + if self.lm_loss: + gpt2_outputs = self.encoder(word_pieces, token_type_ids=None, attention_mask=attn_masks, labels=word_labels, + output_attentions=False) + gpt2_outputs, self._lm_loss_value = gpt2_outputs[-1], gpt2_outputs[0] # n_layers x batch_size x max_len x hidden_size + else: + gpt2_outputs = self.encoder(word_pieces, token_type_ids=None, attention_mask=attn_masks, + output_attentions=False)[-1] + outputs = gpt2_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len, + gpt2_outputs[-1].size(-1)) + + batch_word_pieces_cum_length = batch_word_pieces_length.new_zeros(batch_size, max_word_len+1) + batch_word_pieces_cum_length[:, 1:] = batch_word_pieces_length.cumsum(dim=-1) # batch_size x max_len + + if self.pool_method == 'first': + batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, :seq_len.max()] + batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0) + _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1))) + elif self.pool_method == 'last': + batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, :seq_len.max()] - 1 + batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0) + _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1))) + + for l_index, l in enumerate(self.layers): + output_layer = gpt2_outputs[l] + real_word_piece_length = output_layer.size(1) + if max_word_piece_length > real_word_piece_length: # 如果实际上是截取出来的 + paddings = output_layer.new_zeros(batch_size, + max_word_piece_length - real_word_piece_length, + output_layer.size(2)) + output_layer = torch.cat((output_layer, paddings), dim=1).contiguous() + # 从word_piece collapse到word的表示 + # truncate_output_layer = output_layer # 删除endoftext batch_size x len x hidden_size + if self.pool_method == 'first': + tmp = output_layer[_batch_indexes, batch_word_pieces_cum_length] + tmp = tmp.masked_fill(word_mask[:, :batch_word_pieces_cum_length.size(1), None].eq(False), 0) + outputs[l_index, :, :batch_word_pieces_cum_length.size(1)] = tmp + elif self.pool_method == 'last': + tmp = output_layer[_batch_indexes, batch_word_pieces_cum_length] + tmp = tmp.masked_fill(word_mask[:, :batch_word_pieces_cum_length.size(1), None].eq(False), 0) + outputs[l_index, :, :batch_word_pieces_cum_length.size(1)] = tmp + elif self.pool_method == 'max': + for i in range(batch_size): + for j in range(seq_len[i]): + start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j + 1] + outputs[l_index, i, j], _ = torch.max(output_layer[i, start:end], dim=-2) + else: + for i in range(batch_size): + for j in range(seq_len[i]): + start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j + 1] + outputs[l_index, i, j] = torch.mean(output_layer[i, start:end], dim=-2) + + # 3. 最终的embedding结果 + return outputs + + def get_lm_loss(self): + """ + 当language_model为True时,通过该接口可以获取最近传入的一个batch的lanuage model loss + + :return: + """ + return self._lm_loss_value + + +class _GPT2WordPieceModel(nn.Module): + """ + 这个模块用于直接计算word_piece的结果. + + """ + + def __init__(self, model_dir_or_name: str, layers: str = '-1', language_model: bool=False): + super().__init__() + + self.tokenizer = GPT2Tokenizer.from_pretrained(model_dir_or_name) + if language_model: + self.encoder = GPT2LMHeadModel.from_pretrained(model_dir_or_name) + else: + self.encoder = GPT2Model.from_pretrained(model_dir_or_name) + + self.lm_loss = language_model + + # 检查encoder_layer_number是否合理 + encoder_layer_number = self.encoder.config.n_layer + + if isinstance(layers, list): + self.layers = [int(l) for l in layers] + elif isinstance(layers, str): + self.layers = list(map(int, layers.split(','))) + else: + raise TypeError("`layers` only supports str or list[int]") + + for layer in self.layers: + if layer < 0: + assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a gpt2 model with {encoder_layer_number} layers." + else: + assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a gpt2 model with {encoder_layer_number} layers." + + self._endoftext_index = self.tokenizer.encoder.get('<|endoftext|>') + self._wordpiece_pad_index = self.tokenizer.encoder.get('<|endoftext|>') # 原来并没有pad,使用这个值替代一下。这个pad值并不重要,因为是从左到右计算的 + self._max_position_embeddings = self.encoder.config.max_position_embeddings + + def index_datasets(self, *datasets, field_name, add_endoftext=False, add_prefix_space=True): + """ + 使用gpt2的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果开头不是<|endoftext|>, 且将 + word_pieces这一列的pad value设置为了bert的pad value。 + + :param datasets: DataSet对象 + :param field_name: 基于哪一列index + :param bool add_prefix_space: 是否添加句首的空格 + :return: + """ + convert_words_to_word_pieces = partial(self.convert_words_to_word_pieces, add_endoftext=add_endoftext, + add_prefix_space=add_prefix_space) + for index, dataset in enumerate(datasets): + try: + dataset.apply_field(convert_words_to_word_pieces, field_name=field_name, new_field_name='word_pieces', + is_input=True) + dataset.set_pad_val('word_pieces', self._wordpiece_pad_index) + except Exception as e: + logger.error(f"Exception happens when processing the {index} dataset.") + raise e + + def convert_words_to_word_pieces(self, words, add_endoftext=False, add_prefix_space=True): + """ + + :param list[str],str words: 将str数据转换为index + :param bool add_endoftext: 是否在句首增加endoftext + :param bool add_prefix_space: 是否添加句首的空格 + :return: + """ + word_pieces = [] + if isinstance(words, str): + words = self.tokenizer.tokenize(words, add_prefix_space=add_prefix_space) + word_piece_ids = self.tokenizer.convert_tokens_to_ids(words) + word_pieces.extend(word_piece_ids) + else: + for word in words: + tokens = self.tokenizer.tokenize(word, add_prefix_space=add_prefix_space) + word_piece_ids = self.tokenizer.convert_tokens_to_ids(tokens) + word_pieces.extend(word_piece_ids) + if add_endoftext: + if word_pieces[0] != self._endoftext_index: + word_pieces.insert(0, self._endoftext_index) + if len(word_pieces) > self._max_position_embeddings: + word_pieces[self._max_position_embeddings - 1] = word_pieces[-1] + word_pieces = word_pieces[:self._max_position_embeddings] + return word_pieces + + def forward(self, word_pieces, token_type_ids=None): + """ + + :param word_pieces: torch.LongTensor, batch_size x max_len + :param token_type_ids: torch.LongTensor, batch_size x max_len + :return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size + """ + batch_size, max_len = word_pieces.size() + + attn_masks = word_pieces.ne(self._wordpiece_pad_index) # 可能会错误导致开头的词被mask掉 + word_pieces = word_pieces.masked_fill(attn_masks.eq(0), self._endoftext_index) # 替换pad的值 + if self.lm_loss: + labels = word_pieces.clone() + labels = labels.masked_fill(labels.eq(self._wordpiece_pad_index), -100) + gpt_outputs = self.encoder(word_pieces, token_type_ids=token_type_ids, attention_mask=attn_masks, + output_attentions=False, labels=labels) + gpt_outputs, self._lm_loss_value = gpt_outputs[-1], gpt_outputs[0] # n_layers x batch_size x max_len x hidden_size + else: + gpt_outputs = self.encoder(word_pieces, token_type_ids=token_type_ids, attention_mask=attn_masks, + output_attentions=False) + gpt_outputs = gpt_outputs[-1] + # output_layers = [self.layers] # len(self.layers) x batch_size x max_word_piece_length x hidden_size + outputs = gpt_outputs[0].new_zeros((len(self.layers), batch_size, max_len, gpt_outputs[0].size(-1))) + for l_index, l in enumerate(self.layers): + outputs[l_index] = gpt_outputs[l] # 删除开头 + return outputs + + def get_lm_loss(self): + """ + 当language_model为True时,通过该接口可以获取最近传入的一个batch的lanuage model loss + + :return: + """ + return self._lm_loss_value + diff --git a/fastNLP/embeddings/roberta_embedding.py b/fastNLP/embeddings/roberta_embedding.py index 46b4ebb2..4e77a310 100644 --- a/fastNLP/embeddings/roberta_embedding.py +++ b/fastNLP/embeddings/roberta_embedding.py @@ -1,5 +1,10 @@ +r""" +.. todo:: + doc +""" -import os + +from functools import partial import collections import warnings from itertools import chain @@ -10,7 +15,8 @@ import torch.nn as nn from .contextual_embedding import ContextualEmbedding from ..core import logger, Vocabulary -from ..modules.encoder.roberta import RobertaModel, RobertaTokenizer +from ..modules.encoder.roberta import RobertaModel +from ..modules.tokenizer import RobertaTokenizer class RobertaEmbedding(ContextualEmbedding): @@ -20,7 +26,8 @@ class RobertaEmbedding(ContextualEmbedding): 时切分),在分割之后长度可能会超过最大长度限制。 RobertaEmbedding可以支持自动下载权重,当前支持的模型: - ..TODO + en: roberta-base + en-large: roberta-large Example:: @@ -43,8 +50,8 @@ class RobertaEmbedding(ContextualEmbedding): :param ~fastNLP.Vocabulary vocab: 词表 :param str model_dir_or_name: 模型所在目录或者模型的名称。当传入模型所在目录时,目录中应该包含一个词表文件 (以vocab.json作为后缀名), 权重文件(以.bin作为文件后缀名), 配置文件(以config.json作为后缀名)。 - :param str layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,层的序号是 - 从0开始,可以以负数去索引倒数几层。 + :param str,list layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,层的序号是 + 从0开始,可以以负数去索引倒数几层。layer=0为embedding层(包括wordpiece embedding, position embedding) :param str pool_method: 因为在bert中,每个word会被表示为多个word pieces, 当获取一个word的表示的时候,怎样从它的word pieces 中计算得到它对应的表示。支持 ``last`` , ``first`` , ``avg`` , ``max``。 :param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。 @@ -61,24 +68,30 @@ class RobertaEmbedding(ContextualEmbedding): :param kwargs: bool only_use_pretrain_bpe: 仅使用出现在pretrain词表中的bpe,如果该词没法tokenize则使用unk。如果embedding不需要更新 建议设置为True。 + int min_freq: 仅在only_use_pretrain_bpe为False有效,大于等于该次数的词会被新加入BERT的BPE词表中 + bool truncate_embed: 是否仅保留用到的bpe(这样会减内存占用和加快速度) """ super().__init__(vocab, word_dropout=word_dropout, dropout=dropout) if word_dropout > 0: assert vocab.unknown is not None, "When word_drop > 0, Vocabulary must contain the unknown token." - self._word_sep_index = None + self._word_sep_index = -100 if '' in vocab: self._word_sep_index = vocab[''] + self._word_cls_index = -100 + if '' in vocab: + self._word_cls_index = vocab[''] + only_use_pretrain_bpe = kwargs.get('only_use_pretrain_bpe', False) + truncate_embed = kwargs.get('truncate_embed', True) + min_freq = kwargs.get('min_freq', 2) - self.model = _WordRobertaModel(model_dir_or_name=model_dir_or_name, vocab=vocab, layers=layers, + self.model = _RobertaWordModel(model_dir_or_name=model_dir_or_name, vocab=vocab, layers=layers, pool_method=pool_method, include_cls_sep=include_cls_sep, - pooled_cls=pooled_cls, auto_truncate=auto_truncate, min_freq=2, - only_use_pretrain_bpe=only_use_pretrain_bpe) - self._sep_index = self.model._sep_index - self._cls_index = self.model._cls_index + pooled_cls=pooled_cls, auto_truncate=auto_truncate, min_freq=min_freq, + only_use_pretrain_bpe=only_use_pretrain_bpe, truncate_embed=truncate_embed) self.requires_grad = requires_grad self._embed_size = len(self.model.layers) * self.model.encoder.hidden_size @@ -111,37 +124,46 @@ class RobertaEmbedding(ContextualEmbedding): """ if self.word_dropout > 0 and self.training: with torch.no_grad(): - not_sep_mask = words.ne(self._sep_index) - not_cls_mask = words.ne(self._cls_index) - if self._word_sep_index: - not_sep_mask = not_sep_mask.__and__(words.ne(self._word_sep_index)) - replaceable_mask = not_sep_mask.__and__(not_cls_mask) mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device) mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1 pad_mask = words.ne(self._word_pad_index) - mask = pad_mask.__and__(mask).__and__(replaceable_mask) # pad的位置不为unk + mask = pad_mask.__and__(mask) # pad的位置不为unk + if self._word_sep_index!=-100: + not_sep_mask = words.ne(self._word_sep_index) + mask = mask.__and__(not_sep_mask) + if self._word_cls_index!=-100: + not_cls_mask = words.ne(self._word_cls_index) + mask = mask.__and__(not_cls_mask) words = words.masked_fill(mask, self._word_unk_index) return words -class _WordRobertaModel(nn.Module): +class _RobertaWordModel(nn.Module): def __init__(self, model_dir_or_name: str, vocab: Vocabulary, layers: str = '-1', pool_method: str = 'first', include_cls_sep: bool = False, pooled_cls: bool = False, auto_truncate: bool = False, min_freq=2, - only_use_pretrain_bpe=False): + only_use_pretrain_bpe=False, truncate_embed=True): super().__init__() self.tokenzier = RobertaTokenizer.from_pretrained(model_dir_or_name) self.encoder = RobertaModel.from_pretrained(model_dir_or_name) - self._max_position_embeddings = self.encoder.config.max_position_embeddings + # 由于RobertaEmbedding中设置了padding_idx为1, 且使用了非常神奇的position计算方式,所以-2 + self._max_position_embeddings = self.encoder.config.max_position_embeddings - 2 # 检查encoder_layer_number是否合理 encoder_layer_number = len(self.encoder.encoder.layer) - self.layers = list(map(int, layers.split(','))) + + if isinstance(layers, list): + self.layers = [int(l) for l in layers] + elif isinstance(layers, str): + self.layers = list(map(int, layers.split(','))) + else: + raise TypeError("`layers` only supports str or list[int]") + for layer in self.layers: if layer < 0: assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ f"a roberta model with {encoder_layer_number} layers." else: - assert layer < encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ f"a roberta model with {encoder_layer_number} layers." assert pool_method in ('avg', 'max', 'first', 'last') @@ -155,7 +177,8 @@ class _WordRobertaModel(nn.Module): # 第一步统计出需要的word_piece, 然后创建新的embed和word_piece_vocab, 然后填入值 word_piece_dict = {'': 1, '': 1} # 用到的word_piece以及新增的 found_count = 0 - self._has_sep_in_vocab = '' in vocab # 用来判断传入的数据是否需要生成token_ids + new_add_to_bpe_vocab = 0 + unsegment_count = 0 if "" in vocab: warnings.warn(" detected in your vocabulary. RobertaEmbedding will add and to the begin " "and end of the input automatically, make sure you don't add and at the begin" @@ -167,33 +190,53 @@ class _WordRobertaModel(nn.Module): word = '' # _words = self.tokenzier.basic_tokenizer._tokenize_chinese_chars(word).split() # 这里暂时不考虑中文内容 word_pieces = [] - word_pieces.extend(self.tokenzier.tokenize(word)) + # 如果这个word不是在句子开头 + word_pieces.extend(self.tokenzier.tokenize(word, add_prefix_space=True)) if len(word_pieces) == 1: if not vocab._is_word_no_create_entry(word): # 如果是train中的值, 但是却没有找到 if index != vocab.unknown_idx and word_pieces[0] == '': # 说明这个词不在原始的word里面 if vocab.word_count[word] >= min_freq and not vocab._is_word_no_create_entry( word) and not only_use_pretrain_bpe: # 出现次数大于这个次数才新增 word_piece_dict[word] = 1 # 新增一个值 + new_add_to_bpe_vocab += 1 + unsegment_count += 1 continue + found_count += 1 for word_piece in word_pieces: word_piece_dict[word_piece] = 1 - found_count += 1 + # 如果这个word是在句子开头 + original_embed = self.encoder.embeddings.word_embeddings.weight.data # 特殊词汇要特殊处理 + if not truncate_embed: # 如果不删除的话需要将已有的加上 + word_piece_dict.update(self.tokenzier.encoder) + embed = nn.Embedding(len(word_piece_dict), original_embed.size(1)) # 新的embed new_word_piece_vocab = collections.OrderedDict() - for index, token in enumerate(['', '']): - word_piece_dict.pop(token, None) - embed.weight.data[index] = original_embed[self.tokenzier.encoder[token]] - new_word_piece_vocab[token] = index + + for index, token in enumerate(['', '', '', '']): + index = word_piece_dict.pop(token, None) + if index is not None: + new_word_piece_vocab[token] = len(new_word_piece_vocab) + embed.weight.data[new_word_piece_vocab[token]] = original_embed[self.tokenzier.encoder[token]] for token in word_piece_dict.keys(): + if token not in new_word_piece_vocab: + new_word_piece_vocab[token] = len(new_word_piece_vocab) + index = new_word_piece_vocab[token] if token in self.tokenzier.encoder: - embed.weight.data[len(new_word_piece_vocab)] = original_embed[self.tokenzier.encoder[token]] + embed.weight.data[index] = original_embed[self.tokenzier.encoder[token]] else: - embed.weight.data[len(new_word_piece_vocab)] = original_embed[self.tokenzier.encoder['']] - new_word_piece_vocab[token] = len(new_word_piece_vocab) - self._reinit_on_new_vocab(new_word_piece_vocab, model_dir_or_name) + embed.weight.data[index] = original_embed[self.tokenzier.encoder['']] + + self.tokenzier._reinit_on_new_vocab(new_word_piece_vocab) self.encoder.embeddings.word_embeddings = embed + self.encoder.config.vocab_size = len(new_word_piece_vocab) + + if unsegment_count>0: + if only_use_pretrain_bpe or new_add_to_bpe_vocab==0: + logger.info(f"{unsegment_count} words are unsegmented.") + else: + logger.info(f"{unsegment_count} words are unsegmented. Among them, {new_add_to_bpe_vocab} added to the BPE vocab.") word_to_wordpieces = [] word_pieces_lengths = [] @@ -210,18 +253,10 @@ class _WordRobertaModel(nn.Module): self._sep_index = self.tokenzier.encoder[''] self._word_pad_index = vocab.padding_idx self._wordpiece_pad_index = self.tokenzier.encoder[''] # 需要用于生成word_piece - logger.info("Found(Or segment into word pieces) {} words out of {}.".format(found_count, len(vocab))) self.word_to_wordpieces = np.array(word_to_wordpieces) self.register_buffer('word_pieces_lengths', torch.LongTensor(word_pieces_lengths)) logger.debug("Successfully generate word pieces.") - def _reinit_on_new_vocab(self, vocab, model_dir_or_name): - import json - with open('./.tmp-new-vocab-file.json', 'w') as f: - json.dump(vocab, f) - self.tokenzier = RobertaTokenizer.from_pretrained(model_dir_or_name, vocab_file='./.tmp-new-vocab-file.json') - os.remove('./.tmp-new-vocab-file.json') - def forward(self, words): r""" @@ -232,15 +267,13 @@ class _WordRobertaModel(nn.Module): batch_size, max_word_len = words.size() word_mask = words.ne(self._word_pad_index) # 为1的地方有word seq_len = word_mask.sum(dim=-1) - batch_word_pieces_length = self.word_pieces_lengths[words].masked_fill(word_mask.eq(False), - 0) # batch_size x max_len + batch_word_pieces_length = self.word_pieces_lengths[words].masked_fill(word_mask.eq(False), 0) # batch_size x max_len word_pieces_lengths = batch_word_pieces_length.sum(dim=-1) # batch_size - word_piece_length = batch_word_pieces_length.sum(dim=-1).max().item() # 表示word piece的长度(包括padding) - if word_piece_length + 2 > self._max_position_embeddings: + max_word_piece_length = batch_word_pieces_length.sum(dim=-1).max().item() # 表示word piece的长度(包括padding) + if max_word_piece_length + 2 > self._max_position_embeddings: if self.auto_truncate: word_pieces_lengths = word_pieces_lengths.masked_fill( - word_pieces_lengths + 2 > self._max_position_embeddings, - self._max_position_embeddings - 2) + word_pieces_lengths + 2 > self._max_position_embeddings, self._max_position_embeddings - 2) else: raise RuntimeError( "After split words into word pieces, the lengths of word pieces are longer than the " @@ -248,7 +281,7 @@ class _WordRobertaModel(nn.Module): f"`auto_truncate=True` for BertEmbedding to automatically truncate overlong input.") # +2是由于需要加入 - word_pieces = words.new_full((batch_size, min(word_piece_length + 2, self._max_position_embeddings)), + word_pieces = words.new_full((batch_size, min(max_word_piece_length + 2, self._max_position_embeddings)), fill_value=self._wordpiece_pad_index) attn_masks = torch.zeros_like(word_pieces) # 1. 获取words的word_pieces的id,以及对应的span范围 @@ -259,17 +292,9 @@ class _WordRobertaModel(nn.Module): word_pieces_i = word_pieces_i[:self._max_position_embeddings - 2] word_pieces[i, 1:word_pieces_lengths[i] + 1] = torch.LongTensor(word_pieces_i) attn_masks[i, :word_pieces_lengths[i] + 2].fill_(1) - # 添加[cls]和[sep] word_pieces[:, 0].fill_(self._cls_index) batch_indexes = torch.arange(batch_size).to(words) word_pieces[batch_indexes, word_pieces_lengths + 1] = self._sep_index - # if self._has_sep_in_vocab: # 但在vocab中出现应该才会需要token_ids - # sep_mask = word_pieces.eq(self._sep_index).long() # batch_size x max_len - # sep_mask_cumsum = sep_mask.flip(dims=[-1]).cumsum(dim=-1).flip(dims=[-1]) - # token_type_ids = sep_mask_cumsum.fmod(2) - # if token_type_ids[0, 0].item(): # 如果开头是奇数,则需要flip一下结果,因为需要保证开头为0 - # token_type_ids = token_type_ids.eq(0).long() - # else: # RoBERTa不需要额外设置token_type_ids token_type_ids = torch.zeros_like(word_pieces) # 2. 获取hidden的结果,根据word_pieces进行对应的pool计算 # all_outputs: [batch_size x max_len x hidden_size, batch_size x max_len x hidden_size, ...] @@ -292,19 +317,19 @@ class _WordRobertaModel(nn.Module): if self.pool_method == 'first': batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, :seq_len.max()] - batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(word_piece_length), 0) + batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0) _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1))) elif self.pool_method == 'last': batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, 1:seq_len.max() + 1] - 1 - batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(word_piece_length), 0) + batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0) _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1))) for l_index, l in enumerate(self.layers): output_layer = bert_outputs[l] real_word_piece_length = output_layer.size(1) - 2 - if word_piece_length > real_word_piece_length: # 如果实际上是截取出来的 + if max_word_piece_length > real_word_piece_length: # 如果实际上是截取出来的 paddings = output_layer.new_zeros(batch_size, - word_piece_length - real_word_piece_length, + max_word_piece_length - real_word_piece_length, output_layer.size(2)) output_layer = torch.cat((output_layer, paddings), dim=1).contiguous() # 从word_piece collapse到word的表示 @@ -333,7 +358,176 @@ class _WordRobertaModel(nn.Module): outputs[l_index, :, 0] = pooled_cls else: outputs[l_index, :, 0] = output_layer[:, 0] - outputs[l_index, batch_indexes, seq_len + s_shift] = output_layer[batch_indexes, seq_len + s_shift] + outputs[l_index, batch_indexes, seq_len + s_shift] = output_layer[batch_indexes, word_pieces_lengths + s_shift] # 3. 最终的embedding结果 return outputs + + +class RobertaWordPieceEncoder(nn.Module): + r""" + 读取bert模型,读取之后调用index_dataset方法在dataset中生成word_pieces这一列。 + + BertWordPieceEncoder可以支持自动下载权重,当前支持的模型: + en: roberta-base + en-large: roberta-large + + """ + + def __init__(self, model_dir_or_name: str = 'en-base-uncased', layers: str = '-1', pooled_cls: bool = False, + word_dropout=0, dropout=0, requires_grad: bool = True): + r""" + + :param str model_dir_or_name: 模型所在目录或者模型的名称。默认值为 ``en-base-uncased`` + :param str layers: 最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层。layer=0为embedding层(包括wordpiece embedding, + position embedding) + :param bool pooled_cls: 返回的句子开头的是否使用预训练中的BertPool映射一下。如果下游任务取做预测,一般该值为True。 + :param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。 + :param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。 + :param bool requires_grad: 是否需要gradient。 + """ + super().__init__() + + self.model = _WordPieceRobertaModel(model_dir_or_name=model_dir_or_name, layers=layers, pooled_cls=pooled_cls) + self._sep_index = self.model._sep_index + self._cls_index = self.model._cls_index + self._wordpiece_pad_index = self.model._wordpiece_pad_index + self._wordpiece_unk_index = self.model._wordpiece_unknown_index + self._embed_size = len(self.model.layers) * self.model.encoder.hidden_size + self.requires_grad = requires_grad + self.word_dropout = word_dropout + self.dropout_layer = nn.Dropout(dropout) + + @property + def embed_size(self): + return self._embed_size + + @property + def embedding_dim(self): + return self._embed_size + + @property + def num_embedding(self): + return self.model.encoder.config.vocab_size + + def index_datasets(self, *datasets, field_name, add_cls_sep=True, add_prefix_space=True): + r""" + 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input,且将word_pieces这一列的pad value设置为了 + bert的pad value。 + + :param ~fastNLP.DataSet datasets: DataSet对象 + :param str field_name: 基于哪一列的内容生成word_pieces列。这一列中每个数据应该是List[str]的形式。 + :param bool add_cls_sep: 如果首尾不是会在首尾额外加入。 + :param bool add_prefix_spance: 是否在句首添加额外的空格,RoBERTa预训练时该值为True + :return: + """ + self.model.index_datasets(*datasets, field_name=field_name, add_cls_sep=add_cls_sep, add_prefix_space=add_prefix_space) + + def forward(self, word_pieces, token_type_ids=None): + r""" + 计算words的bert embedding表示。传入的words中应该自行包含[CLS]与[SEP]的tag。 + + :param words: batch_size x max_len + :param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话. 如果不传入,则自动生成(大部分情况,都不需要输入), + 第一个[SEP]及之前为0, 第二个[SEP]及到第一个[SEP]之间为1; 第三个[SEP]及到第二个[SEP]之间为0,依次往后推。 + :return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers)) + """ + word_pieces = self.drop_word(word_pieces) + outputs = self.model(word_pieces) + outputs = torch.cat([*outputs], dim=-1) + + return self.dropout_layer(outputs) + + def drop_word(self, words): + r""" + 按照设定随机将words设置为unknown_index。 + + :param torch.LongTensor words: batch_size x max_len + :return: + """ + if self.word_dropout > 0 and self.training: + with torch.no_grad(): + not_sep_mask = words.ne(self._sep_index) + not_cls_mask = words.ne(self._cls_index) + replaceable_mask = not_sep_mask.__and__(not_cls_mask) + mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device) + mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1 + pad_mask = words.ne(self._wordpiece_pad_index) + mask = pad_mask.__and__(mask).__and__(replaceable_mask) # pad的位置不为unk + words = words.masked_fill(mask, self._wordpiece_unk_index) + return words + + +class _WordPieceRobertaModel(nn.Module): + def __init__(self, model_dir_or_name: str, layers: str = '-1', pooled_cls: bool=False): + super().__init__() + + self.tokenzier = RobertaTokenizer.from_pretrained(model_dir_or_name) + self.encoder = RobertaModel.from_pretrained(model_dir_or_name) + # 检查encoder_layer_number是否合理 + encoder_layer_number = len(self.encoder.encoder.layer) + + if isinstance(layers, list): + self.layers = [int(l) for l in layers] + elif isinstance(layers, str): + self.layers = list(map(int, layers.split(','))) + else: + raise TypeError("`layers` only supports str or list[int]") + + for layer in self.layers: + if layer < 0: + assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a RoBERTa model with {encoder_layer_number} layers." + else: + assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ + f"a RoBERTa model with {encoder_layer_number} layers." + + self._cls_index = self.tokenzier.encoder[''] + self._sep_index = self.tokenzier.encoder[''] + self._wordpiece_pad_index = self.tokenzier.encoder[''] # 需要用于生成word_piece + self._wordpiece_unknown_index = self.tokenzier.encoder[''] + self.pooled_cls = pooled_cls + + def index_datasets(self, *datasets, field_name, add_cls_sep=True, add_prefix_space=True): + r""" + 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是 + [CLS]与[SEP]会在首尾额外加入[CLS]与[SEP], 且将word_pieces这一列的pad value设置为了bert的pad value。 + + :param datasets: DataSet对象 + :param field_name: 基于哪一列index + :param bool add_cls_sep: 是否在句首句尾添加cls和sep的index + :param bool add_prefix_space: 是否在句子开头添加空格,预训练时RoBERTa该值为True + :return: + """ + + encode_func = partial(self.tokenzier.encode, add_special_tokens=add_cls_sep, add_prefix_space=add_prefix_space) + + for index, dataset in enumerate(datasets): + try: + dataset.apply_field(encode_func, field_name=field_name, new_field_name='word_pieces', + is_input=True) + dataset.set_pad_val('word_pieces', self._wordpiece_pad_index) + except Exception as e: + logger.error(f"Exception happens when processing the {index} dataset.") + raise e + + def forward(self, word_pieces): + r""" + + :param word_pieces: torch.LongTensor, batch_size x max_len + :return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size + """ + batch_size, max_len = word_pieces.size() + + attn_masks = word_pieces.ne(self._wordpiece_pad_index) + roberta_outputs, pooled_cls = self.encoder(word_pieces, token_type_ids=torch.zeros_like(word_pieces), + attention_mask=attn_masks, + output_all_encoded_layers=True) + # output_layers = [self.layers] # len(self.layers) x batch_size x max_word_piece_length x hidden_size + outputs = roberta_outputs[0].new_zeros((len(self.layers), batch_size, max_len, roberta_outputs[0].size(-1))) + for l_index, l in enumerate(self.layers): + roberta_output = roberta_outputs[l] + if l in (len(roberta_output)-1, -1) and self.pooled_cls: + roberta_output[:, 0] = pooled_cls + outputs[l_index] = roberta_output + return outputs \ No newline at end of file diff --git a/fastNLP/io/file_utils.py b/fastNLP/io/file_utils.py index fe697699..96a9c1ed 100644 --- a/fastNLP/io/file_utils.py +++ b/fastNLP/io/file_utils.py @@ -48,6 +48,18 @@ PRETRAINED_BERT_MODEL_DIR = { 'cn-wwm-ext': "bert-chinese-wwm-ext.zip" } +PRETRAINED_GPT2_MODEL_DIR = { + 'en': 'gpt2.zip', + 'en-medium': 'gpt2-medium.zip', + 'en-large': 'gpt2-large.zip', + 'en-xl': 'gpt2-xl.zip' +} + +PRETRAINED_ROBERTA_MODEL_DIR = { + 'en': 'roberta-base.zip', + 'en-large': 'roberta-large.zip' +} + PRETRAINED_ELMO_MODEL_DIR = { 'en': 'elmo_en_Medium.zip', 'en-small': "elmo_en_Small.zip", @@ -127,14 +139,18 @@ DATASET_DIR = { PRETRAIN_MAP = {'elmo': PRETRAINED_ELMO_MODEL_DIR, "bert": PRETRAINED_BERT_MODEL_DIR, - "static": PRETRAIN_STATIC_FILES} + "static": PRETRAIN_STATIC_FILES, + 'gpt2': PRETRAINED_GPT2_MODEL_DIR, + 'roberta': PRETRAINED_ROBERTA_MODEL_DIR} # 用于扩展fastNLP的下载 FASTNLP_EXTEND_DATASET_URL = 'fastnlp_dataset_url.txt' FASTNLP_EXTEND_EMBEDDING_URL = {'elmo': 'fastnlp_elmo_url.txt', - 'bert':'fastnlp_bert_url.txt', - 'static': 'fastnlp_static_url.txt' -} + 'bert':'fastnlp_bert_url.txt', + 'static': 'fastnlp_static_url.txt', + 'gpt2': 'fastnlp_gpt2_url.txt', + 'roberta': 'fastnlp_roberta_url.txt' + } def cached_path(url_or_filename: str, cache_dir: str = None, name=None) -> Path: @@ -273,7 +289,7 @@ def _get_embedding_url(embed_type, name): return url raise KeyError("There is no {}. Only supports {}.".format(name, list(embed_map.keys()))) else: - raise KeyError(f"There is no {embed_type}. Only supports bert, elmo, static") + raise KeyError(f"There is no {embed_type}. Only supports bert, elmo, static, gpt2, roberta") def _read_extend_url_file(filename, name)->str: r""" @@ -281,7 +297,7 @@ def _read_extend_url_file(filename, name)->str: :param str filename: 在默认的路径下寻找file这个文件 :param str name: 需要寻找的资源的名称 - :return: str or None + :return: str,None """ cache_dir = get_cache_path() filepath = os.path.join(cache_dir, filename) @@ -488,3 +504,42 @@ def match_file(dir_name: str, cache_dir: Path) -> str: return matched_filenames[-1] else: raise RuntimeError(f"Duplicate matched files:{matched_filenames}, this should be caused by a bug.") + + +def _get_bert_dir(model_dir_or_name: str = 'en-base-uncased'): + if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: + model_url = _get_embedding_url('bert', model_dir_or_name.lower()) + model_dir = cached_path(model_url, name='embedding') + # 检查是否存在 + elif os.path.isdir(os.path.abspath(os.path.expanduser(model_dir_or_name))): + model_dir = os.path.abspath(os.path.expanduser(model_dir_or_name)) + else: + logger.error(f"Cannot recognize BERT dir or name ``{model_dir_or_name}``.") + raise ValueError(f"Cannot recognize BERT dir or name ``{model_dir_or_name}``.") + return str(model_dir) + + +def _get_gpt2_dir(model_dir_or_name: str = 'en'): + if model_dir_or_name.lower() in PRETRAINED_GPT2_MODEL_DIR: + model_url = _get_embedding_url('gpt2', model_dir_or_name.lower()) + model_dir = cached_path(model_url, name='embedding') + # 检查是否存在 + elif os.path.isdir(os.path.abspath(os.path.expanduser(model_dir_or_name))): + model_dir = os.path.abspath(os.path.expanduser(model_dir_or_name)) + else: + logger.error(f"Cannot recognize GPT2 dir or name ``{model_dir_or_name}``.") + raise ValueError(f"Cannot recognize GPT2 dir or name ``{model_dir_or_name}``.") + return str(model_dir) + + +def _get_roberta_dir(model_dir_or_name: str = 'en'): + if model_dir_or_name.lower() in PRETRAINED_ROBERTA_MODEL_DIR: + model_url = _get_embedding_url('roberta', model_dir_or_name.lower()) + model_dir = cached_path(model_url, name='embedding') + # 检查是否存在 + elif os.path.isdir(os.path.abspath(os.path.expanduser(model_dir_or_name))): + model_dir = os.path.abspath(os.path.expanduser(model_dir_or_name)) + else: + logger.error(f"Cannot recognize RoBERTa dir or name ``{model_dir_or_name}``.") + raise ValueError(f"Cannot recognize RoBERTa dir or name ``{model_dir_or_name}``.") + return str(model_dir) diff --git a/fastNLP/modules/__init__.py b/fastNLP/modules/__init__.py index 53651b59..d8eab276 100644 --- a/fastNLP/modules/__init__.py +++ b/fastNLP/modules/__init__.py @@ -49,7 +49,15 @@ __all__ = [ "TimestepDropout", - 'summary' + 'summary', + + "BertTokenizer", + "BertModel", + + "RobertaTokenizer", + "RobertaModel", + + "GPT2Tokenizer" ] import sys @@ -61,5 +69,6 @@ from .dropout import TimestepDropout from .encoder import * from .utils import summary from ..doc_utils import doc_process +from .tokenizer import * doc_process(sys.modules[__name__]) diff --git a/fastNLP/modules/decoder/seq2seq_decoder.py b/fastNLP/modules/decoder/seq2seq_decoder.py new file mode 100755 index 00000000..3933867a --- /dev/null +++ b/fastNLP/modules/decoder/seq2seq_decoder.py @@ -0,0 +1,109 @@ +# coding=utf-8 +__all__ = [ + "TransformerPast", + "Past", + "Decoder" +] +import torch +from torch import nn +import abc +import torch.nn.functional as F +from ...embeddings import StaticEmbedding +import numpy as np +from typing import Union, Tuple +from ...embeddings.utils import get_embeddings +from torch.nn import LayerNorm +import math + + +class Past: + def __init__(self): + pass + + @abc.abstractmethod + def num_samples(self): + pass + + @abc.abstractmethod + def reorder_past(self, indices: torch.LongTensor): + """ + 根据indices中的index,将past的中状态置为正确的顺序。inplace改变 + + :param torch.LongTensor indices: + :param Past past: + :return: + """ + raise NotImplemented + + +class TransformerPast(Past): + def __init__(self, encoder_outputs: torch.Tensor = None, encoder_mask: torch.Tensor = None, + num_decoder_layer: int = 6): + """ + + :param encoder_outputs: (batch,src_seq_len,dim) + :param encoder_mask: (batch,src_seq_len) + :param encoder_key: list of (batch, src_seq_len, dim) + :param encoder_value: + :param decoder_prev_key: + :param decoder_prev_value: + """ + super().__init__() + self.encoder_outputs = encoder_outputs + self.encoder_mask = encoder_mask + self.encoder_key = [None] * num_decoder_layer + self.encoder_value = [None] * num_decoder_layer + self.decoder_prev_key = [None] * num_decoder_layer + self.decoder_prev_value = [None] * num_decoder_layer + + def num_samples(self): + if self.encoder_outputs is not None: + return self.encoder_outputs.size(0) + return None + + def _reorder_state(self, state, indices): + if type(state) == torch.Tensor: + state = state.index_select(index=indices, dim=0) + elif type(state) == list: + for i in range(len(state)): + assert state[i] is not None + state[i] = state[i].index_select(index=indices, dim=0) + else: + raise ValueError('State does not support other format') + + return state + + def reorder_past(self, indices: torch.LongTensor): + self.encoder_outputs = self._reorder_state(self.encoder_outputs, indices) + self.encoder_mask = self._reorder_state(self.encoder_mask, indices) + self.encoder_key = self._reorder_state(self.encoder_key, indices) + self.encoder_value = self._reorder_state(self.encoder_value, indices) + self.decoder_prev_key = self._reorder_state(self.decoder_prev_key, indices) + self.decoder_prev_value = self._reorder_state(self.decoder_prev_value, indices) + return self + + +class Decoder(nn.Module): + def __init__(self): + super().__init__() + + @abc.abstractmethod + def decode(self, *args, **kwargs) -> Tuple[torch.Tensor, Past]: + """ + 当模型进行解码时,使用这个函数。返回一个batch_size x vocab_size的结果与更新的Past状态。需要考虑一种特殊情况,即tokens长度不是1,即给定了 + 解码句子开头的情况,这种情况需要查看Past中是否正确计算了decode的状态。 + + :return: tensor:batch_size x vocab_size, past: Past + """ + raise NotImplemented + + @abc.abstractmethod + def reorder_past(self, indices: torch.LongTensor, past: Past): + """ + 根据indices中的index,将past的中状态置为正确的顺序。inplace改变 + + :param torch.LongTensor indices: + :param Past past: + :return: + """ + raise NotImplemented \ No newline at end of file diff --git a/fastNLP/modules/encoder/__init__.py b/fastNLP/modules/encoder/__init__.py index 3c9af22d..fccb2c00 100644 --- a/fastNLP/modules/encoder/__init__.py +++ b/fastNLP/modules/encoder/__init__.py @@ -30,6 +30,10 @@ __all__ = [ "MultiHeadAttention", "BiAttention", "SelfAttention", + + "BertModel", + + "RobertaModel", ] from .attention import MultiHeadAttention, BiAttention, SelfAttention diff --git a/fastNLP/modules/encoder/bert.py b/fastNLP/modules/encoder/bert.py index 32edafbe..bfa1c6a1 100644 --- a/fastNLP/modules/encoder/bert.py +++ b/fastNLP/modules/encoder/bert.py @@ -4,26 +4,23 @@ r"""undocumented """ __all__ = [ - "BertModel" + "BertModel", ] -import collections import copy import json import math -import os -import unicodedata import torch from torch import nn import numpy as np from ..utils import _get_file_name_base_on_postfix -from ...io.file_utils import _get_embedding_url, cached_path, PRETRAINED_BERT_MODEL_DIR +from ...io.file_utils import _get_bert_dir from ...core import logger + CONFIG_FILE = 'bert_config.json' -VOCAB_NAME = 'vocab.txt' BERT_KEY_RENAME_MAP_1 = { 'gamma': 'weight', @@ -152,33 +149,22 @@ def swish(x): ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} -def _get_bert_dir(model_dir_or_name: str = 'en-base-uncased'): - if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: - model_url = _get_embedding_url('bert', model_dir_or_name.lower()) - model_dir = cached_path(model_url, name='embedding') - # 检查是否存在 - elif os.path.isdir(os.path.abspath(os.path.expanduser(model_dir_or_name))): - model_dir = os.path.abspath(os.path.expanduser(model_dir_or_name)) - else: - logger.error(f"Cannot recognize BERT dir or name ``{model_dir_or_name}``.") - raise ValueError(f"Cannot recognize BERT dir or name ``{model_dir_or_name}``.") - return str(model_dir) - - -class BertLayerNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-12): - r"""Construct a layernorm module in the TF style (epsilon inside the square root). - """ - super(BertLayerNorm, self).__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.bias = nn.Parameter(torch.zeros(hidden_size)) - self.variance_epsilon = eps +# class BertLayerNorm(nn.Module): +# def __init__(self, hidden_size, eps=1e-12): +# r"""Construct a layernorm module in the TF style (epsilon inside the square root). +# """ +# super(BertLayerNorm, self).__init__() +# self.weight = nn.Parameter(torch.ones(hidden_size)) +# self.bias = nn.Parameter(torch.zeros(hidden_size)) +# self.variance_epsilon = eps +# +# def forward(self, x): +# u = x.mean(-1, keepdim=True) +# s = (x - u).pow(2).mean(-1, keepdim=True) +# x = (x - u) / torch.sqrt(s + self.variance_epsilon) +# return self.weight * x + self.bias - def forward(self, x): - u = x.mean(-1, keepdim=True) - s = (x - u).pow(2).mean(-1, keepdim=True) - x = (x - u) / torch.sqrt(s + self.variance_epsilon) - return self.weight * x + self.bias +BertLayerNorm = torch.nn.LayerNorm class DistilBertEmbeddings(nn.Module): @@ -518,6 +504,7 @@ class BertModel(nn.Module): pooled_output = sequence_output[:, 0] if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] + encoded_layers.insert(0, embedding_output) return encoded_layers, pooled_output @classmethod @@ -615,435 +602,3 @@ class BertModel(nn.Module): logger.info(f"Load pre-trained {model_type} parameters from file {weights_path}.") return model - -def whitespace_tokenize(text): - r"""Runs basic whitespace cleaning and splitting on a piece of text.""" - text = text.strip() - if not text: - return [] - tokens = text.split() - return tokens - - -class WordpieceTokenizer(object): - r"""Runs WordPiece tokenization.""" - - def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): - self.vocab = vocab - self.unk_token = unk_token - self.max_input_chars_per_word = max_input_chars_per_word - - def tokenize(self, text): - r"""Tokenizes a piece of text into its word pieces. - - This uses a greedy longest-match-first algorithm to perform tokenization - using the given vocabulary. - - For example: - input = "unaffable" - output = ["un", "##aff", "##able"] - - Args: - text: A single token or whitespace separated tokens. This should have - already been passed through `BasicTokenizer`. - - Returns: - A list of wordpiece tokens. - """ - - output_tokens = [] - for token in whitespace_tokenize(text): - chars = list(token) - if len(chars) > self.max_input_chars_per_word: - output_tokens.append(self.unk_token) - continue - - is_bad = False - start = 0 - sub_tokens = [] - while start < len(chars): - end = len(chars) - cur_substr = None - while start < end: - substr = "".join(chars[start:end]) - if start > 0: - substr = "##" + substr - if substr in self.vocab: - cur_substr = substr - break - end -= 1 - if cur_substr is None: - is_bad = True - break - sub_tokens.append(cur_substr) - start = end - - if is_bad: - output_tokens.append(self.unk_token) - else: - output_tokens.extend(sub_tokens) - if len(output_tokens) == 0: # 防止里面全是空格或者回车符号 - return [self.unk_token] - return output_tokens - - -def load_vocab(vocab_file): - r"""Loads a vocabulary file into a dictionary.""" - vocab = collections.OrderedDict() - index = 0 - with open(vocab_file, "r", encoding="utf-8") as reader: - while True: - token = reader.readline() - if not token: - break - token = token.strip() - vocab[token] = index - index += 1 - return vocab - - -class BasicTokenizer(object): - r"""Runs basic tokenization (punctuation splitting, lower casing, etc.).""" - - def __init__(self, - do_lower_case=True, - never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): - r"""Constructs a BasicTokenizer. - - Args: - do_lower_case: Whether to lower case the input. - """ - self.do_lower_case = do_lower_case - self.never_split = never_split - - def tokenize(self, text): - r"""Tokenizes a piece of text.""" - text = self._clean_text(text) - # This was added on November 1st, 2018 for the multilingual and Chinese - # models. This is also applied to the English models now, but it doesn't - # matter since the English models were not trained on any Chinese data - # and generally don't have any Chinese data in them (there are Chinese - # characters in the vocabulary because Wikipedia does have some Chinese - # words in the English Wikipedia.). - text = self._tokenize_chinese_chars(text) - orig_tokens = whitespace_tokenize(text) - split_tokens = [] - for token in orig_tokens: - if self.do_lower_case and token not in self.never_split: - token = token.lower() - token = self._run_strip_accents(token) - split_tokens.extend(self._run_split_on_punc(token)) - - output_tokens = whitespace_tokenize(" ".join(split_tokens)) - return output_tokens - - def _run_strip_accents(self, text): - r"""Strips accents from a piece of text.""" - text = unicodedata.normalize("NFD", text) - output = [] - for char in text: - cat = unicodedata.category(char) - if cat == "Mn": - continue - output.append(char) - return "".join(output) - - def _run_split_on_punc(self, text): - r"""Splits punctuation on a piece of text.""" - if text in self.never_split: - return [text] - chars = list(text) - i = 0 - start_new_word = True - output = [] - while i < len(chars): - char = chars[i] - if _is_punctuation(char): - output.append([char]) - start_new_word = True - else: - if start_new_word: - output.append([]) - start_new_word = False - output[-1].append(char) - i += 1 - - return ["".join(x) for x in output] - - def _tokenize_chinese_chars(self, text): - r"""Adds whitespace around any CJK character.""" - output = [] - for char in text: - cp = ord(char) - if self._is_chinese_char(cp): - output.append(" ") - output.append(char) - output.append(" ") - else: - output.append(char) - return "".join(output) - - def _is_chinese_char(self, cp): - r"""Checks whether CP is the codepoint of a CJK character.""" - # This defines a "chinese character" as anything in the CJK Unicode block: - # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) - # - # Note that the CJK Unicode block is NOT all Japanese and Korean characters, - # despite its name. The modern Korean Hangul alphabet is a different block, - # as is Japanese Hiragana and Katakana. Those alphabets are used to write - # space-separated words, so they are not treated specially and handled - # like the all of the other languages. - if (((cp >= 0x4E00) and (cp <= 0x9FFF)) or # - ((cp >= 0x3400) and (cp <= 0x4DBF)) or # - ((cp >= 0x20000) and (cp <= 0x2A6DF)) or # - ((cp >= 0x2A700) and (cp <= 0x2B73F)) or # - ((cp >= 0x2B740) and (cp <= 0x2B81F)) or # - ((cp >= 0x2B820) and (cp <= 0x2CEAF)) or - ((cp >= 0xF900) and (cp <= 0xFAFF)) or # - ((cp >= 0x2F800) and (cp <= 0x2FA1F))): # - return True - - return False - - def _clean_text(self, text): - r"""Performs invalid character removal and whitespace cleanup on text.""" - output = [] - for char in text: - cp = ord(char) - if cp == 0 or cp == 0xfffd or _is_control(char): - continue - if _is_whitespace(char): - output.append(" ") - else: - output.append(char) - return "".join(output) - - -def _is_whitespace(char): - r"""Checks whether `chars` is a whitespace character.""" - # \t, \n, and \r are technically contorl characters but we treat them - # as whitespace since they are generally considered as such. - if char == " " or char == "\t" or char == "\n" or char == "\r": - return True - cat = unicodedata.category(char) - if cat == "Zs": - return True - return False - - -def _is_control(char): - r"""Checks whether `chars` is a control character.""" - # These are technically control characters but we count them as whitespace - # characters. - if char == "\t" or char == "\n" or char == "\r": - return False - cat = unicodedata.category(char) - if cat.startswith("C"): - return True - return False - - -def _is_punctuation(char): - r"""Checks whether `chars` is a punctuation character.""" - cp = ord(char) - # We treat all non-letter/number ASCII as punctuation. - # Characters such as "^", "$", and "`" are not in the Unicode - # Punctuation class but we treat them as punctuation anyways, for - # consistency. - if (((cp >= 33) and (cp <= 47)) or ((cp >= 58) and (cp <= 64)) or - ((cp >= 91) and (cp <= 96)) or ((cp >= 123) and (cp <= 126))): - return True - cat = unicodedata.category(char) - if cat.startswith("P"): - return True - return False - - -class BertTokenizer(object): - r"""Runs end-to-end tokenization: punctuation splitting + wordpiece""" - - def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True, - never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): - r"""Constructs a BertTokenizer. - - Args: - vocab_file: Path to a one-wordpiece-per-line vocabulary file - do_lower_case: Whether to lower case the input - Only has an effect when do_wordpiece_only=False - do_basic_tokenize: Whether to do basic tokenization before wordpiece. - max_len: An artificial maximum length to truncate tokenized sequences to; - Effective maximum length is always the minimum of this - value (if specified) and the underlying BERT model's - sequence length. - never_split: List of tokens which will never be split during tokenization. - Only has an effect when do_wordpiece_only=False - """ - if not os.path.isfile(vocab_file): - raise ValueError( - "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " - "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) - self.vocab = load_vocab(vocab_file) - self.ids_to_tokens = collections.OrderedDict( - [(ids, tok) for tok, ids in self.vocab.items()]) - self.do_basic_tokenize = do_basic_tokenize - if do_basic_tokenize: - self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, - never_split=never_split) - self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) - self.max_len = max_len if max_len is not None else int(1e12) - - def _reinit_on_new_vocab(self, vocab): - r""" - 在load bert之后,可能会对vocab进行重新排列。重新排列之后调用这个函数重新初始化与vocab相关的性质 - - :param vocab: - :return: - """ - self.vocab = vocab - self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) - - def tokenize(self, text): - split_tokens = [] - if self.do_basic_tokenize: - for token in self.basic_tokenizer.tokenize(text): - for sub_token in self.wordpiece_tokenizer.tokenize(token): - split_tokens.append(sub_token) - else: - split_tokens = self.wordpiece_tokenizer.tokenize(text) - return split_tokens - - def convert_tokens_to_ids(self, tokens): - r"""Converts a sequence of tokens into ids using the vocab.""" - ids = [] - for token in tokens: - ids.append(self.vocab[token]) - if len(ids) > self.max_len: - logger.warning( - "Token indices sequence length is longer than the specified maximum " - " sequence length for this BERT model ({} > {}). Running this" - " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) - ) - return ids - - def convert_ids_to_tokens(self, ids): - r"""Converts a sequence of ids in wordpiece tokens using the vocab.""" - tokens = [] - for i in ids: - tokens.append(self.ids_to_tokens[i]) - return tokens - - def save_vocabulary(self, vocab_path): - r"""Save the tokenizer vocabulary to a directory or file.""" - index = 0 - if os.path.isdir(vocab_path): - vocab_file = os.path.join(vocab_path, VOCAB_NAME) - else: - vocab_file = vocab_path - with open(vocab_file, "w", encoding="utf-8") as writer: - for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): - if index != token_index: - logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." - " Please check that the vocabulary is not corrupted!".format(vocab_file)) - index = token_index - writer.write(token + u'\n') - index += 1 - return vocab_file - - @classmethod - def from_pretrained(cls, model_dir_or_name, *inputs, **kwargs): - r""" - 给定模型的名字或者路径,直接读取vocab. - """ - model_dir = _get_bert_dir(model_dir_or_name) - pretrained_model_name_or_path = _get_file_name_base_on_postfix(model_dir, '.txt') - logger.info("loading vocabulary file {}".format(pretrained_model_name_or_path)) - max_len = 512 - kwargs['max_len'] = min(kwargs.get('max_position_embeddings', int(1e12)), max_len) - # Instantiate tokenizer. - tokenizer = cls(pretrained_model_name_or_path, *inputs, **kwargs) - return tokenizer - - -class _WordPieceBertModel(nn.Module): - r""" - 这个模块用于直接计算word_piece的结果. - - """ - - def __init__(self, model_dir_or_name: str, layers: str = '-1', pooled_cls: bool=False): - super().__init__() - - self.tokenzier = BertTokenizer.from_pretrained(model_dir_or_name) - self.encoder = BertModel.from_pretrained(model_dir_or_name) - # 检查encoder_layer_number是否合理 - encoder_layer_number = len(self.encoder.encoder.layer) - self.layers = list(map(int, layers.split(','))) - for layer in self.layers: - if layer < 0: - assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \ - f"a bert model with {encoder_layer_number} layers." - else: - assert layer < encoder_layer_number, f"The layer index:{layer} is out of scope for " \ - f"a bert model with {encoder_layer_number} layers." - - self._cls_index = self.tokenzier.vocab['[CLS]'] - self._sep_index = self.tokenzier.vocab['[SEP]'] - self._wordpiece_unknown_index = self.tokenzier.vocab['[UNK]'] - self._wordpiece_pad_index = self.tokenzier.vocab['[PAD]'] # 需要用于生成word_piece - self.pooled_cls = pooled_cls - - def index_dataset(self, *datasets, field_name, add_cls_sep=True): - r""" - 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是 - [CLS]与[SEP]会在首尾额外加入[CLS]与[SEP], 且将word_pieces这一列的pad value设置为了bert的pad value。 - - :param datasets: DataSet对象 - :param field_name: 基于哪一列index - :return: - """ - - def convert_words_to_word_pieces(words): - word_pieces = [] - for word in words: - _words = self.tokenzier.basic_tokenizer._tokenize_chinese_chars(word).split() - tokens = [] - for word in _words: - tokens.extend(self.tokenzier.wordpiece_tokenizer.tokenize(word)) - word_piece_ids = self.tokenzier.convert_tokens_to_ids(tokens) - word_pieces.extend(word_piece_ids) - if add_cls_sep: - if word_pieces[0] != self._cls_index: - word_pieces.insert(0, self._cls_index) - if word_pieces[-1] != self._sep_index: - word_pieces.insert(-1, self._sep_index) - return word_pieces - - for index, dataset in enumerate(datasets): - try: - dataset.apply_field(convert_words_to_word_pieces, field_name=field_name, new_field_name='word_pieces', - is_input=True) - dataset.set_pad_val('word_pieces', self._wordpiece_pad_index) - except Exception as e: - logger.error(f"Exception happens when processing the {index} dataset.") - raise e - - def forward(self, word_pieces, token_type_ids=None): - r""" - - :param word_pieces: torch.LongTensor, batch_size x max_len - :param token_type_ids: torch.LongTensor, batch_size x max_len - :return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size - """ - batch_size, max_len = word_pieces.size() - - attn_masks = word_pieces.ne(self._wordpiece_pad_index) - bert_outputs, pooled_cls = self.encoder(word_pieces, token_type_ids=token_type_ids, attention_mask=attn_masks, - output_all_encoded_layers=True) - # output_layers = [self.layers] # len(self.layers) x batch_size x max_word_piece_length x hidden_size - outputs = bert_outputs[0].new_zeros((len(self.layers), batch_size, max_len, bert_outputs[0].size(-1))) - for l_index, l in enumerate(self.layers): - bert_output = bert_outputs[l] - if l in (len(bert_outputs)-1, -1) and self.pooled_cls: - bert_output[:, 0] = pooled_cls - outputs[l_index] = bert_output - return outputs diff --git a/fastNLP/modules/encoder/gpt2.py b/fastNLP/modules/encoder/gpt2.py index 5b692253..c1d3e2d9 100644 --- a/fastNLP/modules/encoder/gpt2.py +++ b/fastNLP/modules/encoder/gpt2.py @@ -1,773 +1,1069 @@ +r""" -from functools import lru_cache -import json -import regex as re -import itertools - +""" -from ...io.file_utils import _get_embedding_url, cached_path -from ...core import logger +from torch import nn +import torch +from fastNLP.core import logger import os +import copy +import json +import math +from torch.nn import CrossEntropyLoss +from ..utils import _get_file_name_base_on_postfix -PRETRAINED_GPT2_MODEL_DIR = PRETRAINED_BERT_MODEL_DIR = { - 'en-small': 'gpt2-small.zip', - 'en-median': 'gpt2-medium.zip', - 'en': 'gpt2-medium.zip' -} +from fastNLP.modules.decoder.seq2seq_decoder import Decoder, Past +from fastNLP.modules.generator.seq2seq_generator import SequenceGenerator +from typing import Tuple -def _get_gpt2_dir(model_dir_or_name: str = 'en-median'): - if model_dir_or_name.lower() in PRETRAINED_GPT2_MODEL_DIR: - model_url = _get_embedding_url('gpt2', model_dir_or_name.lower()) - model_dir = cached_path(model_url, name='embedding') - # 检查是否存在 - elif os.path.isdir(os.path.abspath(os.path.expanduser(model_dir_or_name))): - model_dir = os.path.abspath(os.path.expanduser(model_dir_or_name)) - else: - logger.error(f"Cannot recognize GPT2 dir or name ``{model_dir_or_name}``.") - raise ValueError(f"Cannot recognize GPT2 dir or name ``{model_dir_or_name}``.") - return str(model_dir) +GELU_CONSTANT = math.sqrt(2 / math.pi) -def _get_filepath_based_on_postfix(folder, postfix): - """ - 在folder下寻找结尾为postfix的文件. 比如寻找结尾为vocab.txt的文件。只会匹配第一个,如果有多个不会报错,没有找到会报错。 - 返回该文件的全路径 +from ...io.file_utils import _get_gpt2_dir - :param str folder: - :param str postfix: - :return: - """ - for filename in os.listdir(folder): - if os.path.isfile(os.path.join(folder, filename)): - if filename.endswith(postfix): - return os.path.join(folder, filename) - raise FileNotFoundError(f"File {postfix} is not found in {folder}.") +class GPT2Config: + """Configuration class to store the configuration of a `GPT2Model`. -@lru_cache() -def bytes_to_unicode(): - """ - Returns list of utf-8 byte and a mapping to unicode strings. - We specifically avoids mapping to whitespace/control characters the bpe code barfs on. - - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a signficant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - """ - bs = ( - list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) - ) - cs = bs[:] - n = 0 - for b in range(2 ** 8): - if b not in bs: - bs.append(b) - cs.append(2 ** 8 + n) - n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) - - -def get_pairs(word): - """Return set of symbol pairs in a word. - - Word is represented as tuple of symbols (symbols being variable-length strings). - """ - pairs = set() - prev_char = word[0] - for char in word[1:]: - pairs.add((prev_char, char)) - prev_char = char - return pairs - - -VOCAB_FILES_NAMES = { - "vocab_file": "vocab.json", - "merges_file": "merges.txt", -} - - -PRETRAINED_VOCAB_FILES_MAP = { - "vocab_file": { - "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json", - "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json", - "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-vocab.json", - "gpt2-xl": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-xl-vocab.json", - "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-vocab.json", - }, - "merges_file": { - "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt", - "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt", - "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-merges.txt", - "gpt2-xl": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-xl-merges.txt", - "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-merges.txt", - }, -} - - -PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { - "en-small": 1024, - 'en': 1024, - "en-medium": 1024, - "en-large": 1024, - "en-xl": 1024, - "en-distilgpt2": 1024, -} - -PATTERN = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") - - -def gpt2_tokenize(text, add_prefix_space=True): + Args: + vocab_size: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file. + n_positions: Number of positional embeddings. + n_ctx: Size of the causal mask (usually same as n_positions). + n_embd: Dimensionality of the embeddings and hidden states. + n_layer: Number of hidden layers in the Transformer encoder. + n_head: Number of attention heads for each attention layer in + the Transformer encoder. + layer_norm_epsilon: epsilon to use in the layer norm layers + resid_pdrop: The dropout probabilitiy for all fully connected + layers in the embeddings, encoder, and pooler. + attn_pdrop: The dropout ratio for the attention + probabilities. + embd_pdrop: The dropout ratio for the embeddings. + initializer_range: The sttdev of the truncated_normal_initializer for + initializing all weight matrices. """ - :param str text: - :param bool add_prefix_space: 是否在句子前面加上space,如果加上才能保证与GPT2训练时一致 - :return: [] - """ - if text is '': - return [] - if add_prefix_space: - text = ' ' + text - tokens = [] - for token in re.findall(PATTERN, text): - tokens.append(token) - return tokens - - -class GPT2Tokenizer: - """ - GPT-2 BPE tokenizer. Peculiarities: - - Byte-level Byte-Pair-Encoding - - Requires a space to start the input string => the encoding and tokenize methods should be called with the - ``add_prefix_space`` flag set to ``True``. - Otherwise, this tokenizer's ``encode``, ``decode``, and ``tokenize`` methods will not conserve - the spaces at the beginning of a string: `tokenizer.decode(tokenizer.encode(" Hello")) = "Hello"` - """ - - vocab_files_names = VOCAB_FILES_NAMES - pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP - - SPECIAL_TOKENS_ATTRIBUTES = [ - "bos_token", - "eos_token", - "unk_token", - "pad_token", - "cls_token", - "mask_token", - ] - - padding_side = "right" - def __init__( self, - vocab_file, - merges_file, - errors="replace", - unk_token="<|endoftext|>", - bos_token="<|endoftext|>", - eos_token="<|endoftext|>", + vocab_size=50257, + n_positions=1024, + n_ctx=1024, + n_embd=768, + n_layer=12, + n_head=12, + resid_pdrop=0.1, + embd_pdrop=0.1, + attn_pdrop=0.1, + layer_norm_epsilon=1e-5, + initializer_range=0.02, + summary_type="cls_index", + summary_use_proj=True, + summary_activation=None, + summary_proj_to_labels=True, + summary_first_dropout=0.1, **kwargs ): - self._bos_token = None - self._eos_token = None - self._unk_token = None - self._sep_token = None - self._pad_token = None - self._cls_token = None - self._mask_token = None - self._pad_token_type_id = 0 - - self.bos_token = bos_token - self.eos_token = eos_token - self.unk_token = unk_token - - self.max_len = int(1e12) - self.padding_side = kwargs.pop("padding_side", self.padding_side) - self.added_tokens_encoder = {} - self.unique_added_tokens_encoder = set() - self.added_tokens_decoder = {} - # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``) - self.init_inputs = () - self.init_kwargs = {} + """Constructs GPT2Config. + Args: + vocab_size: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file. + n_positions: Number of positional embeddings. + n_ctx: Size of the causal mask (usually same as n_positions). + n_embd: Dimensionality of the embeddings and hidden states. + n_layer: Number of hidden layers in the Transformer encoder. + n_head: Number of attention heads for each attention layer in + the Transformer encoder. + layer_norm_epsilon: epsilon to use in the layer norm layers + resid_pdrop: The dropout probabilitiy for all fully connected + layers in the embeddings, encoder, and pooler. + attn_pdrop: The dropout ratio for the attention + probabilities. + embd_pdrop: The dropout ratio for the embeddings. + initializer_range: The sttdev of the truncated_normal_initializer for + initializing all weight matrices. + """ + self.output_attentions = kwargs.pop("output_attentions", False) + self.output_hidden_states = kwargs.pop("output_hidden_states", False) + self.output_past = kwargs.pop("output_past", True) # Not used by all models + self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models + self.use_bfloat16 = kwargs.pop("use_bfloat16", False) + self.pruned_heads = kwargs.pop("pruned_heads", {}) + + # Is decoder is used in encoder-decoder models to differentiate encoder from decoder + self.is_decoder = kwargs.pop("is_decoder", False) + + # Parameters for sequence generation + self.max_length = kwargs.pop("max_length", 20) + self.do_sample = kwargs.pop("do_sample", False) + self.num_beams = kwargs.pop("num_beams", 1) + self.temperature = kwargs.pop("temperature", 1.0) + self.top_k = kwargs.pop("top_k", 50) + self.top_p = kwargs.pop("top_p", 1.0) + self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0) + self.bos_token_id = kwargs.pop("bos_token_id", 0) + self.pad_token_id = kwargs.pop("pad_token_id", 0) + self.eos_token_ids = kwargs.pop("eos_token_ids", 0) + self.length_penalty = kwargs.pop("length_penalty", 1.0) + self.num_return_sequences = kwargs.pop("num_return_sequences", 1) + + # Fine-tuning task arguments + self.finetuning_task = kwargs.pop("finetuning_task", None) + self.num_labels = kwargs.pop("num_labels", 2) + self.id2label = kwargs.pop("id2label", {i: "LABEL_{}".format(i) for i in range(self.num_labels)}) + self.id2label = dict((int(key), value) for key, value in self.id2label.items()) + self.label2id = kwargs.pop("label2id", dict(zip(self.id2label.values(), self.id2label.keys()))) + self.label2id = dict((key, int(value)) for key, value in self.label2id.items()) + + # Additional attributes without default values for key, value in kwargs.items(): - if key in self.SPECIAL_TOKENS_ATTRIBUTES: - if key == "additional_special_tokens": - assert isinstance(value, (list, tuple)) and all(isinstance(t, str) for t in value) - else: - assert isinstance(value, str) + try: setattr(self, key, value) + except AttributeError as err: + logger.error("Can't set {} with value {} for {}".format(key, value, self)) + raise err + + self.vocab_size = vocab_size + self.n_ctx = n_ctx + self.n_positions = n_positions + self.n_embd = n_embd + self.n_layer = n_layer + self.n_head = n_head + self.resid_pdrop = resid_pdrop + self.embd_pdrop = embd_pdrop + self.attn_pdrop = attn_pdrop + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_range = initializer_range + self.summary_type = summary_type + self.summary_use_proj = summary_use_proj + self.summary_activation = summary_activation + self.summary_first_dropout = summary_first_dropout + self.summary_proj_to_labels = summary_proj_to_labels - self.max_len_single_sentence = ( - self.max_len - ) # no default special tokens - you can update this value if you add special tokens - self.max_len_sentences_pair = ( - self.max_len - ) # no default special tokens - you can update this value if you add special tokens - - with open(vocab_file, encoding="utf-8") as vocab_handle: - self.encoder = json.load(vocab_handle) - self.decoder = {v: k for k, v in self.encoder.items()} - self.errors = errors # how to handle errors in decoding - self.byte_encoder = bytes_to_unicode() - self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} - with open(merges_file, encoding="utf-8") as merges_handle: - bpe_merges = merges_handle.read().split("\n")[1:-1] - bpe_merges = [tuple(merge.split()) for merge in bpe_merges] - self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) - self.cache = {} - - def add_special_tokens(self, special_tokens_dict): - """ - Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them - to class attributes. If special tokens are NOT in the vocabulary, they are added - to it (indexed starting from the last index of the current vocabulary). + @property + def max_position_embeddings(self): + return self.n_positions - Using `add_special_tokens` will ensure your special tokens can be used in several ways: + @property + def hidden_size(self): + return self.n_embd - - special tokens are carefully handled by the tokenizer (they are never split) - - you can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts. + @property + def num_attention_heads(self): + return self.n_head - When possible, special tokens are already registered for provided pretrained models (ex: BertTokenizer cls_token is already registered to be '[CLS]' and XLM's one is also registered to be '') + @property + def num_hidden_layers(self): + return self.n_layer - Args: - special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes: - [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, - ``additional_special_tokens``]. + def save_pretrained(self, save_directory): + """ Save a configuration object to the directory `save_directory`, so that it + can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method. + """ + assert os.path.isdir( + save_directory + ), "Saving path should be a directory where the model and configuration can be saved" - Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them). + # If we save using the predefined names, we can load using `from_pretrained` + output_config_file = os.path.join(save_directory, 'config.json') - Returns: - Number of tokens added to the vocabulary. + self.to_json_file(output_config_file) - Examples:: + def to_json_file(self, json_file_path): + """ Save this instance to a json file.""" + with open(json_file_path, "w", encoding="utf-8") as writer: + writer.write(self.to_json_string()) - # Let's see how to add a new classification token to GPT-2 - tokenizer = GPT2Tokenizer.from_pretrained('gpt2') - model = GPT2Model.from_pretrained('gpt2') + def to_dict(self): + """Serializes this instance to a Python dictionary.""" + output = copy.deepcopy(self.__dict__) + return output - special_tokens_dict = {'cls_token': ''} + def to_json_string(self): + """Serializes this instance to a JSON string.""" + return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" - num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) - print('We have added', num_added_toks, 'tokens') - model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. + @classmethod + def from_json_file(cls, json_file): + """Constructs a `Config` from a json file of parameters.""" + with open(json_file, "r", encoding="utf-8") as reader: + text = reader.read() + dict_obj = json.loads(text) + return cls(**dict_obj) - assert tokenizer.cls_token == '' - """ - if not special_tokens_dict: - return 0 - - added_tokens = 0 - for key, value in special_tokens_dict.items(): - assert key in self.SPECIAL_TOKENS_ATTRIBUTES - if key == "additional_special_tokens": - assert isinstance(value, (list, tuple)) and all(isinstance(t, str) for t in value) - added_tokens += self.add_tokens(value) - else: - assert isinstance(value, str) - added_tokens += self.add_tokens([value]) - logger.debug("Assigning %s to the %s key of the tokenizer", value, key) - setattr(self, key, value) - - return added_tokens - - def add_tokens(self, new_tokens): - """ - Add a list of new tokens to the tokenizer class. If the new tokens are not in the - vocabulary, they are added to it with indices starting from length of the current vocabulary. + @classmethod + def from_pretrained(cls, model_dir_or_name, **kwargs): + r""" Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration. - Args: - new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them). + Parameters: + model_dir_or_name: - Returns: - Number of tokens added to the vocabulary. + """ + model_dir = _get_gpt2_dir(model_dir_or_name) + tokenizer_config_file = _get_file_name_base_on_postfix(model_dir, 'config.json') - Examples:: + config = cls.from_json_file(tokenizer_config_file) - # Let's see how to increase the vocabulary of Bert model and tokenizer - tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') - model = BertModel.from_pretrained('bert-base-uncased') + # if resolved_config_file == config_file: + # logger.info("loading configuration file {}".format(config_file)) + # else: + # logger.info("loading configuration file {} from cache at {}".format(config_file, resolved_config_file)) - num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2']) - print('We have added', num_added_toks, 'tokens') - model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. - """ - if not new_tokens: - return 0 - - to_add_tokens = [] - for token in new_tokens: - assert isinstance(token, str) - if self.init_kwargs.get("do_lower_case", False) and token not in self.all_special_tokens: - token = token.lower() - if ( - token != self.unk_token - and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token) - and token not in to_add_tokens - ): - to_add_tokens.append(token) - logger.debug("Adding %s to the vocabulary", token) - - added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens)) - added_tok_decoder = {v: k for k, v in added_tok_encoder.items()} - self.added_tokens_encoder.update(added_tok_encoder) - self.unique_added_tokens_encoder = set(self.added_tokens_encoder.keys()).union(set(self.all_special_tokens)) - self.added_tokens_decoder.update(added_tok_decoder) - - return len(to_add_tokens) + if hasattr(config, "pruned_heads"): + config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items()) - @property - def bos_token(self): - """ Beginning of sentence token (string). Log an error if used while not having been set. """ - if self._bos_token is None: - logger.error("Using bos_token, but it is not set yet.") - return self._bos_token + # Update config with kwargs if needed + to_remove = [] + for key, value in kwargs.items(): + if hasattr(config, key): + setattr(config, key, value) + to_remove.append(key) + for key in to_remove: + kwargs.pop(key, None) - @property - def eos_token(self): - """ End of sentence token (string). Log an error if used while not having been set. """ - if self._eos_token is None: - logger.error("Using eos_token, but it is not set yet.") - return self._eos_token + return config - @property - def unk_token(self): - """ Unknown token (string). Log an error if used while not having been set. """ - if self._unk_token is None: - logger.error("Using unk_token, but it is not set yet.") - return self._unk_token - @property - def pad_token(self): - """ Padding token (string). Log an error if used while not having been set. """ - if self._pad_token is None: - logger.error("Using pad_token, but it is not set yet.") - return self._pad_token +def gelu(x): + return 0.5 * x * (1 + torch.tanh(GELU_CONSTANT * (x + 0.044715 * torch.pow(x, 3)))) - @property - def cls_token(self): - """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ - if self._cls_token is None: - logger.error("Using cls_token, but it is not set yet.") - return self._cls_token - @property - def mask_token(self): - """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ - if self._mask_token is None: - logger.error("Using mask_token, but it is not set yet.") - return self._mask_token +def prune_conv1d_layer(layer, index, dim=1): + """ Prune a Conv1D layer (a model parameters) to keep only entries in index. + A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. + Return the pruned layer as a new layer with requires_grad=True. + Used to remove heads. + """ + index = index.to(layer.weight.device) + W = layer.weight.index_select(dim, index).clone().detach() + if dim == 0: + b = layer.bias.clone().detach() + else: + b = layer.bias[index].clone().detach() + new_size = list(layer.weight.size()) + new_size[dim] = len(index) + new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) + new_layer.weight.requires_grad = False + new_layer.weight.copy_(W.contiguous()) + new_layer.weight.requires_grad = True + new_layer.bias.requires_grad = False + new_layer.bias.copy_(b.contiguous()) + new_layer.bias.requires_grad = True + return new_layer + + +class Attention(nn.Module): + def __init__(self, nx, n_ctx, config, scale=False): + super(Attention, self).__init__() + + n_state = nx # in Attention: n_state=768 (nx=n_embd) + # [switch nx => n_state from Block to Attention to keep identical to TF implem] + assert n_state % config.n_head == 0 + self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) + self.n_head = config.n_head + self.split_size = n_state + self.scale = scale + + self.c_attn = Conv1D(n_state * 3, nx) + self.c_proj = Conv1D(n_state, nx) + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + mask = torch.ones(self.n_head, self.split_size // self.n_head) + heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads + for head in heads: + # Compute how many pruned heads are before the head and move the index accordingly + head = head - sum(1 if h < head else 0 for h in self.pruned_heads) + mask[head] = 0 + mask = mask.view(-1).contiguous().eq(1) + index = torch.arange(len(mask))[mask].long() + index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) + + # Prune conv1d layers + self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) + self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) + + # Update hyper params + self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) + self.n_head = self.n_head - len(heads) + self.pruned_heads = self.pruned_heads.union(heads) + + def _attn(self, q, k, v, attention_mask=None, head_mask=None): + w = torch.matmul(q, k) # batch_size x n_head x pre_len x (past_len+pre_len) + if self.scale: + w = w / math.sqrt(v.size(-1)) + nd, ns = w.size(-2), w.size(-1) + b = self.bias[:, :, ns - nd : ns, :ns] # 1 x 1 x pre_len x (past_len + pre_len) + w = w * b - 1e4 * (1 - b) # batch_size x n_head x pre_len x (past_len + pre_len) + + if attention_mask is not None: + # Apply the attention mask + w = w + attention_mask + + w = nn.Softmax(dim=-1)(w) + w = self.attn_dropout(w) + + # Mask heads if we want to + if head_mask is not None: + w = w * head_mask + + outputs = [torch.matmul(w, v)] + outputs.append(w) + return outputs + + def merge_heads(self, x): + x = x.permute(0, 2, 1, 3).contiguous() + new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) + return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states + + def split_heads(self, x, k=False): + new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) + x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states + if k: + return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) + else: + return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) + + def forward(self, x, layer_past=None, attention_mask=None, head_mask=None): + x = self.c_attn(x) + query, key, value = x.split(self.split_size, dim=2) + query = self.split_heads(query) # (batch, head, seq_length, head_features) + key = self.split_heads(key, k=True) + value = self.split_heads(value) + if layer_past is not None: + past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below + # key: (batch, head, head_features, seq_length) + key = torch.cat((past_key, key), dim=-1) + # value: (batch, head, seq_length, head_features) + value = torch.cat((past_value, value), dim=-2) + present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking + + attn_outputs = self._attn(query, key, value, attention_mask, head_mask) + a = attn_outputs[0] + + a = self.merge_heads(a) + a = self.c_proj(a) + a = self.resid_dropout(a) + + outputs = [a, present] + attn_outputs[1:] + return outputs # a, present, (attentions) + + +class Conv1D(nn.Module): + def __init__(self, nf, nx): + """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2) + Basically works like a Linear layer but the weights are transposed + """ + super(Conv1D, self).__init__() + self.nf = nf + w = torch.empty(nx, nf) + nn.init.normal_(w, std=0.02) + self.weight = nn.Parameter(w) + self.bias = nn.Parameter(torch.zeros(nf)) + + def forward(self, x): + size_out = x.size()[:-1] + (self.nf,) + x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) + x = x.view(*size_out) + return x + + +class MLP(nn.Module): + def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) + super(MLP, self).__init__() + nx = config.n_embd + self.c_fc = Conv1D(n_state, nx) + self.c_proj = Conv1D(nx, n_state) + self.act = gelu + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, x): + h = self.act(self.c_fc(x)) + h2 = self.c_proj(h) + return self.dropout(h2) + + +class Block(nn.Module): + def __init__(self, n_ctx, config, scale=False): + super(Block, self).__init__() + nx = config.n_embd + self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) + self.attn = Attention(nx, n_ctx, config, scale) + self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) + self.mlp = MLP(4 * nx, config) + + def forward(self, x, layer_past=None, attention_mask=None, head_mask=None): + output_attn = self.attn( + self.ln_1(x), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask + ) + a = output_attn[0] # output_attn: a, present, (attentions) - @bos_token.setter - def bos_token(self, value): - self._bos_token = value + x = x + a + m = self.mlp(self.ln_2(x)) + x = x + m - @eos_token.setter - def eos_token(self, value): - self._eos_token = value + outputs = [x] + output_attn[1:] + return outputs # x, present, (attentions) - @unk_token.setter - def unk_token(self, value): - self._unk_token = value - @pad_token.setter - def pad_token(self, value): - self._pad_token = value +class GPT2PreTrainedModel(nn.Module): + """ An abstract class to handle weights initialization and + a simple interface for dowloading and loading pretrained models. + """ - @cls_token.setter - def cls_token(self, value): - self._cls_token = value + config_class = GPT2Config + base_model_prefix = "transformer" - @mask_token.setter - def mask_token(self, value): - self._mask_token = value + def _init_weights(self, module): + """ Initialize the weights. + """ + if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def __init__(self, config, *inputs, **kwargs): + super().__init__() + if not isinstance(config, GPT2Config): + raise ValueError( + "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " + "To create a model from a pretrained model use " + "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( + self.__class__.__name__, self.__class__.__name__ + ) + ) + # Save config in model + self.config = config @property - def bos_token_id(self): - """ Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """ - return self.convert_tokens_to_ids(self.bos_token) + def base_model(self): + return getattr(self, self.base_model_prefix, self) - @property - def eos_token_id(self): - """ Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """ - return self.convert_tokens_to_ids(self.eos_token) + def get_input_embeddings(self): + """ Get model's input embeddings + """ + base_model = getattr(self, self.base_model_prefix, self) + if base_model is not self: + return base_model.get_input_embeddings() + else: + raise NotImplementedError - @property - def unk_token_id(self): - """ Id of the unknown token in the vocabulary. Log an error if used while not having been set. """ - return self.convert_tokens_to_ids(self.unk_token) + def set_input_embeddings(self, value): + """ Set model's input embeddings + """ + base_model = getattr(self, self.base_model_prefix, self) + if base_model is not self: + base_model.set_input_embeddings(value) + else: + raise NotImplementedError - @property - def pad_token_id(self): - """ Id of the padding token in the vocabulary. Log an error if used while not having been set. """ - return self.convert_tokens_to_ids(self.pad_token) + def get_output_embeddings(self): + """ Get model's output embeddings + Return None if the model doesn't have output embeddings + """ + return None # Overwrite for models with output embeddings - @property - def pad_token_type_id(self): - """ Id of the padding token type in the vocabulary.""" - return self._pad_token_type_id + def tie_weights(self): + """ Make sure we are sharing the input and output embeddings. + Export to TorchScript can't handle parameter sharing so we are cloning them instead. + """ + output_embeddings = self.get_output_embeddings() + if output_embeddings is not None: + self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) - @property - def cls_token_id(self): - """ Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ - return self.convert_tokens_to_ids(self.cls_token) + def _tie_or_clone_weights(self, output_embeddings, input_embeddings): + """ Tie or clone module weights depending of weither we are using TorchScript or not + """ + if self.config.torchscript: + output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) + else: + output_embeddings.weight = input_embeddings.weight + + if hasattr(output_embeddings, "bias") and output_embeddings.bias is not None: + output_embeddings.bias.data = torch.nn.functional.pad( + output_embeddings.bias.data, + (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]), + "constant", + 0, + ) + if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): + output_embeddings.out_features = input_embeddings.num_embeddings - @property - def mask_token_id(self): - """ Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ - return self.convert_tokens_to_ids(self.mask_token) + def init_weights(self): + """ Initialize and prunes weights if needed. """ + # Initialize weights + self.apply(self._init_weights) - @property - def vocab_size(self): - return len(self.encoder) - - def bpe(self, token): - if token in self.cache: - return self.cache[token] - word = tuple(token) - pairs = get_pairs(word) - - if not pairs: - return token - - while True: - bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) - if bigram not in self.bpe_ranks: - break - first, second = bigram - new_word = [] - i = 0 - while i < len(word): - try: - j = word.index(first, i) - except ValueError: - new_word.extend(word[i:]) - break - else: - new_word.extend(word[i:j]) - i = j - - if word[i] == first and i < len(word) - 1 and word[i + 1] == second: - new_word.append(first + second) - i += 2 - else: - new_word.append(word[i]) - i += 1 - new_word = tuple(new_word) - word = new_word - if len(word) == 1: - break - else: - pairs = get_pairs(word) - word = " ".join(word) - self.cache[token] = word - return word - - def _tokenize(self, text, add_prefix_space=False): - """ Tokenize a string. - Args: - - add_prefix_space (boolean, default False): - Begin the sentence with at least one space to get invariance to word order in GPT-2 (and RoBERTa) tokenizers. + # Prune heads if needed + if self.config.pruned_heads: + self.prune_heads(self.config.pruned_heads) + + # Tie weights if needed + self.tie_weights() + + def prune_heads(self, heads_to_prune): + """ Prunes heads of the base model. + + Arguments: + + heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). + E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ - bpe_tokens = [] - for token in gpt2_tokenize(text, add_prefix_space=add_prefix_space): - token = "".join( - self.byte_encoder[b] for b in token.encode("utf-8") - ) # Maps all our bytes to unicode strings, avoiding controle tokens of the BPE (spaces in our case) - bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) - return bpe_tokens - - def _convert_token_to_id(self, token): - """ Converts a token (str) in an id using the vocab. """ - return self.encoder.get(token, self.encoder.get(self.unk_token)) - - def _convert_id_to_token(self, index): - """Converts an index (integer) in a token (str) using the vocab.""" - return self.decoder.get(index) - - def convert_tokens_to_string(self, tokens): - """ Converts a sequence of tokens (string) in a single string. """ - text = "".join(tokens) - text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) - return text - - def save_vocabulary(self, save_directory): - """Save the tokenizer vocabulary and merge files to a directory.""" - if not os.path.isdir(save_directory): - logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) - return - vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"]) - merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES["merges_file"]) - - with open(vocab_file, "w", encoding="utf-8") as f: - f.write(json.dumps(self.encoder, ensure_ascii=False)) - - index = 0 - with open(merge_file, "w", encoding="utf-8") as writer: - writer.write("#version: 0.2\n") - for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): - if index != token_index: - logger.warning( - "Saving vocabulary to {}: BPE merge indices are not consecutive." - " Please check that the tokenizer is not corrupted!".format(merge_file) - ) - index = token_index - writer.write(" ".join(bpe_tokens) + "\n") - index += 1 - - return vocab_file, merge_file + # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads + for layer, heads in heads_to_prune.items(): + union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) + self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON - @classmethod - def from_pretrained(cls, model_dir_or_name): - r""" + self.base_model._prune_heads(heads_to_prune) + + def save_pretrained(self, save_directory): + """ Save a model and its configuration file to a directory, so that it + can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. """ - return cls._from_pretrained(model_dir_or_name) + assert os.path.isdir( + save_directory + ), "Saving path should be a directory where the model and configuration can be saved" + + # Only save the model itself if we are using distributed training + model_to_save = self.module if hasattr(self, "module") else self + + # Save configuration file + model_to_save.config.save_pretrained(save_directory) + + # If we save using the predefined names, we can load using `from_pretrained` + output_model_file = os.path.join(save_directory, "pytorch_model.bin") + torch.save(model_to_save.state_dict(), output_model_file) + logger.info("Model weights saved in {}".format(output_model_file)) - # 将它修改一定传入文件夹 @classmethod - def _from_pretrained(cls, model_dir_or_name): - """ + def from_pretrained(cls, model_dir_or_name, *model_args, **kwargs): + r"""Instantiate a pretrained pytorch model from a pre-trained model configuration. + + The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated) + To train the model, you should first set it back in training mode with ``model.train()`` + + The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model. + It is up to you to train those weights with a downstream fine-tuning task. + + The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded. + + Parameters: + model_dir_or_name: either: + + - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. + - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. + - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. + - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. + - None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``) + + Examples:: + + model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. + model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` + model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading + assert model.config.output_attention == True + # Loading from a TF checkpoint file instead of a PyTorch model (slower) + config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') + model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) - :param str model_dir_or_name: 目录或者缩写名 - :param init_inputs: - :param kwargs: - :return: """ - # 它需要两个文件,第一个是vocab.json,第二个是merge_file? + config = kwargs.pop("config", None) + state_dict = kwargs.pop("state_dict", None) + model_dir = _get_gpt2_dir(model_dir_or_name) - # 里面会包含四个文件vocab.json, merge.txt, config.json, model.bin - - tokenizer_config_file = _get_filepath_based_on_postfix(model_dir, 'config.json') - with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: - init_kwargs = json.load(tokenizer_config_handle) - # Set max length if needed - if model_dir_or_name in PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES: - # if we're using a pretrained model, ensure the tokenizer - # wont index sequences longer than the number of positional embeddings - max_len = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES[model_dir_or_name] - if max_len is not None and isinstance(max_len, (int, float)): - init_kwargs["max_len"] = min(init_kwargs.get("max_len", int(1e12)), max_len) - - # 将vocab, merge加入到init_kwargs中 - init_kwargs['vocab_file'] = _get_filepath_based_on_postfix(model_dir, 'vocab.json') - init_kwargs['merges_file'] = _get_filepath_based_on_postfix(model_dir, 'merges.txt') - - init_inputs = init_kwargs.pop("init_inputs", ()) - # Instantiate tokenizer. - try: - tokenizer = cls(*init_inputs, **init_kwargs) - except OSError: - OSError( - "Unable to load vocabulary from file. " - "Please check that the provided vocabulary is accessible and not corrupted." + + # Load config if we don't provide a configuration + model_kwargs = {} + if not isinstance(config, GPT2Config): + config = cls.config_class.from_pretrained( + model_dir, + *model_args, + **kwargs + ) + else: + model_kwargs = kwargs + + # Instantiate model. + model = cls(config, *model_args, **model_kwargs) + + model_path = _get_file_name_base_on_postfix(model_dir, 'model.bin') + state_dict = torch.load(model_path, map_location="cpu") + + missing_keys = [] + unexpected_keys = [] + error_msgs = [] + + # Convert old format to new format if needed from a PyTorch state_dict + old_keys = [] + new_keys = [] + for key in state_dict.keys(): + new_key = None + if "gamma" in key: + new_key = key.replace("gamma", "weight") + if "beta" in key: + new_key = key.replace("beta", "bias") + if new_key: + old_keys.append(key) + new_keys.append(new_key) + for old_key, new_key in zip(old_keys, new_keys): + state_dict[new_key] = state_dict.pop(old_key) + + # copy state_dict so _load_from_state_dict can modify it + metadata = getattr(state_dict, "_metadata", None) + state_dict = state_dict.copy() + if metadata is not None: + state_dict._metadata = metadata + + # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants + # so we need to apply the function recursively. + def load(module, prefix=""): + local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) + module._load_from_state_dict( + state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs + ) + for name, child in module._modules.items(): + if child is not None: + load(child, prefix + name + ".") + + # Make sure we are able to load base models as well as derived models (with heads) + start_prefix = "" + model_to_load = model + if not hasattr(model, cls.base_model_prefix) and any( + s.startswith(cls.base_model_prefix) for s in state_dict.keys() + ): + start_prefix = cls.base_model_prefix + "." + if hasattr(model, cls.base_model_prefix) and not any( + s.startswith(cls.base_model_prefix) for s in state_dict.keys() + ): + model_to_load = getattr(model, cls.base_model_prefix) + + load(model_to_load, prefix=start_prefix) + if len(missing_keys) > 0: + logger.info( + "Weights of {} not initialized from pretrained model: {}".format( + model.__class__.__name__, missing_keys + ) + ) + if len(unexpected_keys) > 0: + logger.info( + "Weights from pretrained model not used in {}: {}".format( + model.__class__.__name__, unexpected_keys + ) + ) + if len(error_msgs) > 0: + raise RuntimeError( + "Error(s) in loading state_dict for {}:\n\t{}".format( + model.__class__.__name__, "\n\t".join(error_msgs) + ) ) - return tokenizer + model.tie_weights() # make sure word embedding weights are still tied if needed - def __len__(self): - """ Size of the full vocabulary with the added tokens """ - return self.vocab_size + len(self.added_tokens_encoder) - - def tokenize(self, text, add_prefix_space=True): - """ Converts a string in a sequence of tokens (string), using the tokenizer. - Split in words for word-based vocabulary or sub-words for sub-word-based - vocabularies (BPE/SentencePieces/WordPieces). - - Take care of added tokens. - Args: - - text: The sequence to be encoded. - - add_prefix_space (boolean, default True): - Begin the sentence with at least one space to get invariance to word order in GPT-2 (and RoBERTa) tokenizers. - """ - all_special_tokens = self.all_special_tokens - - def lowercase_text(t): - # convert non-special tokens to lowercase - escaped_special_toks = [re.escape(s_tok) for s_tok in all_special_tokens] - pattern = r'(' + r'|'.join(escaped_special_toks) + r')|' + \ - r'(.+?)' - return re.sub( - pattern, - lambda m: m.groups()[0] or m.groups()[1].lower(), - t) - - if self.init_kwargs.get('do_lower_case', False): - text = lowercase_text(text) - - def split_on_token(tok, text): - result = [] - split_text = text.split(tok) - for i, sub_text in enumerate(split_text): - sub_text = sub_text.strip() - if i == 0 and not sub_text: - result += [tok] - elif i == len(split_text) - 1: - if sub_text: - result += [sub_text] - else: - pass - else: - if sub_text: - result += [sub_text] - result += [tok] - return result - - def split_on_tokens(tok_list, text): - if not text.strip(): - return [] - if not tok_list: - return self._tokenize(text, add_prefix_space=add_prefix_space) - - tokenized_text = [] - text_list = [text] - for tok in tok_list: - tokenized_text = [] - for sub_text in text_list: - if sub_text not in self.added_tokens_encoder \ - and sub_text not in all_special_tokens: - tokenized_text += split_on_token(tok, sub_text) - else: - tokenized_text += [sub_text] - text_list = tokenized_text - - return list(itertools.chain.from_iterable((self._tokenize(token, add_prefix_space=add_prefix_space) if token not \ - in self.added_tokens_encoder and token not in all_special_tokens \ - else [token] for token in tokenized_text))) - - added_tokens = list(self.added_tokens_encoder.keys()) + all_special_tokens - tokenized_text = split_on_tokens(added_tokens, text) - return tokenized_text - - def convert_tokens_to_ids(self, tokens): - """ Converts a single token, or a sequence of tokens, (str) in a single integer id - (resp. a sequence of ids), using the vocabulary. + # Set model in evaluation mode to desactivate DropOut modules by default + model.eval() + + return model + + def prepare_inputs_for_generation(self, input_ids, **kwargs): + return {"input_ids": input_ids, **kwargs} + + @torch.no_grad() + def generate( + self, + input_ids, + max_length=None, + do_sample=None, + num_beams=None, + temperature=None, + top_k=None, + top_p=None, + repetition_penalty=None, + bos_token_id=None, + pad_token_id=None, + eos_token_ids=None, + length_penalty=None): + """ Sequence generator for models with a LM head. + + The method currently supports greedy or penalized greedy decoding, sampling with top-k or nucleus sampling + and beam-search. + + Params: + **input_ids**: (`optional`) `torch.LongTensor` of shape (1, sequence_length) + The sequence used as a prompt for the generation. If `None` the method initializes + it as an empty `torch.LongTensor` of shape (1,) + **max_length**: (`optional`) int + The max length of the sequence to be generated. Between 1 and infinity. Default to 20. + **do_sample**: (`optional`) bool + If set to `False` we use greedy decoding; otherwise sampling. Default to greedy sampling. + **num_beams**: (`optional`) int + Number of beams for beam search. 1 means no beam serach. Default to 1. + **temperature**: (`optional`) float + The value used to module the next token probabilities. + **top_k**: (`optional`) int + The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. + **top_p**: (`optional`) float + The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. + **repetition_penalty**: (`optional`) float + The parameter for repetition penalty. Between 1.0 and + infinity. 1.0 means no penalty. Default to 1. + **bos_token_id**: (`optional`) int + Beginning of sentence token if no prompt is provided. Default to 0. + **eos_token_ids**: (`optional`) int or list of int + End of sequence token or list of tokens to stop the generation. Default to 0. + **length_penalty**: (`optional`) int + Exponential penalty to the length. Default to 0. + **length_penalty**: (`optional`) float + Exponential penalty to the length. Default to 1. """ - if tokens is None: - return None + decoder = _GPT2Decoder(self) + generator = SequenceGenerator(decoder=decoder, max_length=max_length, num_beams=num_beams, + do_sample=do_sample, temperature=temperature, top_k=top_k, top_p=top_p, + bos_token_id=bos_token_id, eos_token_id=eos_token_ids, + repetition_penalty=repetition_penalty, length_penalty=length_penalty, + pad_token_id=pad_token_id) + results = generator.generate(input_ids, past=None) + return results + + +class GPT2Model(GPT2PreTrainedModel): + r""" + Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: + **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` + Sequence of hidden-states at the last layer of the model. + **past**: + list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``: + that contains pre-computed hidden-states (key and values in the attention blocks). + Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model + should not be passed as input ids as they have already been computed. + **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) + list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) + of shape ``(batch_size, sequence_length, hidden_size)``: + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + **attentions**: (`optional`, returned when ``config.output_attentions=True``) + list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. + + Examples:: + + tokenizer = GPT2Tokenizer.from_pretrained('gpt2') + model = GPT2Model.from_pretrained('gpt2') + input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 + outputs = model(input_ids) + last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple - if isinstance(tokens, str): - return self._convert_token_to_id_with_added_voc(tokens) + """ - ids = [] - for token in tokens: - ids.append(self._convert_token_to_id_with_added_voc(token)) - return ids + def __init__(self, config): + super().__init__(config) - def _convert_token_to_id_with_added_voc(self, token): - if token is None: - return None + self.wte = nn.Embedding(config.vocab_size, config.n_embd) + self.wpe = nn.Embedding(config.n_positions, config.n_embd) + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) + self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) - if token in self.added_tokens_encoder: - return self.added_tokens_encoder[token] - return self._convert_token_to_id(token) + self.init_weights() - def convert_ids_to_tokens(self, ids, skip_special_tokens=False): - """ Converts a single index or a sequence of indices (integers) in a token " - (resp.) a sequence of tokens (str), using the vocabulary and added tokens. + def get_input_embeddings(self): + return self.wte - Args: - skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False + def set_input_embeddings(self, new_embeddings): + self.wte = new_embeddings + + def _prune_heads(self, heads_to_prune): + """ Prunes heads of the model. + heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ - if isinstance(ids, int): - return self._convert_id_to_token(ids) - tokens = [] - for index in ids: - index = int(index) - if skip_special_tokens and index in self.all_special_ids: - continue - tokens.append(self._convert_id_to_token(index)) - return tokens - - def convert_id_to_tokens(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): + for layer, heads in heads_to_prune.items(): + self.h[layer].attn.prune_heads(heads) + + def forward( + self, + input_ids, + past=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + output_attentions=True + ): """ - Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary - with options to remove special tokens and clean up tokenization spaces. - Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``. - Args: - token_ids: list of tokenized input ids. Can be obtained using the `encode` or `encode_plus` methods. - skip_special_tokens: if set to True, will replace special tokens. - clean_up_tokenization_spaces: if set to True, will clean up the tokenization spaces. + :param torch.LongTensor input_ids: batch_size x max_len or batch_size x beam_size x 1 + :param GPT2Past past: 之前的状态 + :param torch.ByteTensor attention_mask: batch_size x (pre_len+past_len), 与input_ids与past的concat一样大。 + 为0的地方为padding。 + :param torch.LongTensor token_type_ids: batch_size x max_len。 + :param torch.LongTensor position_ids: 与input_ids对应的位置 + :param head_mask: + :param bool output_attentions: 是否输出attention状态 + :return: """ - filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) - - # To avoid mixing byte-level and unicode for byte-level BPT - # we need to build string separatly for added tokens and byte-level tokens - # cf. https://github.com/huggingface/transformers/issues/1133 - sub_texts = [] - current_sub_text = [] - for token in filtered_tokens: - if skip_special_tokens and token in self.all_special_ids: - continue - if token in self.added_tokens_encoder: - if current_sub_text: - sub_texts.append(self.convert_tokens_to_string(current_sub_text)) - current_sub_text = [] - sub_texts.append(token) - else: - current_sub_text.append(token) - if current_sub_text: - sub_texts.append(self.convert_tokens_to_string(current_sub_text)) - text = " ".join(sub_texts) - - if clean_up_tokenization_spaces: - clean_text = self.clean_up_tokenization(text) - return clean_text + input_shape = input_ids.size() # batch_size x max_len 或 batch_size x beam_size x 1 + input_ids = input_ids.view(-1, input_shape[-1]) # input_shape是 batch_size' x max_len + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + if position_ids is not None: + position_ids = position_ids.view(-1, input_shape[-1]) + + if past is None or len(past)==0: + past_length = 0 + past = [None] * len(self.h) # len(self.h) 是layer的层数 + else: + past_length = past[0][0].size(-2) + if position_ids is None: # 如果没有position id则生成 + device = input_ids.device + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) + + # Attention mask. + if attention_mask is not None: + attention_mask = attention_mask.view(-1, input_shape[-1]) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * -10000.0 + # attention_mask = attention_mask.masked_fill(attention_mask.eq(0), -10000.0) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # head_mask has shape n_layer x batch x n_heads x N x N + if head_mask is not None: + if head_mask.dim() == 1: + head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) + head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) + elif head_mask.dim() == 2: + head_mask = ( + head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) + ) # We can specify head_mask for each layer + head_mask = head_mask.to( + dtype=next(self.parameters()).dtype + ) # switch to fload if need + fp16 compatibility else: - return text + head_mask = [None] * self.config.n_layer - @property - def special_tokens_map(self): - """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their - values ('', ''...) - """ - set_attr = {} - for attr in self.SPECIAL_TOKENS_ATTRIBUTES: - attr_value = getattr(self, "_" + attr) - if attr_value: - set_attr[attr] = attr_value - return set_attr + inputs_embeds = self.wte(input_ids) + position_embeds = self.wpe(position_ids) + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + else: + token_type_embeds = 0 + hidden_states = inputs_embeds + position_embeds + token_type_embeds + hidden_states = self.drop(hidden_states) - @property - def all_special_tokens(self): - """ List all the special tokens ('', ''...) mapped to class attributes - (cls_token, unk_token...). - """ - all_toks = [] - set_attr = self.special_tokens_map - for attr_value in set_attr.values(): - all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value]) - all_toks = list(set(all_toks)) - return all_toks + # batch_size x max_len x embed_size + output_shape = input_shape + (hidden_states.size(-1),) - @property - def all_special_ids(self): - """ List the vocabulary indices of the special tokens ('', ''...) mapped to - class attributes (cls_token, unk_token...). + presents = () + all_attentions = [] + all_hidden_states = () + for i, (block, layer_past) in enumerate(zip(self.h, past)): + all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) + + outputs = block( + hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i] + ) + + hidden_states, present = outputs[:2] + presents = presents + (present,) + + all_attentions.append(outputs[2]) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(*output_shape) + # Add last hidden state + all_hidden_states = all_hidden_states + (hidden_states,) + + outputs = (hidden_states,) + outputs = outputs + (presents,) + + outputs = outputs + (all_hidden_states,) + if output_attentions: + # let the number of heads free (-1) so we can extract attention even after head pruning + attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] + all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) + outputs = outputs + (all_attentions,) + # 写出所有输出的shape. + # last hidden states, Tensor: batch_size x max_len x embed_size + # presents, tuple: n_layer x 2 x batch_size x n_head x (max_len+past_len) x head_dim, 第二维前一半为key,后一半为value + # all hidden states, tuple: n_layer x batch_size x max_len x embed_size, + # attention, tuple: n_layer x batch_size x n_head' x src_len x tgt_len + return outputs # last hidden state, (presents), (all hidden_states), (attentions) + + +class GPT2Past(Past): + def __init__(self): + super().__init__() + self.past = None # tuple [n_layer, 2 x batch_size x n_head x past_len x head_dim] + + def num_samples(self): + if self.past is not None: + return self.past[0].size(1) + return None + + def reorder_past(self, indices): + for i in range(len(self.past)): + assert self.past[i] is not None + self.past[i] = self.past[i].index_select(index=indices, dim=1) + + def __iter__(self): + for p in self.past: + yield p + + def __getitem__(self, item): + assert isinstance(item, int) + return self.past[item] + + def __len__(self): + if self.past is not None: + return len(self.past) + return 0 + + +class _GPT2Decoder(Decoder): + def __init__(self, gpt_model): + super().__init__() + self.gpt_model = gpt_model + + def decode(self, tokens, past=None) -> Tuple[torch.Tensor, Past]: + if past is None: + past = GPT2Past() + lm_logits, presents, _ = self.gpt_model(input_ids=tokens, + past=past, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + output_attentions=False) + past.past = list(presents) + return lm_logits[:, -1], past + + def reorder_past(self, indices: torch.LongTensor, past: GPT2Past) -> GPT2Past: + past.reorder_past(indices) + return past + + +class GPT2LMHeadModel(GPT2PreTrainedModel): + r""" + **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: + Labels for language modeling. + Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` + Indices are selected in ``[-1, 0, ..., config.vocab_size]`` + All labels set to ``-100`` are ignored (masked), the loss is only + computed for labels in ``[0, ..., config.vocab_size]`` + + Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: + **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: + Language modeling loss. + **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + **past**: + list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``: + that contains pre-computed hidden-states (key and values in the attention blocks). + Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model + should not be passed as input ids as they have already been computed. + **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) + list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) + of shape ``(batch_size, sequence_length, hidden_size)``: + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + **attentions**: (`optional`, returned when ``config.output_attentions=True``) + list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. + """ + + def __init__(self, config): + super(GPT2LMHeadModel, self).__init__(config) + self.transformer = GPT2Model(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) + + self.init_weights() + + def get_output_embeddings(self): + return self.lm_head + + def get_input_embeddings(self): + return self.transformer.wte + + def forward( + self, + input_ids, + past=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + labels=None, + output_attentions=False + ): """ - all_toks = self.all_special_tokens - all_ids = self.convert_tokens_to_ids(all_toks) - return all_ids - @staticmethod - def clean_up_tokenization(out_string): - """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms. + :param torch.LongTensor input_ids: batch_size x max_len or batch_size x beam_size x 1 + :param tuple past: num_layers x 2 x batch_size x n_head x max_len' x head_dim. 可以将前一个时刻的presents作为输入 + :param torch.ByteTensor attention_mask: batch_size x max_len, 与input_ids一样大。为0的地方为padding。 + :param torch.LongTensor token_type_ids: batch_size x max_len。 + :param torch.LongTensor position_ids: 与input_ids对应的位置 + :param head_mask: + :param labels: language model应该预测的值。如果为None,则没有language model的额外loss。最好把padding位置设置为-100 + 使得language model不要计算这部分的loss + :param output_attentions: 是否输出output_attentions + :return: """ - out_string = ( - out_string.replace(" .", ".") - .replace(" ?", "?") - .replace(" !", "!") - .replace(" ,", ",") - .replace(" ' ", "'") - .replace(" n't", "n't") - .replace(" 'm", "'m") - .replace(" do not", " don't") - .replace(" 's", "'s") - .replace(" 've", "'ve") - .replace(" 're", "'re") + transformer_outputs = self.transformer( + input_ids, + past=past, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + output_attentions=output_attentions ) - return out_string + hidden_states = transformer_outputs[0] + + lm_logits = self.lm_head(hidden_states) + + outputs = (lm_logits,) + transformer_outputs[1:] + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + outputs = (loss,) + outputs + + # 返回值 + # loss: torch.FloatTensor, 如果labels为None则没有该loss + # lm_logits: batch_size x max_len x vocab_size + # presents, tuple: n_layer x 2 x batch_size x n_head x (max_len+past_len) x head_dim, 第二维前一半为key,后一半为value + # all hidden states, tuple: n_layer x batch_size x max_len x embed_size, + # attention, tuple: n_layer x batch_size x n_head' x src_len x tgt_len + return outputs # (loss), lm_logits, presents, all hidden_states, (attentions) + + + + + +# 输出每个位置的 + diff --git a/fastNLP/modules/encoder/roberta.py b/fastNLP/modules/encoder/roberta.py index af8795c6..02b9df42 100644 --- a/fastNLP/modules/encoder/roberta.py +++ b/fastNLP/modules/encoder/roberta.py @@ -1,13 +1,19 @@ -from typing import List, Optional -import json +r"""undocumented +这个页面的代码很大程度上参考(复制粘贴)了https://github.com/huggingface/pytorch-pretrained-BERT的代码, 如果你发现该代码对你 + 有用,也请引用一下他们。 +""" + +__all__ = [ + 'RobertaModel' +] import torch import torch.nn as nn -from .bert import BertEmbeddings, BertModel, BertConfig, _get_bert_dir -from .gpt2 import GPT2Tokenizer -from ..utils import create_position_ids_from_input_ids, _get_file_name_base_on_postfix +from .bert import BertEmbeddings, BertModel, BertConfig +from ..utils import _get_file_name_base_on_postfix +from ...io.file_utils import _get_roberta_dir from ...core import logger PRETRAINED_ROBERTA_POSITIONAL_EMBEDDINGS_SIZES = { @@ -33,30 +39,24 @@ class RobertaEmbeddings(BertEmbeddings): config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) - def forward(self, input_ids=None, token_type_ids=None, position_ids=None, words_embeddings=None): - if position_ids is None: - if input_ids is not None: - # Create the position ids from the input token ids. Any padded tokens remain padded. - position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) - else: - position_ids = self.create_position_ids_from_inputs_embeds(words_embeddings) + def forward(self, input_ids, token_type_ids, words_embeddings=None): + position_ids = self.create_position_ids_from_input_ids(input_ids) return super().forward( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, words_embeddings=words_embeddings ) - def create_position_ids_from_inputs_embeds(self, inputs_embeds): - """ - :param torch.Tensor inputs_embeds: + def create_position_ids_from_input_ids(self, x): + """ Replace non-padding symbols with their position numbers. Position numbers begin at + padding_idx+1. Padding symbols are ignored. This is modified from fairseq's + `utils.make_positions`. + + :param torch.Tensor x: :return torch.Tensor: """ - input_shape = inputs_embeds.size()[:-1] - sequence_length = input_shape[1] - - position_ids = torch.arange( - self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device - ) - return position_ids.unsqueeze(0).expand(input_shape) + mask = x.ne(self.padding_idx).long() + incremental_indicies = torch.cumsum(mask, dim=1) * mask + return incremental_indicies + self.padding_idx class RobertaModel(BertModel): @@ -70,12 +70,6 @@ class RobertaModel(BertModel): self.embeddings = RobertaEmbeddings(config) self.apply(self.init_bert_weights) - def get_input_embeddings(self): - return self.embeddings.word_embeddings - - def set_input_embeddings(self, value): - self.embeddings.word_embeddings = value - @classmethod def from_pretrained(cls, model_dir_or_name, *inputs, **kwargs): state_dict = kwargs.get('state_dict', None) @@ -84,7 +78,7 @@ class RobertaModel(BertModel): kwargs.pop('from_tf', None) # get model dir from name or dir - pretrained_model_dir = _get_bert_dir(model_dir_or_name) + pretrained_model_dir = _get_roberta_dir(model_dir_or_name) # Load config config_file = _get_file_name_base_on_postfix(pretrained_model_dir, 'config.json') @@ -186,172 +180,3 @@ class RobertaModel(BertModel): return model -class RobertaTokenizer(GPT2Tokenizer): - - vocab_files_names = { - "vocab_file": "vocab.json", - "merges_file": "merges.txt", - } - - def __init__( - self, - vocab_file, - merges_file, - errors="replace", - bos_token="", - eos_token="", - sep_token="", - cls_token="", - unk_token="", - pad_token="", - mask_token="", - **kwargs - ): - super().__init__( - vocab_file=vocab_file, - merges_file=merges_file, - errors=errors, - bos_token=bos_token, - eos_token=eos_token, - unk_token=unk_token, - sep_token=sep_token, - cls_token=cls_token, - pad_token=pad_token, - mask_token=mask_token, - **kwargs, - ) - self.max_len_single_sentence = self.max_len - 2 # take into account special tokens - self.max_len_sentences_pair = self.max_len - 4 # take into account special tokens - - def build_inputs_with_special_tokens( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None - ) -> List[int]: - """ - Build model inputs from a sequence or a pair of sequence for sequence classification tasks - by concatenating and adding special tokens. - A RoBERTa sequence has the following format: - - - single sequence: `` X `` - - pair of sequences: `` A B `` - - Args: - token_ids_0 (:obj:`List[int]`): - List of IDs to which the special tokens will be added - token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): - Optional second list of IDs for sequence pairs. - - Returns: - :obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. - """ - if token_ids_1 is None: - return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] - cls = [self.cls_token_id] - sep = [self.sep_token_id] - return cls + token_ids_0 + sep + sep + token_ids_1 + sep - - def get_special_tokens_mask( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False - ) -> List[int]: - """ - Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding - special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. - - Args: - token_ids_0 (:obj:`List[int]`): - List of ids. - token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): - Optional second list of IDs for sequence pairs. - already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): - Set to True if the token list is already formatted with special tokens for the model - - Returns: - :obj:`List[int]`: A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token. - """ - if already_has_special_tokens: - if token_ids_1 is not None: - raise ValueError( - "You should not supply a second sequence if the provided sequence of " - "ids is already formated with special tokens for the model." - ) - return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) - - if token_ids_1 is None: - return [1] + ([0] * len(token_ids_0)) + [1] - return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] - - def create_token_type_ids_from_sequences( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None - ) -> List[int]: - """ - Creates a mask from the two sequences passed to be used in a sequence-pair classification task. - RoBERTa does not make use of token type ids, therefore a list of zeros is returned. - - Args: - token_ids_0 (:obj:`List[int]`): - List of ids. - token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): - Optional second list of IDs for sequence pairs. - - Returns: - :obj:`List[int]`: List of zeros. - - """ - sep = [self.sep_token_id] - cls = [self.cls_token_id] - - if token_ids_1 is None: - return len(cls + token_ids_0 + sep) * [0] - return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] - - def prepare_for_tokenization(self, text, add_special_tokens=False, **kwargs): - if "add_prefix_space" in kwargs: - add_prefix_space = kwargs["add_prefix_space"] - else: - add_prefix_space = add_special_tokens - if add_prefix_space and not text[0].isspace(): - text = " " + text - return text - - @classmethod - def from_pretrained(cls, model_dir_or_name, *inputs, **kwargs): - """ - - :param str model_dir_or_name: 目录或者缩写名 - :param kwargs: - :return: - """ - # 它需要两个文件,第一个是vocab.json,第二个是merge_file? - model_dir = _get_bert_dir(model_dir_or_name) - # 里面会包含四个文件vocab.json, merge.txt, config.json, model.bin - - tokenizer_config_file = _get_file_name_base_on_postfix(model_dir, 'config.json') - with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: - init_kwargs = json.load(tokenizer_config_handle) - # Set max length if needed - if model_dir_or_name in PRETRAINED_ROBERTA_POSITIONAL_EMBEDDINGS_SIZES: - # if we're using a pretrained model, ensure the tokenizer - # wont index sequences longer than the number of positional embeddings - max_len = PRETRAINED_ROBERTA_POSITIONAL_EMBEDDINGS_SIZES[model_dir_or_name] - if max_len is not None and isinstance(max_len, (int, float)): - init_kwargs["max_len"] = min(init_kwargs.get("max_len", int(1e12)), max_len) - - # 将vocab, merge加入到init_kwargs中 - if 'vocab_file' in kwargs: # 如果指定了词表则用指定词表 - init_kwargs['vocab_file'] = kwargs['vocab_file'] - else: - init_kwargs['vocab_file'] = _get_file_name_base_on_postfix(model_dir, 'vocab.json') - init_kwargs['merges_file'] = _get_file_name_base_on_postfix(model_dir, 'merges.txt') - - init_inputs = init_kwargs.pop("init_inputs", ()) - # Instantiate tokenizer. - try: - tokenizer = cls(*init_inputs, **init_kwargs) - except OSError: - OSError( - "Unable to load vocabulary from file. " - "Please check that the provided vocabulary is accessible and not corrupted." - ) - - return tokenizer - - diff --git a/fastNLP/modules/generator/__init__.py b/fastNLP/modules/generator/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/fastNLP/modules/generator/seq2seq_generator.py b/fastNLP/modules/generator/seq2seq_generator.py new file mode 100755 index 00000000..d332cc2f --- /dev/null +++ b/fastNLP/modules/generator/seq2seq_generator.py @@ -0,0 +1,444 @@ +import torch +from ..decoder.seq2seq_decoder import Decoder +import torch.nn.functional as F +from fastNLP.core.utils import _get_model_device +from functools import partial + + +class SequenceGenerator: + def __init__(self, decoder: Decoder, max_length=20, num_beams=1, + do_sample=True, temperature=1.0, top_k=50, top_p=1.0, bos_token_id=None, eos_token_id=None, + repetition_penalty=1, length_penalty=1.0, pad_token_id=0): + if do_sample: + self.generate_func = partial(sample_generate, decoder=decoder, max_length=max_length, num_beams=num_beams, + temperature=temperature, top_k=top_k, top_p=top_p, bos_token_id=bos_token_id, + eos_token_id=eos_token_id, repetition_penalty=repetition_penalty, + length_penalty=length_penalty, pad_token_id=pad_token_id) + else: + self.generate_func = partial(greedy_generate, decoder=decoder, max_length=max_length, num_beams=num_beams, + bos_token_id=bos_token_id, eos_token_id=eos_token_id, + repetition_penalty=repetition_penalty, + length_penalty=length_penalty, pad_token_id=pad_token_id) + self.do_sample = do_sample + self.max_length = max_length + self.num_beams = num_beams + self.temperature = temperature + self.top_k = top_k + self.top_p = top_p + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + self.repetition_penalty = repetition_penalty + self.length_penalty = length_penalty + self.decoder = decoder + + @torch.no_grad() + def generate(self, tokens=None, past=None): + """ + + :param torch.LongTensor tokens: batch_size x length, 开始的token + :param past: + :return: + """ + # TODO 需要查看如果tokens长度不是1,decode的时候是否还能够直接decode? + return self.generate_func(tokens=tokens, past=past) + + +@torch.no_grad() +def greedy_generate(decoder, tokens=None, past=None, max_length=20, num_beams=1, + bos_token_id=None, eos_token_id=None, pad_token_id=0, + repetition_penalty=1, length_penalty=1.0): + """ + 贪婪地搜索句子 + + :param Decoder decoder: Decoder对象 + :param torch.LongTensor tokens: batch_size x len, decode的输入值,如果为None,则自动从bos_token_id开始生成 + :param Past past: 应该包好encoder的一些输出。 + :param int max_length: 生成句子的最大长度。 + :param int num_beams: 使用多大的beam进行解码。 + :param int bos_token_id: 如果tokens传入为None,则使用bos_token_id开始往后解码。 + :param int eos_token_id: 结束的token,如果为None,则一定会解码到max_length这么长。 + :param int pad_token_id: + :param float repetition_penalty: 对重复出现的token多大的惩罚。 + :param float length_penalty: 对每个token(除了eos)按照长度进行一定的惩罚。 + :return: + """ + if num_beams == 1: + token_ids = _no_beam_search_generate(decoder, tokens, past, max_length, temperature=1, top_k=50, top_p=1, + bos_token_id=bos_token_id, eos_token_id=eos_token_id, do_sample=False, + repetition_penalty=repetition_penalty, length_penalty=length_penalty, + pad_token_id=pad_token_id) + else: + token_ids = _beam_search_generate(decoder, tokens, past, max_length, num_beams=num_beams, + temperature=1, top_k=50, top_p=1, + bos_token_id=bos_token_id, eos_token_id=eos_token_id, do_sample=False, + repetition_penalty=repetition_penalty, length_penalty=length_penalty, + pad_token_id=pad_token_id) + + return token_ids + + +@torch.no_grad() +def sample_generate(decoder, tokens=None, past=None, max_length=20, num_beams=1, temperature=1.0, top_k=50, + top_p=1.0, bos_token_id=None, eos_token_id=None, pad_token_id=0, repetition_penalty=1.0, + length_penalty=1.0): + """ + 使用采样的方法生成句子 + + :param Decoder decoder: Decoder对象 + :param torch.LongTensor tokens: batch_size x len, decode的输入值,如果为None,则自动从bos_token_id开始生成 + :param Past past: 应该包好encoder的一些输出。 + :param int max_length: 生成句子的最大长度。 + :param int num_beam: 使用多大的beam进行解码。 + :param float temperature: 采样时的退火大小 + :param int top_k: 只在top_k的sample里面采样 + :param float top_p: 介于0,1的值。 + :param int bos_token_id: 如果tokens传入为None,则使用bos_token_id开始往后解码。 + :param int eos_token_id: 结束的token,如果为None,则一定会解码到max_length这么长。 + :param int pad_token_id: pad的token id + :param float repetition_penalty: 对重复出现的token多大的惩罚。 + :param float length_penalty: 对每个token(除了eos)按照长度进行一定的惩罚。 + :return: + """ + # 每个位置在生成的时候会sample生成 + if num_beams == 1: + token_ids = _no_beam_search_generate(decoder, tokens, past, max_length, temperature=temperature, + top_k=top_k, top_p=top_p, + bos_token_id=bos_token_id, eos_token_id=eos_token_id, do_sample=True, + repetition_penalty=repetition_penalty, length_penalty=length_penalty, + pad_token_id=pad_token_id) + else: + token_ids = _beam_search_generate(decoder, tokens, past, max_length, num_beams=num_beams, + temperature=temperature, top_k=top_k, top_p=top_p, + bos_token_id=bos_token_id, eos_token_id=eos_token_id, do_sample=True, + repetition_penalty=repetition_penalty, length_penalty=length_penalty, + pad_token_id=pad_token_id) + return token_ids + + +def _no_beam_search_generate(decoder: Decoder, tokens=None, past=None, max_length=20, temperature=1.0, top_k=50, + top_p=1.0, bos_token_id=None, eos_token_id=None, do_sample=True, + repetition_penalty=1.0, length_penalty=1.0, pad_token_id=0): + device = _get_model_device(decoder) + if tokens is None: + if bos_token_id is None: + raise RuntimeError("You have to specify either `tokens` or `bos_token_id`.") + if past is None: + raise RuntimeError("You have to specify either `past` or `tokens`.") + batch_size = past.num_samples() + if batch_size is None: + raise RuntimeError("Cannot infer the number of samples from `past`.") + tokens = torch.full([batch_size, 1], fill_value=bos_token_id, dtype=torch.long).to(device) + batch_size = tokens.size(0) + if past is not None: + assert past.num_samples() == batch_size, "The number of samples in `tokens` and `past` should match." + + if eos_token_id is None: + _eos_token_id = float('nan') + else: + _eos_token_id = eos_token_id + + # for i in range(tokens.size(1)): + # scores, past = decoder.decode_one(tokens[:, :i + 1], past) # batch_size x vocab_size, Past + scores, past = decoder.decode(tokens, past) + + token_ids = tokens.clone() + cur_len = token_ids.size(1) + dones = token_ids.new_zeros(batch_size).eq(1) + # tokens = tokens[:, -1:] + + while cur_len < max_length: + # scores, past = decoder.decode_one(tokens, past) # batch_size x vocab_size, Past + scores, past = decoder.decode(tokens, past) # batch_size x vocab_size, Past + + if repetition_penalty != 1.0: + token_scores = scores.gather(dim=1, index=token_ids) + lt_zero_mask = token_scores.lt(0).float() + ge_zero_mask = lt_zero_mask.eq(0).float() + token_scores = lt_zero_mask * repetition_penalty * token_scores + ge_zero_mask / repetition_penalty * token_scores + scores.scatter_(dim=1, index=token_ids, src=token_scores) + + if eos_token_id is not None and length_penalty != 1.0: + token_scores = scores / cur_len ** length_penalty # batch_size x vocab_size + eos_mask = scores.new_ones(scores.size(1)) + eos_mask[eos_token_id] = 0 + eos_mask = eos_mask.unsqueeze(0).eq(1) + scores = scores.masked_scatter(eos_mask, token_scores) # 也即除了eos,其他词的分数经过了放大/缩小 + + if do_sample: + if temperature > 0 and temperature != 1: + scores = scores / temperature + + scores = top_k_top_p_filtering(scores, top_k, top_p, min_tokens_to_keep=2) + probs = F.softmax(scores, dim=-1) + + # 保证至少有一个不是eos的值 + next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) # batch_size + else: + next_tokens = torch.argmax(scores, dim=-1) # batch_size + + next_tokens = next_tokens.masked_fill(dones, pad_token_id) # 对已经搜索完成的sample做padding + tokens = next_tokens.unsqueeze(1) + + token_ids = torch.cat([token_ids, tokens], dim=-1) # batch_size x max_len + + end_mask = next_tokens.eq(_eos_token_id) + dones = dones.__or__(end_mask) + cur_len += 1 + + if dones.min() == 1: + break + + if eos_token_id is not None: + if cur_len == max_length: + token_ids[:, -1].masked_fill_(~dones, eos_token_id) # 若到最长长度仍未到EOS,则强制将最后一个词替换成eos + + return token_ids + + +def _beam_search_generate(decoder: Decoder, tokens=None, past=None, max_length=20, num_beams=4, temperature=1.0, + top_k=50, top_p=1.0, bos_token_id=None, eos_token_id=None, do_sample=True, + repetition_penalty=1.0, length_penalty=None, pad_token_id=0) -> torch.LongTensor: + # 进行beam search + device = _get_model_device(decoder) + if tokens is None: + if bos_token_id is None: + raise RuntimeError("You have to specify either `tokens` or `bos_token_id`.") + if past is None: + raise RuntimeError("You have to specify either `past` or `tokens`.") + batch_size = past.num_samples() + if batch_size is None: + raise RuntimeError("Cannot infer the number of samples from `past`.") + tokens = torch.full([batch_size, 1], fill_value=bos_token_id, dtype=torch.long).to(device) + batch_size = tokens.size(0) + if past is not None: + assert past.num_samples() == batch_size, "The number of samples in `tokens` and `past` should match." + + # for i in range(tokens.size(1) - 1): # 如果输入的长度较长,先decode + # scores, past = decoder.decode_one(tokens[:, :i + 1], + # past) # (batch_size, vocab_size), Past + # scores, past = decoder.decode_one(tokens, past) # 这里要传入的是整个句子的长度 + scores, past = decoder.decode(tokens, past) # 这里要传入的是整个句子的长度 + vocab_size = scores.size(1) + assert vocab_size >= num_beams, "num_beams should be smaller than the number of vocabulary size." + + if do_sample: + probs = F.softmax(scores, dim=-1) + next_tokens = torch.multinomial(probs, num_samples=num_beams) # (batch_size, num_beams) + logits = probs.log() + next_scores = logits.gather(dim=1, index=next_tokens) # (batch_size, num_beams) + else: + scores = F.log_softmax(scores, dim=-1) # (batch_size, vocab_size) + # 得到(batch_size, num_beams), (batch_size, num_beams) + next_scores, next_tokens = torch.topk(scores, num_beams, dim=1, largest=True, sorted=True) + + indices = torch.arange(batch_size, dtype=torch.long).to(device) + indices = indices.repeat_interleave(num_beams) + decoder.reorder_past(indices, past) + + tokens = tokens.index_select(dim=0, index=indices) # batch_size * num_beams x length + # 记录生成好的token (batch_size', cur_len) + token_ids = torch.cat([tokens, next_tokens.view(-1, 1)], dim=-1) + dones = [False] * batch_size + tokens = next_tokens.view(-1, 1) + + beam_scores = next_scores.view(-1) # batch_size * num_beams + + # 用来记录已经生成好的token的长度 + cur_len = token_ids.size(1) + + hypos = [ + BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=False) for _ in range(batch_size) + ] + # 0,num_beams, 2*num_beams, ... + batch_inds_with_numbeams_interval = (torch.arange(batch_size) * num_beams).view(-1, 1).to(token_ids) + + while cur_len < max_length: + # scores, past = decoder.decode_one(tokens, past) # batch_size * num_beams x vocab_size, Past + scores, past = decoder.decode(tokens, past) + if repetition_penalty != 1.0: + token_scores = scores.gather(dim=1, index=token_ids) + lt_zero_mask = token_scores.lt(0).float() + ge_zero_mask = lt_zero_mask.eq(0).float() + token_scores = lt_zero_mask * repetition_penalty * token_scores + ge_zero_mask / repetition_penalty * token_scores + scores.scatter_(dim=1, index=token_ids, src=token_scores) + + if do_sample: + if temperature > 0 and temperature != 1: + scores = scores / temperature + + # 多召回一个防止eos + scores = top_k_top_p_filtering(scores, top_k, top_p, min_tokens_to_keep=num_beams + 1) + probs = F.softmax(scores, dim=-1) + + # 保证至少有一个不是eos的值 + _tokens = torch.multinomial(probs, num_samples=num_beams + 1) # batch_size' x (num_beams+1) + + logits = probs.log() + # 防止全是这个beam的被选中了,且需要考虑eos被选择的情况 + _scores = logits.gather(dim=1, index=_tokens) # batch_size' x (num_beams+1) + _scores = _scores + beam_scores[:, None] # batch_size' x (num_beams+1) + # 从这里面再选择top的2*num_beam个 + _scores = _scores.view(batch_size, num_beams * (num_beams + 1)) + next_scores, ids = _scores.topk(2 * num_beams, dim=1, largest=True, sorted=True) + _tokens = _tokens.view(batch_size, num_beams * (num_beams + 1)) + next_tokens = _tokens.gather(dim=1, index=ids) # (batch_size, 2*num_beams) + from_which_beam = ids // (num_beams + 1) # (batch_size, 2*num_beams) + else: + scores = F.log_softmax(scores, dim=-1) # (batch_size * num_beams, vocab_size) + _scores = scores + beam_scores[:, None] # (batch_size * num_beams, vocab_size) + _scores = _scores.view(batch_size, -1) # (batch_size, num_beams*vocab_size) + next_scores, ids = torch.topk(_scores, 2 * num_beams, dim=1, largest=True, sorted=True) + from_which_beam = ids // vocab_size # (batch_size, 2*num_beams) + next_tokens = ids % vocab_size # (batch_size, 2*num_beams) + + # 接下来需要组装下一个batch的结果。 + # 需要选定哪些留下来 + next_scores, sorted_inds = next_scores.sort(dim=-1, descending=True) + next_tokens = next_tokens.gather(dim=1, index=sorted_inds) + from_which_beam = from_which_beam.gather(dim=1, index=sorted_inds) + + not_eos_mask = next_tokens.ne(eos_token_id) # 为1的地方不是eos + keep_mask = not_eos_mask.cumsum(dim=1).le(num_beams) # 为1的地方需要保留 + keep_mask = not_eos_mask.__and__(keep_mask) # 为1的地方是需要进行下一步search的 + + _next_tokens = next_tokens.masked_select(keep_mask).view(-1, 1) + _from_which_beam = from_which_beam.masked_select(keep_mask).view(batch_size, num_beams) # 上面的token是来自哪个beam + _next_scores = next_scores.masked_select(keep_mask).view(batch_size, num_beams) + beam_scores = _next_scores.view(-1) + + # 更改past状态, 重组token_ids + reorder_inds = (batch_inds_with_numbeams_interval + _from_which_beam).view(-1) # flatten成一维 + decoder.reorder_past(reorder_inds, past) + + flag = True + if cur_len + 1 == max_length: + eos_batch_idx = torch.arange(batch_size).to(next_tokens).repeat_interleave(repeats=num_beams, dim=0) + eos_beam_ind = torch.arange(num_beams).to(token_ids).repeat(batch_size) # 表示的是indice + eos_beam_idx = from_which_beam[:, :num_beams].reshape(-1) # 表示的是从哪个beam获取得到的 + else: + # 将每个batch中在num_beam内的序列添加到结束中, 为1的地方需要结束了 + effective_eos_mask = next_tokens[:, :num_beams].eq(eos_token_id) # batch_size x num_beams + if effective_eos_mask.sum().gt(0): + eos_batch_idx, eos_beam_ind = effective_eos_mask.nonzero(as_tuple=True) + # 是由于from_which_beam是 (batch_size, 2*num_beams)的,所以需要2*num_beams + eos_beam_idx = eos_batch_idx * num_beams * 2 + eos_beam_ind + eos_beam_idx = from_which_beam.view(-1)[eos_beam_idx] # 获取真实的从哪个beam获取的eos + else: + flag = False + if flag: + for batch_idx, beam_ind, beam_idx in zip(eos_batch_idx.tolist(), eos_beam_ind.tolist(), + eos_beam_idx.tolist()): + if not dones[batch_idx]: + score = next_scores[batch_idx, beam_ind].item() + hypos[batch_idx].add(token_ids[batch_idx * num_beams + beam_idx, :cur_len].clone(), score) + + # 重新组织token_ids的状态 + tokens = _next_tokens + token_ids = torch.cat([token_ids.index_select(index=reorder_inds, dim=0), tokens], dim=-1) + + for batch_idx in range(batch_size): + dones[batch_idx] = dones[batch_idx] or hypos[batch_idx].is_done(next_scores[batch_idx, 0].item()) + + cur_len += 1 + + if all(dones): + break + + # select the best hypotheses + tgt_len = token_ids.new(batch_size) + best = [] + + for i, hypotheses in enumerate(hypos): + best_hyp = max(hypotheses.hyp, key=lambda x: x[0])[1] + tgt_len[i] = len(best_hyp) + 1 # +1 for the symbol + best.append(best_hyp) + + # generate target batch + decoded = token_ids.new(batch_size, tgt_len.max().item()).fill_(pad_token_id) + for i, hypo in enumerate(best): + decoded[i, :tgt_len[i] - 1] = hypo + if eos_token_id is not None: + decoded[i, tgt_len[i] - 1] = eos_token_id + + return decoded + + +class BeamHypotheses(object): + def __init__(self, num_beams, max_length, length_penalty, early_stopping): + """ + Initialize n-best list of hypotheses. + """ + self.max_length = max_length - 1 # ignoring bos_token + self.length_penalty = length_penalty + self.early_stopping = early_stopping + self.num_beams = num_beams + self.hyp = [] + self.worst_score = 1e9 + + def __len__(self): + """ + Number of hypotheses in the list. + """ + return len(self.hyp) + + def add(self, hyp, sum_logprobs): + """ + Add a new hypothesis to the list. + """ + score = sum_logprobs / len(hyp) ** self.length_penalty + if len(self) < self.num_beams or score > self.worst_score: + self.hyp.append((score, hyp)) + if len(self) > self.num_beams: + sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)]) + del self.hyp[sorted_scores[0][1]] + self.worst_score = sorted_scores[1][0] + else: + self.worst_score = min(score, self.worst_score) + + def is_done(self, best_sum_logprobs): + """ + If there are enough hypotheses and that none of the hypotheses being generated + can become better than the worst one in the heap, then we are done with this sentence. + """ + if len(self) < self.num_beams: + return False + elif self.early_stopping: + return True + else: + return self.worst_score >= best_sum_logprobs / self.max_length ** self.length_penalty + + +def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1): + """ + 根据top_k, top_p的值,将不满足的值置为filter_value的值 + + :param torch.Tensor logits: bsz x vocab_size + :param int top_k: 如果大于0,则只保留最top_k的词汇的概率,剩下的位置被置为filter_value + :param int top_p: 根据(http://arxiv.org/abs/1904.09751)设置的筛选方式 + :param float filter_value: + :param int min_tokens_to_keep: 每个sample返回的分布中有概率的词不会低于这个值 + :return: + """ + if top_k > 0: + top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check + # Remove all tokens with a probability less than the last token of the top-k + indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] + logits[indices_to_remove] = filter_value + + if top_p < 1.0: + sorted_logits, sorted_indices = torch.sort(logits, descending=True) + cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) + + # Remove tokens with cumulative probability above the threshold (token with 0 are kept) + sorted_indices_to_remove = cumulative_probs > top_p + if min_tokens_to_keep > 1: + # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) + sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 + # Shift the indices to the right to keep also the first token above the threshold + sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() + sorted_indices_to_remove[..., 0] = 0 + + # scatter sorted tensors to original indexing + indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) + logits[indices_to_remove] = filter_value + return logits diff --git a/fastNLP/modules/tokenizer/__init__.py b/fastNLP/modules/tokenizer/__init__.py new file mode 100644 index 00000000..f3c4faae --- /dev/null +++ b/fastNLP/modules/tokenizer/__init__.py @@ -0,0 +1,14 @@ +r""" + +""" +__all__=[ + 'BertTokenizer', + + "GPT2Tokenizer", + + "RobertaTokenizer" +] + +from .bert_tokenizer import BertTokenizer +from .gpt2_tokenizer import GPT2Tokenizer +from .roberta_tokenizer import RobertaTokenizer \ No newline at end of file diff --git a/fastNLP/modules/tokenizer/bert_tokenizer.py b/fastNLP/modules/tokenizer/bert_tokenizer.py new file mode 100644 index 00000000..7df6b52d --- /dev/null +++ b/fastNLP/modules/tokenizer/bert_tokenizer.py @@ -0,0 +1,447 @@ +r""" + +""" + +__all__ = [ + 'BertTokenizer' +] + +import os +import collections +import unicodedata +from ...core import logger +from ..utils import _get_file_name_base_on_postfix +from ...io.file_utils import _get_bert_dir + +VOCAB_NAME = 'vocab.txt' + +PRETRAINED_INIT_CONFIGURATION = { + "en": {"do_lower_case": False}, + "en-base-uncased": {'do_lower_case': True}, + 'en-base-cased': {'do_lower_case':False}, + "en-large-cased-wwm": {"do_lower_case": False}, + 'en-large-cased': {'do_lower_case':False}, + 'en-large-uncased': {'do_lower_case':True}, + 'en-large-uncased-wwm': {'do_lower_case':True}, + 'cn': {'do_lower_case':True}, + 'cn-base': {'do_lower_case': True}, + 'cn-wwm-ext': {'do_lower_case': True}, + 'multi-base-cased': {'do_lower_case': False}, + 'multi-base-uncased': {'do_lower_case': True}, +} + +def _is_control(char): + r"""Checks whether `chars` is a control character.""" + # These are technically control characters but we count them as whitespace + # characters. + if char == "\t" or char == "\n" or char == "\r": + return False + cat = unicodedata.category(char) + if cat.startswith("C"): + return True + return False + + +def _is_punctuation(char): + r"""Checks whether `chars` is a punctuation character.""" + cp = ord(char) + # We treat all non-letter/number ASCII as punctuation. + # Characters such as "^", "$", and "`" are not in the Unicode + # Punctuation class but we treat them as punctuation anyways, for + # consistency. + if (((cp >= 33) and (cp <= 47)) or ((cp >= 58) and (cp <= 64)) or + ((cp >= 91) and (cp <= 96)) or ((cp >= 123) and (cp <= 126))): + return True + cat = unicodedata.category(char) + if cat.startswith("P"): + return True + return False + + +def _is_whitespace(char): + r"""Checks whether `chars` is a whitespace character.""" + # \t, \n, and \r are technically contorl characters but we treat them + # as whitespace since they are generally considered as such. + if char == " " or char == "\t" or char == "\n" or char == "\r": + return True + cat = unicodedata.category(char) + if cat == "Zs": + return True + return False + + +def whitespace_tokenize(text): + r"""Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class BasicTokenizer(object): + r"""Runs basic tokenization (punctuation splitting, lower casing, etc.).""" + + def __init__(self, + do_lower_case=True, + never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): + r"""Constructs a BasicTokenizer. + + Args: + do_lower_case: Whether to lower case the input. + """ + self.do_lower_case = do_lower_case + self.never_split = never_split + + def tokenize(self, text): + r"""Tokenizes a piece of text.""" + text = self._clean_text(text) + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + text = self._tokenize_chinese_chars(text) + orig_tokens = whitespace_tokenize(text) + split_tokens = [] + for token in orig_tokens: + if self.do_lower_case and token not in self.never_split: + token = token.lower() + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + r"""Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text): + r"""Splits punctuation on a piece of text.""" + if text in self.never_split: + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + r"""Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + r"""Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if (((cp >= 0x4E00) and (cp <= 0x9FFF)) or # + ((cp >= 0x3400) and (cp <= 0x4DBF)) or # + ((cp >= 0x20000) and (cp <= 0x2A6DF)) or # + ((cp >= 0x2A700) and (cp <= 0x2B73F)) or # + ((cp >= 0x2B740) and (cp <= 0x2B81F)) or # + ((cp >= 0x2B820) and (cp <= 0x2CEAF)) or + ((cp >= 0xF900) and (cp <= 0xFAFF)) or # + ((cp >= 0x2F800) and (cp <= 0x2FA1F))): # + return True + + return False + + def _clean_text(self, text): + r"""Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xfffd or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +def load_vocab(vocab_file): + r"""Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + index = 0 + with open(vocab_file, "r", encoding="utf-8") as reader: + while True: + token = reader.readline() + if not token: + break + token = token.strip() + vocab[token] = index + index += 1 + return vocab + + +class WordpieceTokenizer(object): + r"""Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + r"""Tokenizes a piece of text into its word pieces. + + This uses a greedy longest-match-first algorithm to perform tokenization + using the given vocabulary. + + For example: + input = "unaffable" + output = ["un", "##aff", "##able"] + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through `BasicTokenizer`. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + if len(output_tokens) == 0: # 防止里面全是空格或者回车符号 + return [self.unk_token] + return output_tokens + + +class BertTokenizer(object): + r"""Runs end-to-end tokenization: punctuation splitting + wordpiece""" + + def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True, + never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): + r"""Constructs a BertTokenizer. + + Args: + vocab_file: Path to a one-wordpiece-per-line vocabulary file + do_lower_case: Whether to lower case the input + Only has an effect when do_wordpiece_only=False + do_basic_tokenize: Whether to do basic tokenization before wordpiece. + max_len: An artificial maximum length to truncate tokenized sequences to; + Effective maximum length is always the minimum of this + value (if specified) and the underlying BERT model's + sequence length. + never_split: List of tokens which will never be split during tokenization. + Only has an effect when do_wordpiece_only=False + """ + if not os.path.isfile(vocab_file): + raise ValueError( + "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " + "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict( + [(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, + never_split=never_split) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + self.max_len = max_len if max_len is not None else int(1e12) + + @property + def unk_index(self): + return self.vocab['[UNK]'] + + @property + def pad_index(self): + return self.vocab['[PAD]'] + + @property + def cls_index(self): + return self.vocab['[CLS]'] + + @property + def sep_index(self): + return self.vocab['[SEP]'] + + def _reinit_on_new_vocab(self, vocab): + r""" + 在load bert之后,可能会对vocab进行重新排列。重新排列之后调用这个函数重新初始化与vocab相关的性质 + + :param vocab: + :return: + """ + self.vocab = vocab + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + + def tokenize(self, text): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize(text): + for sub_token in self.wordpiece_tokenizer.tokenize(token): + split_tokens.append(sub_token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def convert_tokens_to_ids(self, tokens): + r"""Converts a sequence of tokens into ids using the vocab.""" + ids = [] + for token in tokens: + ids.append(self.vocab[token]) + if len(ids) > self.max_len: + logger.warning( + "Token indices sequence length is longer than the specified maximum " + " sequence length for this BERT model ({} > {}). Running this" + " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) + ) + return ids + + def convert_ids_to_tokens(self, ids): + r"""将token ids转换为一句话""" + tokens = [] + for i in ids: + tokens.append(self.ids_to_tokens[i]) + return self._convert_tokens_to_string(tokens) + + def _convert_tokens_to_string(self, tokens): + """ Converts a sequence of tokens (string) in a single string. """ + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def save_vocabulary(self, vocab_path): + r"""Save the tokenizer vocabulary to a directory or file.""" + index = 0 + if os.path.isdir(vocab_path): + vocab_file = os.path.join(vocab_path, VOCAB_NAME) + else: + vocab_file = vocab_path + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!".format(vocab_file)) + index = token_index + writer.write(token + u'\n') + index += 1 + return vocab_file + + @classmethod + def from_pretrained(cls, model_dir_or_name, *inputs, **kwargs): + r""" + 给定模型的名字或者路径,直接读取vocab. + """ + model_dir = _get_bert_dir(model_dir_or_name) + pretrained_model_name_or_path = _get_file_name_base_on_postfix(model_dir, '.txt') + logger.info("loading vocabulary file {}".format(pretrained_model_name_or_path)) + max_len = 512 + kwargs['max_len'] = min(kwargs.get('max_position_embeddings', int(1e12)), max_len) + # Instantiate tokenizer. + if 'do_lower_case' not in kwargs: + if model_dir_or_name in PRETRAINED_INIT_CONFIGURATION: + kwargs['do_lower_case'] = PRETRAINED_INIT_CONFIGURATION[model_dir_or_name]['do_lower_case'] + else: + if 'case' in model_dir_or_name: + kwargs['do_lower_case'] = False + elif 'uncase' in model_dir_or_name: + kwargs['do_lower_case'] = True + + tokenizer = cls(pretrained_model_name_or_path, *inputs, **kwargs) + return tokenizer + + def encode(self, text, add_special_tokens=True): + """ + 给定text输入将数据encode为index的形式。 + + Example:: + + >>> from fastNLP.modules import BertTokenizer + >>> bert_tokenizer = BertTokenizer.from_pretrained('en') + >>> print(bert_tokenizer.encode('from')) + >>> print(bert_tokenizer.encode("This is a demo sentence")) + >>> print(bert_tokenizer.encode(["This", "is", 'a'])) + + + :param List[str],str text: 输入的一条认为是一句话。 + :param bool add_special_tokens: 是否保证句首和句尾是cls和sep。 + :return: + """ + + word_pieces = [] + if isinstance(text, str): + words = text.split() + elif isinstance(text, list): + words = text + else: + raise TypeError("Only support str or List[str]") + for word in words: + _words = self.basic_tokenizer._tokenize_chinese_chars(word).split() + tokens = [] + for word in _words: + tokens.extend(self.wordpiece_tokenizer.tokenize(word)) + word_piece_ids = self.convert_tokens_to_ids(tokens) + word_pieces.extend(word_piece_ids) + if add_special_tokens: + if word_pieces[0] != self.cls_index: + word_pieces.insert(0, self.cls_index) + if word_pieces[-1] != self.sep_index: + word_pieces.append(self.sep_index) + return word_pieces diff --git a/fastNLP/modules/tokenizer/gpt2_tokenizer.py b/fastNLP/modules/tokenizer/gpt2_tokenizer.py new file mode 100644 index 00000000..08675a23 --- /dev/null +++ b/fastNLP/modules/tokenizer/gpt2_tokenizer.py @@ -0,0 +1,758 @@ +r"""undocumented +这个页面的代码很大程度上参考(复制粘贴)了https://github.com/huggingface/pytorch-pretrained-BERT的代码, 如果你发现该代码对你 + 有用,也请引用一下他们。 +""" + +__all__ = [ + 'GPT2Tokenizer' +] + +from functools import lru_cache +import json +import regex as re +import itertools + + +from ...io.file_utils import _get_gpt2_dir +from ...core import logger +from ..utils import _get_file_name_base_on_postfix + + +import os + +PRETRAINED_GPT2_MODEL_DIR = PRETRAINED_BERT_MODEL_DIR = { + 'en-small': 'gpt2-small.zip', + 'en-median': 'gpt2-medium.zip', + 'en': 'gpt2-medium.zip' +} + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. + We specifically avoids mapping to whitespace/control characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2 ** 8): + if b not in bs: + bs.append(b) + cs.append(2 ** 8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", +} + + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json", + "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json", + "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-vocab.json", + "gpt2-xl": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-xl-vocab.json", + "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-vocab.json", + }, + "merges_file": { + "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt", + "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt", + "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-merges.txt", + "gpt2-xl": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-xl-merges.txt", + "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-merges.txt", + }, +} + + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "en-small": 1024, + 'en': 1024, + "en-medium": 1024, + "en-large": 1024, + "en-xl": 1024, + "en-distilgpt2": 1024, +} + +PATTERN = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + +def gpt2_tokenize(text, add_prefix_space=True): + """ + + :param str text: + :param bool add_prefix_space: 是否在句子前面加上space,如果加上才能保证与GPT2训练时一致 + :return: [] + """ + if text is '': + return [] + if add_prefix_space: + text = ' ' + text + tokens = [] + for token in re.findall(PATTERN, text): + tokens.append(token) + return tokens + + +class GPT2Tokenizer: + """ + GPT-2 BPE tokenizer. Peculiarities: + - Byte-level Byte-Pair-Encoding + - Requires a space to start the input string => the encoding and tokenize methods should be called with the + ``add_prefix_space`` flag set to ``True``. + Otherwise, this tokenizer's ``encode``, ``decode``, and ``tokenize`` methods will not conserve + the spaces at the beginning of a string: `tokenizer.decode(tokenizer.encode(" Hello")) = "Hello"` + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + + SPECIAL_TOKENS_ATTRIBUTES = [ + "bos_token", + "eos_token", + "unk_token", + "pad_token", + "cls_token", + "mask_token", + "sep_token", + ] + + padding_side = "right" + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + unk_token="<|endoftext|>", + bos_token="<|endoftext|>", + eos_token="<|endoftext|>", + **kwargs + ): + self._bos_token = None + self._eos_token = None + self._unk_token = None + self._sep_token = None + self._pad_token = None + self._cls_token = None + self._mask_token = None + self._pad_token_type_id = 0 + + self.bos_token = bos_token + self.eos_token = eos_token + self.unk_token = unk_token + + self.max_len = int(1e12) + self.padding_side = kwargs.pop("padding_side", self.padding_side) + self.added_tokens_encoder = {} + self.unique_added_tokens_encoder = set() + self.added_tokens_decoder = {} + # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``) + self.init_inputs = () + self.init_kwargs = {} + + for key, value in kwargs.items(): + if key in self.SPECIAL_TOKENS_ATTRIBUTES: + if key == "additional_special_tokens": + assert isinstance(value, (list, tuple)) and all(isinstance(t, str) for t in value) + else: + assert isinstance(value, str) + setattr(self, key, value) + + self.max_len_single_sentence = ( + self.max_len + ) # no default special tokens - you can update this value if you add special tokens + self.max_len_sentences_pair = ( + self.max_len + ) # no default special tokens - you can update this value if you add special tokens + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + + def _reinit_on_new_vocab(self, vocab): + self.encoder = {k:v for k,v in vocab.items()} + self.decoder = {v:k for k,v in vocab.items()} + self.cache = {} + + @property + def bos_token(self): + """ Beginning of sentence token (string). Log an error if used while not having been set. """ + if self._bos_token is None: + logger.error("Using bos_token, but it is not set yet.") + return self._bos_token + + @property + def eos_token(self): + """ End of sentence token (string). Log an error if used while not having been set. """ + if self._eos_token is None: + logger.error("Using eos_token, but it is not set yet.") + return self._eos_token + + @property + def unk_token(self): + """ Unknown token (string). Log an error if used while not having been set. """ + if self._unk_token is None: + logger.error("Using unk_token, but it is not set yet.") + return self._unk_token + + @property + def pad_token(self): + """ Padding token (string). Log an error if used while not having been set. """ + if self._pad_token is None: + logger.error("Using pad_token, but it is not set yet.") + return self._pad_token + + @property + def cls_token(self): + """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ + if self._cls_token is None: + logger.error("Using cls_token, but it is not set yet.") + return self._cls_token + + @property + def sep_token(self): + if self._sep_token is None: + logger.error("Using sep_token, but it is not set yet.") + return self._sep_token + + @property + def mask_token(self): + """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ + if self._mask_token is None: + logger.error("Using mask_token, but it is not set yet.") + return self._mask_token + + @bos_token.setter + def bos_token(self, value): + self._bos_token = value + + @eos_token.setter + def eos_token(self, value): + self._eos_token = value + + @unk_token.setter + def unk_token(self, value): + self._unk_token = value + + @pad_token.setter + def pad_token(self, value): + self._pad_token = value + + @cls_token.setter + def cls_token(self, value): + self._cls_token = value + + @sep_token.setter + def sep_token(self, value): + self._sep_token = value + + @mask_token.setter + def mask_token(self, value): + self._mask_token = value + + @property + def bos_index(self): + """ Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """ + return self.convert_tokens_to_ids(self.bos_token) + + @property + def sep_index(self): + return self.convert_tokens_to_ids(self.sep_token) + + @property + def eos_index(self): + """ Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """ + return self.convert_tokens_to_ids(self.eos_token) + + @property + def unk_index(self): + """ Id of the unknown token in the vocabulary. Log an error if used while not having been set. """ + return self.convert_tokens_to_ids(self.unk_token) + + @property + def pad_index(self): + """ Id of the padding token in the vocabulary. Log an error if used while not having been set. """ + return self.convert_tokens_to_ids(self.pad_token) + + @property + def pad_token_type_id(self): + """ Id of the padding token type in the vocabulary.""" + return self._pad_token_type_id + + @property + def cls_index(self): + """ Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ + return self.convert_tokens_to_ids(self.cls_token) + + @property + def mask_index(self): + """ Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ + return self.convert_tokens_to_ids(self.mask_token) + + @property + def vocab_size(self): + return len(self.encoder) + + def bpe(self, token): + # 如果token没有找到,会被拆分成字母返回 + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) # 如果word是abcd,则((a,b), (b,c), (c, d), (e,f)) + + if not pairs: + return token + + while True: + # 首先找到最常的pair + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) #最先找的 + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def _tokenize(self, text, add_prefix_space=False): + """ Tokenize a string. + Args: + - add_prefix_space (boolean, default False): + Begin the sentence with at least one space to get invariance to word order in GPT-2 (and RoBERTa) tokenizers. + """ + bpe_tokens = [] + for token in gpt2_tokenize(text, add_prefix_space=add_prefix_space): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding controle tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + def _convert_token_to_id(self, token): + """ Converts a token (str) in an id using the vocab. """ + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + def convert_tokens_to_string(self, tokens): + """ Converts a sequence of tokens (string) in a single string. """ + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def save_vocabulary(self, save_directory): + """Save the tokenizer vocabulary and merge files to a directory.""" + if not os.path.isdir(save_directory): + logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) + return + vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"]) + merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES["merges_file"]) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, ensure_ascii=False)) + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + "Saving vocabulary to {}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!".format(merge_file) + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + @classmethod + def from_pretrained(cls, model_dir_or_name): + r""" + """ + return cls._from_pretrained(model_dir_or_name) + + # 将它修改一定传入文件夹 + @classmethod + def _from_pretrained(cls, model_dir_or_name): + """ + + :param str model_dir_or_name: 目录或者缩写名 + :param init_inputs: + :param kwargs: + :return: + """ + # 它需要两个文件,第一个是vocab.json,第二个是merge_file? + model_dir = _get_gpt2_dir(model_dir_or_name) + # 里面会包含四个文件vocab.json, merge.txt, config.json, model.bin + + tokenizer_config_file = _get_file_name_base_on_postfix(model_dir, 'config.json') + with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: + init_kwargs = json.load(tokenizer_config_handle) + if 'max_len' not in init_kwargs: + init_kwargs['max_len'] = 1024 + # Set max length if needed + if model_dir_or_name in PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES: + # if we're using a pretrained model, ensure the tokenizer + # wont index sequences longer than the number of positional embeddings + max_len = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES[model_dir_or_name] + if max_len is not None and isinstance(max_len, (int, float)): + init_kwargs["max_len"] = min(init_kwargs.get("max_len", int(1e12)), max_len) + + # 将vocab, merge加入到init_kwargs中 + init_kwargs['vocab_file'] = _get_file_name_base_on_postfix(model_dir, 'vocab.json') + init_kwargs['merges_file'] = _get_file_name_base_on_postfix(model_dir, 'merges.txt') + + init_inputs = init_kwargs.pop("init_inputs", ()) + # Instantiate tokenizer. + try: + tokenizer = cls(*init_inputs, **init_kwargs) + except OSError: + OSError( + "Unable to load vocabulary from file. " + "Please check that the provided vocabulary is accessible and not corrupted." + ) + + return tokenizer + + def __len__(self): + """ Size of the full vocabulary with the added tokens """ + return self.vocab_size + len(self.added_tokens_encoder) + + def tokenize(self, text, add_prefix_space=True): + """ Converts a string in a sequence of tokens (string), using the tokenizer. + Split in words for word-based vocabulary or sub-words for sub-word-based + vocabularies (BPE/SentencePieces/WordPieces). + + Take care of added tokens. + Args: + - text: The sequence to be encoded. + - add_prefix_space (boolean, default True): + Begin the sentence with at least one space to get invariance to word order in GPT-2 (and RoBERTa) tokenizers. + """ + all_special_tokens = self.all_special_tokens + + def lowercase_text(t): + # convert non-special tokens to lowercase + escaped_special_toks = [re.escape(s_tok) for s_tok in all_special_tokens] + pattern = r'(' + r'|'.join(escaped_special_toks) + r')|' + \ + r'(.+?)' + return re.sub( + pattern, + lambda m: m.groups()[0] or m.groups()[1].lower(), + t) + + if self.init_kwargs.get('do_lower_case', False): + text = lowercase_text(text) + + def split_on_token(tok, text): + result = [] + split_text = text.split(tok) + for i, sub_text in enumerate(split_text): + sub_text = sub_text.strip() + if i == 0 and not sub_text: + result += [tok] + elif i == len(split_text) - 1: + if sub_text: + result += [sub_text] + else: + pass + else: + if sub_text: + result += [sub_text] + result += [tok] + return result + + def split_on_tokens(tok_list, text): + if not text.strip(): + return [] + if not tok_list: + return self._tokenize(text, add_prefix_space=add_prefix_space) + + tokenized_text = [] + text_list = [text] + for tok in tok_list: + tokenized_text = [] + for sub_text in text_list: + if sub_text not in self.added_tokens_encoder \ + and sub_text not in all_special_tokens: + tokenized_text += split_on_token(tok, sub_text) + else: + tokenized_text += [sub_text] + text_list = tokenized_text + + return list(itertools.chain.from_iterable((self._tokenize(token, add_prefix_space=add_prefix_space) if token not \ + in self.added_tokens_encoder and token not in all_special_tokens \ + else [token] for token in tokenized_text))) + + added_tokens = list(self.added_tokens_encoder.keys()) + all_special_tokens + tokenized_text = split_on_tokens(added_tokens, text) + return tokenized_text + + def convert_tokens_to_ids(self, tokens): + """ Converts a single token, or a sequence of tokens, (str) in a single integer id + (resp. a sequence of ids), using the vocabulary. + """ + if tokens is None: + return None + + if isinstance(tokens, str): + return self._convert_token_to_id_with_added_voc(tokens) + + ids = [] + for token in tokens: + ids.append(self._convert_token_to_id_with_added_voc(token)) + return ids + + def _convert_token_to_id_with_added_voc(self, token): + if token is None: + return None + + if token in self.added_tokens_encoder: + return self.added_tokens_encoder[token] + return self._convert_token_to_id(token) + + def convert_ids_to_tokens(self, ids, skip_special_tokens=False): + """ Converts a single index or a sequence of indices (integers) in a token " + (resp.) a sequence of tokens (str), using the vocabulary and added tokens. + + Args: + skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False + """ + if isinstance(ids, int): + return self._convert_id_to_token(ids) + tokens = [] + for index in ids: + index = int(index) + if skip_special_tokens and index in self.all_special_ids: + continue + tokens.append(self._convert_id_to_token(index)) + return tokens + + def convert_id_to_tokens(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): + """ + Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary + with options to remove special tokens and clean up tokenization spaces. + Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``. + + Args: + token_ids: list of tokenized input ids. Can be obtained using the `encode` or `encode_plus` methods. + skip_special_tokens: if set to True, will replace special tokens. + clean_up_tokenization_spaces: if set to True, will clean up the tokenization spaces. + """ + filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) + + # To avoid mixing byte-level and unicode for byte-level BPT + # we need to build string separatly for added tokens and byte-level tokens + # cf. https://github.com/huggingface/transformers/issues/1133 + sub_texts = [] + current_sub_text = [] + for token in filtered_tokens: + if skip_special_tokens and token in self.all_special_ids: + continue + if token in self.added_tokens_encoder: + if current_sub_text: + sub_texts.append(self.convert_tokens_to_string(current_sub_text)) + current_sub_text = [] + sub_texts.append(token) + else: + current_sub_text.append(token) + if current_sub_text: + sub_texts.append(self.convert_tokens_to_string(current_sub_text)) + text = " ".join(sub_texts) + + if clean_up_tokenization_spaces: + clean_text = self.clean_up_tokenization(text) + return clean_text + else: + return text + + @property + def special_tokens_map(self): + """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their + values ('', ''...) + """ + set_attr = {} + for attr in self.SPECIAL_TOKENS_ATTRIBUTES: + attr_value = getattr(self, "_" + attr) + if attr_value: + set_attr[attr] = attr_value + return set_attr + + @property + def all_special_tokens(self): + """ List all the special tokens ('', ''...) mapped to class attributes + (cls_token, unk_token...). + """ + all_toks = [] + set_attr = self.special_tokens_map + for attr_value in set_attr.values(): + all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value]) + all_toks = list(set(all_toks)) + return all_toks + + @property + def all_special_ids(self): + """ List the vocabulary indices of the special tokens ('', ''...) mapped to + class attributes (cls_token, unk_token...). + """ + all_toks = self.all_special_tokens + all_ids = self.convert_tokens_to_ids(all_toks) + return all_ids + + @staticmethod + def clean_up_tokenization(out_string): + """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms. + """ + out_string = ( + out_string.replace(" .", ".") + .replace(" ?", "?") + .replace(" !", "!") + .replace(" ,", ",") + .replace(" ' ", "'") + .replace(" n't", "n't") + .replace(" 'm", "'m") + .replace(" do not", " don't") + .replace(" 's", "'s") + .replace(" 've", "'ve") + .replace(" 're", "'re") + ) + return out_string + + def encode(self, text, add_special_tokens=False, add_prefix_space=True): + """ + 给定text输入将数据encode为index的形式。 + + Example:: + + >>> from fastNLP.modules import GPT2Tokenizer + >>> gpt2_tokenizer = GPT2Tokenizer.from_pretrained('en') + >>> print(gpt2_tokenizer.encode('from')) + >>> print(gpt2_tokenizer.encode("This is a demo sentence")) + >>> print(gpt2_tokenizer.encode(["This", "is", 'a'])) + + + :param List[str],str text: 输入的一条认为是一句话。 + :param bool add_special_tokens: 是否保证句首和句尾是cls和sep。GPT2没有cls和sep这一说 + :return: + """ + if isinstance(text, str): + words = text.split() + elif isinstance(text, list): + words = text + else: + raise TypeError("Only support str or List[str]") + + word_pieces = [] + for word in words: + tokens = self.tokenize(word, add_prefix_space=add_prefix_space) + word_piece_ids = self.convert_tokens_to_ids(tokens) + word_pieces.extend(word_piece_ids) + if add_special_tokens: + if self._cls_token is not None and word_pieces[0] != self.cls_index: + word_pieces.insert(0, self.cls_index) + if self._sep_token is not None and word_pieces[-1] != self.sep_index: + word_pieces.append(self.eos_index) + return word_pieces + + def get_used_merge_pair_vocab(self, token): + # 如果token没有找到,会被拆分成字母返回 TODO need comment + used_pairs = {} + word = tuple(token) + pairs = get_pairs(word) # 如果word是abcd,则((a,b), (b,c), (c, d), (e,f)) + + if not pairs: + return token, used_pairs + + while True: + # 首先找到最常的pair + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + used_pairs[bigram] = self.bpe_ranks[bigram] + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) #最先找的 + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + return word, used_pairs \ No newline at end of file diff --git a/fastNLP/modules/tokenizer/roberta_tokenizer.py b/fastNLP/modules/tokenizer/roberta_tokenizer.py new file mode 100644 index 00000000..ee2e5e97 --- /dev/null +++ b/fastNLP/modules/tokenizer/roberta_tokenizer.py @@ -0,0 +1,102 @@ +r""" + +""" + +__all__ = [ + "RobertaTokenizer" +] + +import json +from .gpt2_tokenizer import GPT2Tokenizer +from ..utils import _get_file_name_base_on_postfix +from ...io.file_utils import _get_roberta_dir + +PRETRAINED_ROBERTA_POSITIONAL_EMBEDDINGS_SIZES = { + "roberta-base": 512, + "roberta-large": 512, + "roberta-large-mnli": 512, + "distilroberta-base": 512, + "roberta-base-openai-detector": 512, + "roberta-large-openai-detector": 512, +} + + +class RobertaTokenizer(GPT2Tokenizer): + + vocab_files_names = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", + } + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + **kwargs + ): + super().__init__( + vocab_file=vocab_file, + merges_file=merges_file, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + **kwargs, + ) + self.max_len_single_sentence = self.max_len - 2 # take into account special tokens + self.max_len_sentences_pair = self.max_len - 4 # take into account special tokens + + @classmethod + def from_pretrained(cls, model_dir_or_name, *inputs, **kwargs): + """ + + :param str model_dir_or_name: 目录或者缩写名 + :param kwargs: + :return: + """ + # 它需要两个文件,第一个是vocab.json,第二个是merge_file? + model_dir = _get_roberta_dir(model_dir_or_name) + # 里面会包含四个文件vocab.json, merge.txt, config.json, model.bin + + tokenizer_config_file = _get_file_name_base_on_postfix(model_dir, 'config.json') + with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: + init_kwargs = json.load(tokenizer_config_handle) + # Set max length if needed + if model_dir_or_name in PRETRAINED_ROBERTA_POSITIONAL_EMBEDDINGS_SIZES: + # if we're using a pretrained model, ensure the tokenizer + # wont index sequences longer than the number of positional embeddings + max_len = PRETRAINED_ROBERTA_POSITIONAL_EMBEDDINGS_SIZES[model_dir_or_name] + if max_len is not None and isinstance(max_len, (int, float)): + init_kwargs["max_len"] = min(init_kwargs.get("max_len", int(1e12)), max_len) + + # 将vocab, merge加入到init_kwargs中 + if 'vocab_file' in kwargs: # 如果指定了词表则用指定词表 + init_kwargs['vocab_file'] = kwargs['vocab_file'] + else: + init_kwargs['vocab_file'] = _get_file_name_base_on_postfix(model_dir, RobertaTokenizer.vocab_files_names['vocab_file']) + init_kwargs['merges_file'] = _get_file_name_base_on_postfix(model_dir, RobertaTokenizer.vocab_files_names['merges_file']) + + init_inputs = init_kwargs.pop("init_inputs", ()) + # Instantiate tokenizer. + try: + tokenizer = cls(*init_inputs, **init_kwargs) + except OSError: + OSError( + "Unable to load vocabulary from file. " + "Please check that the provided vocabulary is accessible and not corrupted." + ) + + return tokenizer + diff --git a/fastNLP/modules/utils.py b/fastNLP/modules/utils.py index 79e2a7de..061cd8ae 100644 --- a/fastNLP/modules/utils.py +++ b/fastNLP/modules/utils.py @@ -144,18 +144,8 @@ def _get_file_name_base_on_postfix(dir_path, postfix): """ files = list(filter(lambda filename: filename.endswith(postfix), os.listdir(os.path.join(dir_path)))) if len(files) == 0: - raise FileNotFoundError(f"There is no file endswith *{postfix} file in {dir_path}") + raise FileNotFoundError(f"There is no file endswith {postfix} file in {dir_path}") elif len(files) > 1: raise FileExistsError(f"There are multiple *{postfix} files in {dir_path}") return os.path.join(dir_path, files[0]) - -def create_position_ids_from_input_ids(input_ids, padding_idx=0): - r""" Replace non-padding symbols with their position numbers. Position numbers begin at - padding_idx+1. Padding symbols are ignored. This is modified from fairseq's - `utils.make_positions`. - """ - # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. - mask = input_ids.ne(padding_idx).int() - incremental_indicies = torch.cumsum(mask, dim=1).type_as(mask) * mask - return incremental_indicies.long() + padding_idx diff --git a/reproduction/Summarization/Baseline/train_origin.py b/reproduction/Summarization/Baseline/train_origin.py index 36a2b716..7c4d2f12 100644 --- a/reproduction/Summarization/Baseline/train_origin.py +++ b/reproduction/Summarization/Baseline/train_origin.py @@ -687,16 +687,16 @@ def main(): if hps.mode == 'train': trainset = dataInfo.datasets["train"] train_sampler = BucketSampler(batch_size=hps.batch_size, seq_len_field_name=Const.INPUT) - train_batch = DataSetIter(batch_size=hps.batch_size, dataset=trainset, sampler=train_sampler) + train_batch = DataSetIter(dataset=trainset, batch_size=hps.batch_size, sampler=train_sampler) validset = dataInfo.datasets["valid"] validset.set_input("text", "summary") - valid_batch = DataSetIter(batch_size=hps.batch_size, dataset=validset) + valid_batch = DataSetIter(dataset=validset, batch_size=hps.batch_size) setup_training(model, train_batch, valid_batch, hps) elif hps.mode == 'test': logger.info("[INFO] Decoding...") testset = dataInfo.datasets["test"] testset.set_input("text", "summary") - test_batch = DataSetIter(batch_size=hps.batch_size, dataset=testset) + test_batch = DataSetIter(dataset=testset, batch_size=hps.batch_size) run_test(model, test_batch, hps, limited=hps.limited) else: logger.error("The 'mode' flag must be one of train/eval/test") diff --git a/reproduction/multi-criteria-cws/main.py b/reproduction/multi-criteria-cws/main.py index 049a1974..8ee1f81e 100644 --- a/reproduction/multi-criteria-cws/main.py +++ b/reproduction/multi-criteria-cws/main.py @@ -406,18 +406,8 @@ if not options.test: logger.info("Number training instances: {}".format(len(train_set))) logger.info("Number dev instances: {}".format(len(dev_set))) - train_batch = DataSetIter( - batch_size=options.batch_size, - dataset=train_set, - sampler=train_sampler, - num_workers=4, - ) - dev_batch = DataSetIter( - batch_size=options.batch_size, - dataset=dev_set, - sampler=dev_sampler, - num_workers=4, - ) + train_batch = DataSetIter(dataset=train_set, batch_size=options.batch_size, sampler=train_sampler, num_workers=4) + dev_batch = DataSetIter(dataset=dev_set, batch_size=options.batch_size, sampler=dev_sampler, num_workers=4) best_f1 = 0.0 for epoch in range(int(options.num_epochs)): diff --git a/test/core/test_batch.py b/test/core/test_batch.py index 18cbf59d..6a340d36 100644 --- a/test/core/test_batch.py +++ b/test/core/test_batch.py @@ -279,7 +279,7 @@ class TestCase1(unittest.TestCase): data.add_collate_fn(concat_collate_fn) - for batch_x, batch_y in DataSetIter(data, sampler=SequentialSampler(), batch_size=2): + for batch_x, batch_y in DataSetIter(data, batch_size=2, sampler=SequentialSampler()): print("batch_x:", batch_x) print("batch_y:", batch_y) # batch_x: {'x': tensor([[0, 1, 3, 0], @@ -302,7 +302,7 @@ class TestCase1(unittest.TestCase): return b_x, b_y data.delete_collate_fn() # 删除之前的collate_fn data.add_collate_fn(ConCollateFn(max_len=3)) - for batch_x, batch_y in DataSetIter(data, sampler=SequentialSampler(), batch_size=2): + for batch_x, batch_y in DataSetIter(data, batch_size=2, sampler=SequentialSampler()): print("batch_x:", batch_x) print("batch_y:", batch_y) # batch_x: {'x': tensor([[0, 1, 3], @@ -362,10 +362,9 @@ class TestCase1(unittest.TestCase): batch_sampler = BatchSampler(ds) - data_iter = DataSetIter(ds, batch_size=10, sampler=batch_sampler, as_numpy=False, - num_workers=0, pin_memory=False, drop_last=False, - timeout=0, worker_init_fn=None, collate_fn=None, - batch_sampler=batch_sampler) + data_iter = DataSetIter(ds, batch_size=10, sampler=batch_sampler, as_numpy=False, num_workers=0, + pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, + batch_sampler=batch_sampler) num_samples = [len(ds)//2, len(ds)-len(ds)//2] for idx, (batch_x, batch_y) in enumerate(data_iter): self.assertEqual(num_samples[idx], len(batch_x['1'])) diff --git a/test/core/test_dataset.py b/test/core/test_dataset.py index d048191f..03f24ad1 100644 --- a/test/core/test_dataset.py +++ b/test/core/test_dataset.py @@ -264,7 +264,6 @@ class TestDataSetMethods(unittest.TestCase): self.assertEqual(ans.content, [[5, 6]] * 10) def test_add_null(self): - # TODO test failed because 'fastNLP\core\field.py:143: RuntimeError' ds = DataSet() with self.assertRaises(RuntimeError) as RE: ds.add_field('test', []) diff --git a/test/data_for_tests/embedding/small_gpt2/config.json b/test/data_for_tests/embedding/small_gpt2/config.json new file mode 100644 index 00000000..b2f61bdc --- /dev/null +++ b/test/data_for_tests/embedding/small_gpt2/config.json @@ -0,0 +1 @@ +{"architectures": ["GPT2LMHeadModel"], "initializer_range": 0.02, "layer_norm_epsilon": 1e-05, "n_ctx": 20, "n_embd": 16, "n_head": 4, "n_layer": 2, "n_positions": 20, "vocab_size": 64} \ No newline at end of file diff --git a/test/data_for_tests/embedding/small_gpt2/merges.txt b/test/data_for_tests/embedding/small_gpt2/merges.txt new file mode 100644 index 00000000..5e4f2b9b --- /dev/null +++ b/test/data_for_tests/embedding/small_gpt2/merges.txt @@ -0,0 +1,39 @@ +#version: small +a b +c e +e l +e m +e n +en ce +en t +h e +he r +i s +o c +o d +o t +ot her +x t +Ġ T +Ġ a +Ġ d +Ġ is +Ġ m +Ġ s +Ġ t +Ġ v +ĠT h +ĠTh is +Ġa n +Ġan other +Ġd em +Ġdem o +Ġm od +Ġmod el +Ġs ent +Ġsent ence +Ġt e +Ġt h +Ġte xt +Ġth is +Ġv oc diff --git a/test/data_for_tests/embedding/small_gpt2/small_pytorch_model.bin b/test/data_for_tests/embedding/small_gpt2/small_pytorch_model.bin new file mode 100644 index 0000000000000000000000000000000000000000..ec2f48d77b641cc69f579013e32071d8be9714b8 GIT binary patch literal 40749 zcmV({pVDA}0*VT3{G3MlAZn;k87_bVP3Z$JfC7DS04P`x0001Ra&L5RV{dFV?E0Zr)xSPcLG0BmV=bZli`Wo~3?VQz5(h*$~$004A(aAjX}X?kUIaRYsE1SnVq z0001UXm4_KaRo~PSOWk60BLS?aRy5SSOfq70Bmn=XK@Eh1a);TfC6J zbZ>HFXf9uMbZKmJ3SV+%Vs&Y3WM6b;ZgX#PUv@GIaRVqQSO)+A0CRM2a$#p>aRg&@ zZ*pU33Px;iVRTb;Z*pO0WeRZxSPuXI05LQ$H!(LjFgG(dGBPwUaRyie0001EaCLD9 zO#lQ=ba4n#O8`qiOAv-}2}=-50fuo3iD&>RQgI7(aST#%4OkWc004AyVQzC~Z*pyA zaxQmpWiEGRX=iA3aSmt$C@5$IXa!gg0000nG%zVXJ~YB7H9(~C};#|1y~ON001#GFgGzbI59FbI5;*mFmV@X2TKr6ba5C_ zO8`p{g>e~60fliIiD&>RQgIt}aU4={9atFv004AyVQzC~Z*pyAaxQ2tFfMFvUokFX zX<>759%ut7C};#|1y~ON001#GFgGzbI50RiGd4FeFmWGf2TKr6ba5b2O8`p{g>fNE z0fliQiD&>RQgI`6aU@c4C0H2%004AyVQzC~Z*pyAaxQ2tFfL(qbZ#zUX<>75CTIgF zC};#|1y~ON001#GFgGzbI50ReIW{siHgP9t2ThOxPIPf7QA+?QO94v(OB72Kba5#t zO^^XikO4~+O96CoDv4+SDN=DOba5RQgK6caYRyaMOYvJ004AyVQzC~Z*pyA zaxQ2tFfL(qbZ#zVUvP47YA#}FVRLatXaguHXar~lSPuXI05LQ$H!(LjFgPsaY;)7g>g!WXaFfvaZ7Y@Oj2=8SQ`KU0CaL;ZgXaDa&2XD zE@&<=E^KaJGA?&zX=iA3aZYFhC@5$IXa!gg0000nG%zaaL#pC@5$IXa!gg0000nG%zjG%#^jXa`FWPIPftQA+?z z5QTABO96#(T8U@?DN=D;ba7l#aa~v+0001Va$#RQgLH+ab!|)Wmp{m004AyVQzC~Z*pyAaxQ2tFfMIua4utC zW@9d5X<>75W@rN_C};#|1y~ON001#GFgGzbI50OkI5sdbHgRWY2TMRsba7}=O8`qi zg>h+10fljDiD&>RQgLf^acoj?ZCD`y004AyVQzC~Z*pyAaxQ2tFfMIua4utCaB^>I zE_Y>VXJ~YBZfFB2C};#|1y~ON001#GFgGzbI50OjH8VCiFmZ2a2TcG3PIPf_QA+?z zKuZvYadAr!O96&)a*1dFDN=EBba8Z2adlW90001Va$#sad}Gtg>ia`XaFfvaeH)ed{S|JSQ`KU0CaL;ZgXaDa&2XDE@&<>E^KaJF)nvy zX=iA3aein6C@5$IXa!gg0000nG%zafWCE zC@5$IXa!gg0000nG%zagJyMC@5$IXa!gg z0000nG%z04Y*&lXP*EQgM}7A^-pYbaG*Cb7pUHZDn#UXf81>VRUqEE@NL|baZYm zcV%g3XmoLwXaguHXar~lSPuXI05LQ$H!(LjF)=taF*PtWahGTZO#lNRQgNGfahy_dome0M004AyVQzC~Z*pyAaxQ2tF)m?rbZ#zV zUtx4~ZZ2YJVRLbwXaguHXar~lSPuXI05LQ$H!(LjFgH0cGcz|fai3@hOE6A!aiCF4 z08221aiL2Ag>j;ZXaFfvaier`q*8IESRw!b0CaL;ZgXaDa&2XDE@&<>E@5IE_Y>VXJ~YBrf35wC};#|1y~ON001#GFgGzbI59FZGBq$bIB}75u4n@&C};#|1y~ON001#GFgGzbI59FaH8(gkFmbPF2TKr6 zbaAjzO8`p{g>kV<0flk0iD&>RQgO3%akNr#wOAVf004AyVQzC~Z*pyAaxQ2tF)nOw zUotLtWoc(Y;IpNE@Ek6 zb8)_C11KnH1ZV|V4*&oFF*GnYF*i6cI5jphIX5OVbaG*Cb7pUHZDn#UXf81>ZESEZV_#-tE_Y>VXJ~YB z#%Kd5C};#|1y~ON001#GFgGzbI50OkG&MCiG;zmh2TcG3PIPg|QA+?z5KBOYamh zan5K1C@5$IXa!gg0000nG%zOVbaG*Cb7pUHZDn#UXf81>ZESEZV_$G`Z)z@L zX<>75-e?0TC};#|1y~ON001#GFgGzbI59CfI5{~rGI8H%2TKr6baCKOO8`p{g>m6a z0flkmiD&>RQgP#SapY2QvVDKQgQ8A6#xJLbaG*Cb7pUHZDn#UY;Ip>E@Ek6b8+ry11KnH1ZV|V4*&oFF*GnY zF*i6cH#RgjHa9YH?`Q{05KeS)@KH+uOAv)|@k;@Paq@|104Y*&^K^0aQgQWI4gdfE zY;9j?WnpA4cV%g3XmoM*XaguHXar~lSPuXI05LQ$H!(LjFgG(dGBPwUarbBkO#lQ= zbaD7mO8`qiOAv-}`AZN>0fuqRQgQoqar{zo{dIkD{#XeB003WYWprU=VRT_} z|7ZXyQgQ$R001ah00000asdGV0DW=-0RRA42LJ#7c4cyNX>V?F0|5X4O969O3jhEB zbaG*Cb7pUHZDn$D1OWg5eR2f>003$O0RR9?0drUn0001Va$#}2AY6AfP z080ULSP%dJ0CaL;ZgXaDa&2XDE@X0VaB>O(004b*3jqKCY6AfP080ULSPcLG0CaL; zZgXaDa&2XDE@*NL0RRAfat#3h0BQpP002t?b65`m004AyVQzC~Z*pyAaxQ2tFmet7 z004b*4*>uGY6AfP080ULSQG#N0CaL;ZgXaDa&2XDE@&<=E^KaJF>(+A004b*5di=I zY6AfP080ULSQG#N0CaL;ZgXaDa&2XDE@&<=E@550RRAM0|5X4O969O z8vpVau@*s0DW>90RRAM0|5X4 zO969OA^-pYbaG*Cb7pUHZDn#UXf7}=VRUqEE^=jaX=Gnya&K^Nb#!tX0RRAfavK2v z0BQpP002t?b66Ar004AyVQzC~Z*pyAaxQ2tFfMFvUovtW0RRAfavcEx0BQpP002t? zb667q004AyVQzC~Z*pyAaxQ2tFfMIuaB?02004b*9{~UWY6AfP080ULSQr2R0CaL; zZgXaDa&2XDE@&<=E^TaZE@NM2V{#w?004b*AprmYY6AfP080ULSQ-ET0CaL;ZgXaD za&2XDE@&<=E^TaZE@NMCa&KyKA^`vZeR3lK003$O0RR9?0drUz0001Va$#)pW004b*CjkHeY6AfP080ULSQG#N0CaL;ZgXaDa&2XDE@&<>E^KaJF>)vY z004b*DFFZgY6AfP080ULSQG#N0CaL;ZgXaDa&2XDE@&<>E@5E@5T0RRAM z0|5X4O969O8vpVRUqEE@NMCa&KyKE&%`leR3}W003$O z0RR9?0drU(0001Va$#Vaxeh^0DW>X z0RRAM0|5X4O969OA^-pYbaG*Cb7pUHZDn#UXf81>VRUqEE^=jaX=Gnya&K^Nb#!tv z0RRAfax(z{0BQpP002t?b66Ar004AyVQzC~Z*pyAaxQ2tF)nOwUovtu0RRAfay0<} z0BQpP002t?b667q004AyVQzC~Z*pyAaxQ2tF)nRvaB?;Q004b*Hvs?uY6AfP080UL zSQr2R0CaL;ZgXaDa&2XDE@&<>E^TaZE@NM2V{$kF004b*IRO9wY6AfP080ULSQ-ET z0CaL;ZgXaDa&2XDE@&<>E^TaZE@NMCa&KyKIspIxeR4Yi003$O0RR9?0drUz0001V za$#+{&Y6AfP080ULb#r1afC61{04P`w0000nG%z0(gGB@5lX-pBkK9wCh!A%mqFu8s_ zsx1k*pl^t8acVTVb(*N5u5h;0VFB&f-|l8xBAuMHGEW&N_eIB)yBL6!5oRlamEt#^5Bplq07*zR}&aPmOBU6lO1 zC8Hs|3|nHmSfQ)DoS|a72|*;ifY%{BDOJ=w$#(%f7Oy9~;J>*%qLec|l6#A~Wws2x zmOrPw{JxSqAkB)rT%UA1$|6|1Hqsrui*|#%yMe*HXIJtHPNIRbXO>2HoajWwaXQ@<9x%EDbd0!Ao3ulzB( zFSo-y*ayJ8xYH3lfvPpTd5~MYaTJt0n-2cFu!N_)MH~)1sp1N|f{M(%Jq(7p)s@ye z9O~S<)%GE~Rj=T@Pr7crMi$Sz_{?5B%WWIHR40?X=N*x|b&f$hQyE1)fQ?K%mKQF& z1Y9h=1R_$rqN$p@oh;D0GguS6PB+3lj`K=9uMhq_ol2@af1RAX$@Q1KS=!~hRzIn{ z6s?WB{N<;+RH_BN0Y$33faZfcyr~eqG}BW&bUOLFbz@CDr=0;gj>{dq^2WlvJ7Au? zDcga&_?%e0X9!Nb()|~_LFQ|`#ML;wsfGDGl+_kHP)F}OR}hc9&jjMUNq8&0vhO%N zDhS9rJ4gOJIFzP4Q+PAH*Ck`SjJ)eSQtOdBQq;mbGTk#h*k2_)9l)o%iTeP(9*jvm z?<{sX;Z4lE-U9l(QX+u7FY@!ez2$8@hareOMBL@P%04H(?!mJ>X@94@J>B#?P##yk zT-)9}VpCweyw7sH`1M@8R>G$|m~pYXFwN$?`(!XVF6a3?dDpGH_xAt0ySZyTKGRFR zmV%x<$HqB4L5kWub3vs$;oXG1QXF=?4ca?78@SIrbN-aNH1!I*tqLkVc&G0?17zqt z$sScX>Mkw3Ff9+gYJ(5F&h9)shWe|#*V-PtHgku({5B~&7tbcVWXl6Qmq744=cfrh z3Q(`R|0j&RDZ8J%WYjIZ3|bz%S#{RDiO~?feVj0=E%pe=7a00aO4 z00000y>h+0G6Dv@%R_`b{8yB_V8v#-&|U+*MNuxil^RAp;mZZQLwyH2lKUsTNj}B7 zWb;+Lcslev>{|dmRiOSn9^~RYdsTnD9hwh3!K-ULO0e`ixNamos{$K6CuvH$)s(|I zzI+$FP`!S;5UX`NOe1u>U2;&o1V@-VLM#zI6!D5Y)S$M!@Y!oSdj|BoE1n8HFtBYr zT!{m{X#qeyz}JvGuP#fw&>9T9s^Ve1z4(zlcT_YzgaxR)5TKhpjM!PcWa@#uf=J@K z@)$0>Ci^JCP|?7N7$DoRDXbMrU6stFK1=HZyUf|pOccZj&{D2?40i*vslNjf_4wACE>mZaoX*{~TgQ>=A z&gTO>QZ0qMMjp>QM+u6&l~DP+Q>gwt^dbj6ueC!wuT!c!Hti<60HsGfTT6^QiYs2b zF;#-Q0>)!0Jd6AI1<)SCOef(rSVsjU~Cq_^_8D5b(_~+NTM=HfUu6Cch@1HC> zF8;4P9q1uDIU5l@RerHNYgt#kWSKL(p@cKLvYKnW+3KLXr{1BtG88|(YOlULHKuyJ z&%#6x;#RUeQt%198BZBJ5>OevJPy9Q z?2qQWPYa~Gy;P?=k8MP}_e=@AIVuS}oR0Fmq1Fey?(IUn;1xl<nbR{ykn-k zEZXBdkZXxN_hFbjM&B5`%MTJddy%6%$3-+eD;L7t>8VXIBC}mjxlb;-#3pv?MLOz-kt~ z+jH!@71RPf*vWRhs~dwnev0F~B(&4JMs~ZrsyDK{5)H3BwT;TW@<*{e>^AE>kB5ak zw6YvMG&qYpSuN2`I4pI-h zN>$vv5NG(jeMFKxfn&M5KVSvDb6YOGxtO23DI?K4N^HJ6q> zhdP-&QfHXFQqJ5w4?530lo+HV~={gZ=$-qNogay0NX@7e6!O! zJFwh5g%AHcTjk3<=Zpl7f3We~yJ(iEWSHB884>vQsL`C8}p0i6l zkD^sOrj!RelcwxEJ+MhOl)TpZ`TbdA0|Cf=ev zhZvbW@cDK*w|>}-MG>pIyamuaIFa_d1dTU5(pok=8Yvh&?xKP_O*;TRsj@#ir8_=7XHD!p zXB!keL^%e%)0><;8Ru6#ez+(+%3MahF2v2dauNu<9?B9s(3Uj3!3xkjeGW%F*35!D z!C%_E`E|EDCk9?T^5fJzuzU_YYSm!8$+qpgjF)%3`GYzYOOOPME_xq4g|1_v(l{U!RG)=v@%IRuh7}m!!zMG98>exT$eG!VW>a8D#goN{f^` zy@^P?LQ1^5E4V_uzURR_APfXMZ)YmJNhs4h0?3BE5A{U7P(y}1CBNi5IQLDuSP2Zg zmoGoN;H>()GS&*bf(hk3`)w||hVU3XyRgYS&N_d*Dx#&li|dR$s<4_nV-JnFx6t4` zNwogFm^(nC@@6zV zAQAn$!?y0cu9r8vEZ*_F#nN6pCz;^8oL%8NW5p1?3Li*3F%FVE=C!%IMKLP84-F5z z^8Q6Tv~~(Tor9P=48oGUZp>A@&a&7%OENmVTNur}SplWH*Z+e&_pvcO?U$y!$s%4n z#iC_A!fQsmLID^&jg_ptV1v}W)n|3Q4go(qWJeP{W^*FCqO_4ZmlFxS*|Jx>lp_(m z`Imvb8ATqw`=gaR+wMs`4_-_<>}J+GK}}XWum7;TI4yQPO9zd-y|ab9d*}weN~`xg zuvkdEmiq#{y}z2jEsh*KeydNomoBinumEa2z2K_6Wjabd)UvHSqq+V& z#*0b3K>hQ)Z>Q_Kn*vyS`^UJSkDTZ_(2`)?kM`JdG^6@=1rh2Mmck{h!J_ z+1iLaPD*4vnD8FFK@e@cn;uBJQ(H+pCb~5{dS4W}Hjk1#gp3lrJLHkPArh0k^cK;) z1Wc+t43e8X7hdMPHAot~W#Z+$ru92Ku6JfTTpJ6z4Yz~5YGZplmd6x5B1xjVUKgo6 zA-zz%9e>`uyPS)=TwZuQGf{lJUM1W-sAY`27+%3UK8J-oI6*8tbmj=WWx=<+{^U=* z*A<96oQQ}#yKJ^Ph?5CD&p9-_BzvK{z{YnwO#WfJu35P}G)+fqk92XCMl^ z6xGMP4b33Dh3y);srGQZ-8R)auZ{LRFHgF>x6>XwcZtZnU>gEG9W@0#yVoGR&`*fG zq>Roxy9&cRbYxdNOymH&i(MAGn|O!3RdN_Tuz1irSID?LbDAQ$CkF|=_}QJjLXp2a zowz1E_dtrg0G$jyFD6JlwtNvizS91@zX1z9AUN1OOhY0(VbQQVU9kW?UO4eQ!TZ%a zqH^;)smT^R+TVh_nJR@l&S5vari_ET=X$ZcWuGX#4vXi!otBWii3=7yUM*%kjGvr3 zpzLzHUB8dKBGV1MJ2T_D3ZJb!O$VzxHold+7qX_ifoX)g5`@h=5+X;u!!_u;>u44{ z6L>GWjJBLS6nqpsMXqB!gYAqwHph@TL52doSM|5KinTF1$=$@f&=2Z6*&YkMsY3ZY z>YY{Sw#9glm6yB;s3Y0fKd25CZV%Dv~`v{tBVi4EP7l# zVy^PMu3r*7Zb99<4@*Womm$48mB4#F4@+~r4iPoHi~Y3j z7L)+IyzRBRN+dF}x`SAoAf3MutF>_1~X>2dG7 zekyA_KD%_h_o%SEt$vBTGJvu?*g5pPNh`y=oR>)3xh@NEY?SEu4U$rp*dChHMBoZs)diEPq3g|w(V#^Ij4u6Nu!M6m(AMY+v8wmK0! zdDWOa*fYAkBeVa!7o`onTgDu`Sl**LSTuG!Pd-68_n8X4ZD*9cxMDCo84)eKWjQT8 zVfrS#{t>)8Fx;-Zduy7zDN7=|+8Tj9yRG0nBohWZ5sVDI^&OD_$2&xsl z^1fR;r0KD{Sbdi~m`>un#Mj%rSAdzjghB;8;X60G=c_6_*DUnAT@t*!y$%^Xw@)>^ zx0sx~k7x%y?kq|?=W3rj1@>dTB-Rl;ob=~BOTkw>{X70UE6&lo203^<1nz;m0G5S3 zf-|W*>>Fr29rS{{>in>~Z)lS|!3ZY3r>up$rzWYqt^=h!z=Qd_l#>X(_9LM>ba@uK zY6}uPCmEf*m>aS@;}MO!Q*GWl`EL@uFhvi&O7G&l3vrLSPKCp~9*26oCkNp?lOMdh z$&3O$_ZuC&H?Rr2mnOKpQA7#4q{*v1#kFQUBSVV3KrFyK@ZzpJR=g0rQa+hHmG?cn z;7cJrPk=|fq-YO4)PQa~&h_BD1tK@S6eoGR!U+4jpp=2U{#qeC``H7%0aW2U4#@vI z$JGS7$=@41COXkPE;O_{yMv{?Qy@aS1{UPIv|oKZUjd@K&);;s{J+aQ0{E&tb+ySm zLJQSAv~S@%@*@>E5WkzR$5dG^~)kDOlJ%>;IuV4j!>Q zd5eiT-1WA+40hx^``_U_G_e`Ia~6s`=JvZheN+!TLQ6`!)6BO#A1;u)JJ*{#*ZZA3 zH`RnayN&?8{t}!#dEAmbH&mg#Ngbj(YDPOfBH1y#YDQDM#>+IjS!5)<5C8xG00000 z00000000000000000000000000000000000000000000000000000000000000000 z0000000000000005C8xG00000004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL5C8xG00000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00aO400000;EawuLJWXBp?AbQ8rGvc*IO~W^4K=KaNE^9#d24>N3E(n&;U+7ZW>ZN zbcgJ`vZ(pIMhFBwwn3LXRPdU*n9)(Zo}1=8xR01T#wPE)$L5JVo3ji&Oy`?Cl3lL6 z2_u6$Z>5VlTz-K$1!7`6IS{Noj&Pa0K@!!vE^`XJ+vu%3eek}!tRc_5-D#CP{doSo zV(Pg()~W=(t+_uuYE5=LxhLK>FNqF2D@AfVn<*JRjyo|t2@ifdjLZHz42UVrKGjt`qtFK->Vo*4|PV?rw%C%5C;!3eRKwv>T(0M?-+mCKM)^dzIrDV;# z0EbJw%Sz`wot>GxVTJ5G)I@T<=GW~zPNKv*$;Zk%INwe>?;a^VPTNE~X9xv76r{2| zK8s#FGI6B50VFZJlXPM`_*Ub(60#0Gsau&m{gQ;c{m`d8{1~FUd1S{tf#*g%>Q}Hk z9$c6_=FOoxOUfg=@)7jB((r0K$~Q_pMll7v;hWbwMU#3w2_Vn*%ISNd=}Y&i%zAP~+x)3~HO z=V2hdhWI(XEn0!RIc*oZ&I-voE83+y^o!%U^EjHkv-MrPOZG%Pc&R_T8%NK)_gqrE zk6{D6LimWh)M@ZLNt>}eMjH%0P30fGU_CdzMeLtC1ynpd-VP|e$D60TySXjB{UA*} zS;2w3KQ9zI*(cb$$TpokA?D>f1pk4&gL`s36KBsmzL3wm3JWhis#%@8SG2LbWm%Uz z@JX4wJC+Z;Ro$FC+YyAj6Hxv>L2 zzN9TZr*}}iDXF|XfZ!OsjbVwrwm>bsGJdc;)BRCA4D*dUR33Fa683&P9hAL1lN`o8 zAtZ@BY=D+J9JKGd2@{IEq~fuaN9gA~F(CvzIX2xqcp|4fE>{3Ot|B44 z+3p0q$)ec2lxrkYJWmXxPFE;*jOis@6kOSK_89G*M8sgMypva*gm7ZpXl&ev8u zj%J>`T~SuM*HwW#Pe$^*fX0-(m5J*-&soYmLvQrEu%%Qwa1M97D(s6p>wdXA<%NH| zHFDLspsaO0^r}rfNz(y5##sZss$fq%<=oRdaC4_TWTpi@CZ89(P)v!r5@-Uwx65?A z7U-)vxm$xg#v+uwFO?8Ic3Flz6LDlb+B^We50T_N*I2SV%^;V&KgohSP^1yOo9uHu zY4jkxOss=BGeIgm-VYN!TTn;5=Q{_y(__IrCuEmA_E?5J)sn)yauLLmQUa$Xa>&GV@{n>*4xzN2M2-j9YmGSVA7`U9an zorL5&>JO5bdUi7~_nKTT%Ojvxo zMqm@WC7D4y__ZUvauhDSQcP7m+in#+yv8s*WpPcs=`@eL;EgoAS0CU!Avpj%SPJI5 zFc`5ss(u_i4;S@1V4*iWLZ8Y!gSYZLN8BU4ZhA~S5DgJLZD71Su3(V6P*QZeRNNN4 zPPgj31YDN9%l@u90*m#$Mkt9qSd0d}GO$y;)pj1du8JusU?{qRcOY+6KvEdNAl#M98OQ>tR=WRW_`J)p&JVCEJ z=E_pMJlSHq?6zDwGiVIF)HTAqEA$7wL)-?vev3i8?ZJmUAO*ZUPT#J&yOlCL{~`#z z7`=bI;bP-F{bm!q-C(gh04bilwkfK-UDa>A0C@|%Hy#~5#c-{>xO_;wR7p5I=WMaO z_b4De!maK*;+8nQ_4G)&`FT3Lf%u9%;5*nnQj;RP)^3nI@&ahPSRHgcL4Yj0$N0Ov z=Ub9Hl@+r(f$sOZRD?&o>zsePCX$i5QZ9o$0=5l3w0HrTD!& z#U^6A97ixbOG;)teMyA7zDJn6jX;1qP|D@I9J2Pi0mAb;Du?+vO!D$Lh8U4NhF}Rj zMX``PLc2daI9jB<8AvfbuVya1rT;#><|8sY_0+Yy!G$(GgvpIO$6|K8N`pH*-trwg z%$$h4fK=~1c1H=lAi$11gwHU%*s>u!eG!mu$r0AC`!BtHQ?K!Axn_>eq0z)_97 z6n2O_hlvC{eDFHEQv^*seLZ{w}JN6PfO zFfa-`DLZ?-&q_Buowmii(lS51*fN4V+{H?|{P~!eKkSZXCrs zrIPEs0Fx#=w3M+tejBVj&;$xR?%{wv#ynFzqFU#>;>g~qH{!Frjcb8BF#E2& zj}nAD2OWgFERyHDm;TPXuc_X=Ne&CVrXxYSln_h2f<+lUb6o4Z9R;;KJ-uAK{DKQS zZ!S~2M5|;xjE3?%lU>uiCByW)Q#d_5U`E@#l2PWn5Ki7a-VaVZPbG4^c^u+AK(ZXX z&Vi~ruFaP_q9+SG-W!R$W*enEifyqvl&uOq6tvH}57Z_+b1F$ZJ*SJjlZ1>smvx;y z(6Kc=EEW5%R(AFk2Mp$(x@4^(h@j4k94Cu zw4~*_SNQ(B-nFf}nA=mkLhWNb_Z~hx+vNx zn`=3{p6!D?>UNJjaOpBVH)El@a4G$~VdJ^HUWy^StN0{6l#wbt$wK%%<kf$F0LWH{JfcQ~#{I5YY%d*E);3Mjw|v5;3Vfwuvb`-mJYk-~{Qr zhIpnsfe$jd-3Fb!Jq{N< zHzEDJ?dCqcGJ3W;`+0u52}#>K7O)??FIy!$q}i{$SGFfSysq~=6wnyFN%W+oSHqoFSFCU*u(q01U;d=!ORpqO?ittk{%E{!b0{t3&|lnVt9$X zBR%RotGcE-&J$w0ka>?hGi2C2cTp8Q05In}hk$}Q+~>4B#uv@--|rDScfiNHcie$Hd9+A8YJYaR?NmIyY#H6W`>s4Zq04W) zO@hh1OJEf{={86`!e<*h&`!5Hr z#|sg?k|&uwB{vYgaKj-ws|tHOxM}UXaRu$h87x4u}srii4xv_g}*CIr_!Kn4apcHES^gwU(J;D(62 z+bt42Yml5g5JNLOb#qxfBN6kulgDMes~dv5~NzLGdRNkxIX$H=g|H=EtO z#Y(L^#9Q6GTra#lRe`=d?j)GIYmn4Dtxd(edyRlR&;SHI#6E^R-kIRMB(e*=w0?~| z=L;dc*qhY6{IFTP+YggGs~t8xM)KOb-2Mf)e9xOa$^QSm(a-`sQ5eKq3x~5h zOI>6NL&SRN8uH#BPWuwwOcd-h)FD~1>xyDvK0`reN7r!68xqOy89z#^ToSq~* zH`E)vO^J%UPhLAMg-3Cth8#)VnDJ1G4-C6(Q}%KRZbi%n5I#=}Cr4-*Q#Ce{Ky zoy@a4asmE3PaGsW-d>G7#Zh^@bYTX)=|i?W{qlgkIkX)-RiDy3qH%>h2IsB3i@H5L zEB%bTvzUH6V$51Q7HpBbS?l<_*;@lVBC$X`w(GAvb9~mk72O2A>Bm()G92(b7j>e$ z2Z)BeMm)47Z5fk1n?e)32?YH+0!i<@#u!4p=ddO`#(FS3 z%oLowz2C*Wa6P3wkBYQB2I?NYT?8n+{>67Z-kpZL_IwkePww(`8#jCIG|g+w`3>0xNfSu2vQWiuEXWHk`%wZmCePw9w_s? zd?-J<0uwbn9q*vK$4Sb&xcN>z=1^(9Nr=uo#8L`9CU+*hm*AN@GhKH(Qf3gmOQ6&| zsW<$)QvkR;cK{DO*#h0XK}r=nMWanTfDPcg4;Tu(#N-z{yhXJ<51#HkDe#Ru1#l_4 zZ9M`!Q+e<_;L<$3OaAmcV%3?u-qy{$nc%s*PY~ZcXA_gWGT4MW1r*Y{$Um3o*%rt-rM~=H$xS?Ux1D~_$b`F zcP1u09hqCZB5ztd+Dsn3xte)A;Z4dsk7dd{th|#v>+dQ(993bwCBe`<3qJU}nWXHx zY%cXY7*jbtEq)xlS>uwsr&WYJR)3*9j}r&HTr8u!d7{p|@_HLQaLJ9lFBhk}D&kJqF;0`T-ZXDsWy;p8hje%?C0>%V9`100;ZOq}t& zq_Idmrk%gL8}b)C;)=OE{1&Uc7>FP|h=YMV%w7e(6Z!Kz{}UlR^@RC503Z=NMlG+r z4tpRx{fHYpI|oTT;zNBr;E~I`GSU@2vq~*I&BYNtJ$913!v7;Yy@z(Y>4*Y5y_NyH ztzWn~$!Wj40>B_V20^5|$@bzrC%e!*$T^$5D>??fLUyjZ2CN>u;BqLugpDw~&3T!; zyvn-BxNNmnF2>_m*aju5jv>n_DS zMk15E4P+I&iU7R4?xY#L+5;fF)DD6?YL5rJVCMn6nMx%+cbetA7)7tUM?u28Em?#- z`Cp5?yt<}5mn~g9Ob38F*^mu9?K7=BIV)MaLJ06Xxo?C#Wz74$j7Mm@2iojBMolri zMv+)No{$7Ry}?#I^w4j-W-oxe&i*aD0;PpKu5VnrImZyZ0O!~|wTKA3iUs()%A(*q z;%hd%1y(XV$6DvSfa&$Tf4mGlg8!mAp-9fWqzz`gBGKx*F>D6BgMt@2iS0Hz(*zE@ zbVN8iQkUGc}~VmeCQsQehuFijBv-CQXUFO~;PBB*aX+K4F18 zozk7W@*qLE#h=JL>jzZ3My>_D;m|-lBZ3t?!f1{=^YFPl{#wDjL_eH6pjE#-g3cej zPh_UNZ&ai_`-(Tbg3{EprA**7~uy!og2Hmab^QMYUZ=M zPtMJ{-Ubl8q+=dEyHdJ4Z|*_7$_}i&-I!TC_2`wm+~`3(O@zEU@b26@u7zPc~=PboXR`4cs~CE9B|tR7Um;N;D^^Mho!>m7?c^Cn_E<(@pWa z+gfzI&mB5EW+0h7Nr{8J{bZTDzmXC=dp9#X{@jW@S-}6i!Q$dNX4v<;_uzoM!mlVj zzQ?z_@}!}=A!g+}T^3rqRL8wMFOxvKin8Ili7XyQd;ah{)3%4lrjxG0vHNBE?MNfqU}*U zUG-Qy!QAn>E|)R9U}2CvW^-V@xhSJN&;$j&oVJ!c?Jm1JVi*)XG!f1`mnHkV8KoLL z>6YL;(34m^3VR7WxI36Ua8xrpRQ3ctE)%u8lPkfz)4y~)hv`i`XXJyttUOJ;Jw*~b z>iCqr0Q2p;nBHqVPA9EA{Db7Y;(l_xRJPB#-69w~2T`j$l6*}&3t=}s7cjWIF>f3^ zl8ei`L6Gjb;icF-olmg3!5a>|su!5N-DMU$8kL1SBRL1W+-L{9Hs_N({eJVj56Yyx zGzC07$*?>uI`t?lm6Aa^!33l`h=qW=S4}>=&S(0&32-AgyxGOO9}tf`4+m*H*p2hNxaKxI z=l}V;3GtG<^HUo@F4!5p62jX&6vYy}CIuY5c7Pi_ z6oP;|Y5bMEz51HGbj*=F?qid@9?WVy#g~dai#1+5Cy=VVI2%MfX53A@{3HpzYeUhz zGG)NK*MW&VU$~yU*|Uf`YcGtvtGoofU}uUv06Aa18{$g4&wkvyM(cAtbu2|ZB#+!X z{vIDW9Vgy8X>ISjMmHQiu$^?fq1Y+C)zmz>64V~NxB^c*XQSx6hAv6G zBzuB9rtHK#OIe~k6%zm9p5pZL<$OSMf5vZ$76x)Y9?16Wne)!g?RPaB>B` zoh(K?!s*Yv{d2#%+6o{%*o@LUiuDgXutNE~E)ixpq!BDUH_mT73GIixG(4R<$Gl{` z%eNW4{A#N_G1iSdyX=*`GKC$z@LgBD(d-2~t2EWTfQyQ|StqQ#FXeu`aY&22eX&J6 z^gUO*6#O^bru&rXO=TNxrBN=%JZ$f#r3GWbhU&# z@HHblz3CP^50~q_kRJHD_?crnuAxx8w;@zJm)A$VGuSjdCTQn7E@8Afm2-1Em1^%h zgIMjm+2OD|bu9C`z*ROpBGOj90-w=Sj*S6lgjdz1Q+418$ zrzF8U@Ff_$uz4aqW>cIzBFCFK;a0RfCy#bJ^vY|zFqDA2c-coh&w*0B0jRFLr5y3R zC};t_2LzxzAC`fd%a1! z>a#w*Smw?=*QUoj%g0?jG&Wg06waqSasdrJk~meoe(4H3)pQNKj=q*W!|(yUSseyF zZvoRhh0)18hl(t`>qtC3CZ>SB9$BconVx?<3<;vVQ1OhqkNp@sN{}GDUG_>lJ^L6v zBX9OP=S+jVXC@E4q?z74uR0_=QhpM=(Zr*?v!f+F&(6iWs{jx^S3H%xw$BqJmIOG>yrFE?AeDmD;1RH!~YMYRPyQ>w2#uBMB;yQks2tGB;A z8`g(B>(M4W>&?VG0!Q>b=Xb(9YKD-!>G!KTTbB|&q4y=cTlMQakVauSdxbkZMcEU* zg>x)BXU9{$3Qk8nTlK5FCmn7)jp?gA;M7aJL{JF5H>m48V)_z13znt4o@K$jveuM5 zJyRJynaRJr|KAQhvf6MxEf}>tIfsHgq`i_n;Hnh7J%fR~lz9I;N@V;xSpA*64|gp* zU^J#XdE`vIwnwA8sfS9tZ$po~nHJ4EAkG;*GUO9H9kH~#0*)ZO{LaO@yHnacyiNBz z*KDIa9=kj|_n+asnV3U7H{4=8>{3@eJltG7l6sXq>7iS^lw0OI>u4E0PLG1Tq_JH* zMgb%|T0;Uo(DvQDz(RVu2}$)jG;RSrsb_~f$M}dmS!Jm_rb?1Je37_0b*9QZnLJ55 z`|}UFQU>lik5vM_F232k(08o78G@BN@&-G+tg6&J%__LN)YnlwMyqH$jmI24ObzHf z4%gnilHrBB2Y7-z@Lv}^*F}pwV79Y7{CK6i0>9|Ho#&Q3I7jb0 zz%9r-jL(ide4l*0Au3wDRB0AH&iB|nM~4wTRFKcR!=iA!heQgzXrux?dBGjMrF#%O zJH-^eS=^C4$zdxz3~L}faIFTtZe&|KsFRetFMY?n7w?cf>%~Gn75B6{YDKxa&X-a> z{raQ4S+AcvaGcjX-H$mtunDZZ+;;*xu>MrL*r3KdIlVr-I+Y>3rfU4W?HRT?g3htL zE^nl~_@dst-Cy#%#QF`r*tuvsRrfNz#pQoIiVEpFg7LjPJ!(X}5+u_(3(-0}kVkjA z6`fSP$CimYC$Or!kYwAu(GHos!}t%o(4S(wkM1WuNp1+e;RAv^kLyD_pkwJfj~`pT z0_bVHT6BlJVO>PL-8S00_xtTTJ3-W?F% z)Q<5ydH5MTJv<3LM0mzLDK1{c?UgjJ;62_}LtBfYS zMqsGCa2Cfr((LIxH_GumJzxSn0C3~Hq8d=U7G5X3^Q$bpVz`yOUaVic-51on8RBod zVIQu#?M5iPrjdfY%EDB)t09OvYFaQ7m00000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000aO400000ajLD&niUtGi#kf8du{mFDZrW|)X=XZa+t_a&ZRc+|JAde8er4TPV#5kQhsb8f$lsE6Z z_PC+EQ1ib#nVRxEx{C$9ivIk(y%N+q{#)HU3uM+j{y)jO+=CH2HF7yTjlqt*=-ZRL z@QDjNyx*=og?U4}*ABWmqINAjHpifwMF{=4qw8A{MVZkUoXI1qQ>r|0*E69=OCjYu&{<*Oi4lBmw2T zliSU@-k+O1{tc!)&{KW^Bnk0E; z*>PLEoXa#lU`<&(*IuVQ$%u@+{D0y*#5}{iLB_H?ts*LG1n-q>ioTa!e*zI9JJnUz<(C*VN6(vdK{ zJ2dw>dq#n~LagIFVle={k`ms+^U( zW`o1Lhj>4{>QKr&-6sG%IogIi&nFN(Dqrn8U;$_qgbLmFZ`i9 znJY)UMq_+DY$%mHrxrxK0Ni4_Qiegii}t^}*=&M40}%Q=n-7(`YU!i9!KFmJBAY?H z+Z7Bvf(U}Vq(D2oJ>EAwC1X&$t~39UOtA~RrViq~ zJrGJf^uoZqy>0rt!(x5BiwS-_7dLl2g4_4J7B!(f;e--BYg4y8`(l7RWPXi2gaXC9 zCK!!8u%&RkZv7WKMq_ilqdot;5X6f-T;}dP;jAmX`=0E(35KD&h4G3!reXlSa^CDa zd`=@eT@dU%u=KtA+9{U)*7cg_XHw6 zJp2YbQr|^9R}C0F!Z`svW2I?53jqE+N9D6SCkN=eCaP6BH+0K9?@0r_0M1Li*DK$= zC{%*GXC?!@JZrbShPE@k!U&nV)dD*_eTGQ9HcbjV+L@TVxtQWRXe@-gSdv1#yEGd- zA`?!#SYu?oq!}x{PY;_qSsa=?bQOHO7r;L}kM;+=lE{R-Y+LNSET+%A%_^Y0U8b}= z8hZ~sod4pxb3)C#TyRdj09U9y9FI9XplEKq1cj`;2viWecH)4%C%KP12EMmE&CykG=d+zi(ad|DhXP=QomQaW^a$Y3X(UxvxBp|q`#ayvtx7b^} zj=s*iv$x~C)#pMy*9mdEbk3PPA$wQ7CrleW(C*8;%lnqQxK1y)C!DstFT1$8XI5Fe zco}9q0Qo&V(~N36TRm7iDa&9y9u*F~Vg<{*)Pv@_GCAG61mNSk4bZkakR1}cS;sxS zt7-^4L{Y4|(&h3z`CJgZ9dLNO za?s#B?Pq|z%Z4mG=bDPUa#o(aqJT!bS}BA(bk>YKXr7fk%krGNn=OjFzTaZJ8(tAS zFegtuz9I%a=GKY}!tIkeHVF+p6lMcFik7RqVaqVR$R;B_IHm!+x$eL_p220j z)c!g>cWgmCxPCCaj(=CY%L#b8L5n@S)NoV0{I+1cn+u&h{M(>BU$Ou_S?)|cR}}F( zMs=UNE_T2?t}weh=TlodC28+FwanPO3T;9=W=gKSLSqd*^5jgs&Z)4xx7-}P-SfaZ z1;0ML>fqiy6my`wVLq|CEpLfDupf)OP;nYOF2o$XC!40cj(;~in{*Pr;H!eXdGcPo zMu88#;h0Cf>;A$#y90(i14@HDov=c@ogbpQ<_0M|($hOU(%48nF&rU0q*aT%sr{$C zL?YumAn_%<@0fc$dBqexB+ie#6HOw#1&b%WO8etHW&fzWAg5@&*UVKsM&-#o87han zLjm@@QxWOBkl?Yq)H%z%{0cj{Z(3%&l02ciS_A++4f(1(GlfdJpt6FzTZgy0WB4LG zptmV z7ko%OWoz=hG_GMgcK;*1p*Uh?j!9S9YL0-pJxS5VM%PTd>Hx5)3)KE?3;U8L>7! zIXD|U97bllZ+~*UzrGi}u&Rc-5V(0fJmnude7;MzzW;H%q!qM0`%;sa#j z_mVKYHBdx6zBL*1@rp1Vf2C0LDQ))V%b& z+nWTu2X7d>{&f4i)e+#lDW(#;j|RXz^?K(#tjvQv?9TVRFEzKk^%y}rX1SfbA>k6e z&znd*FzD#Jj}PWNqJy+NAdH2)lZ+)iW)s^yOqle$llpi(&cZ3Yn_xLS309oETmCRR zk7c8~Kwly}U=A`pYrNG%c8E>$>wiO7y5=9C-x9<76zD2l)|>Ux85DPQ+c;M!Y-OT7h9%0d5^ff=Jzl>!7|{y@Mv#5D>>IZA~iueFL}~C z90xYMn^WgJp~B9*AVW$#eWYT#b%$fTYj-LStkY?|{l^)-doMn_PD_6~0R0*~8nB_f zlk{)9E$4td^!XLLu!nuTC(zwIzGo=BeT$I1xh$bPucyj9D=Klja_vq$ZSayjjc7DH zt1FT`X*gs&9v?+L*m`O^w`1}-$agcXXr>GG~S7Ac23>IUPy8Q4rbry=;fy$+f@ z35qd0sg=gO>zm9xq56M30(u8M6y%vZ{hJ)UF3$`+)8_cR1Mv?!xH>jpu)=JAO< z#vchh@{373MF0po^erpB72h(vbUFsS)QTm%o5L47;R7-}XKG75^`ZH^CMOKN0eH2# zVj;=7Eo#5Jz&ZRpuq3X$D;~i+qz}kEd$f`|p)``bpt9>a&9E=L4s!9jH5yvImGld} zeU9q8*CM$)1bnr;Bn_-Qy6J*D07+E5jw5WmD<>B{-mBa@J&q7P({;}~ReQWUHSPqx zPCpvFycoEn-6A18a@wuD4xx}cy}0hYE={7m)Nu*C9+RTHXWihu{MqBX z`n8=rPVPQE%W}0mXQjcsxY<5DyKf#n$=as8CnzGks!MLXqWb~7c&7h5OXP^WstQ57 zeW*=57%y`?3$Vw#Nq0ubH1q^4H9_&g@NLROi(%N}+-03T&M2QPfQZP=bX z%Z$=HIc=0Y-QXy>AyL3Qd@--P){lw2PCT4E*jY5Z_}R<4WH609qdXkEE(|$5642&6 zqH0q-4pUG(%%1DKNxvC85FB~DPlahah4Cc3_mChvUFFR@XWsL?B3}hNKSPu}RU=!x z0l~#P&SP6THLS+F#>H4W;p|kr*}Sbhv4s!10Ef!EkjAe(@aNsU>#DE3o8SaIM?Xuv zOK#n~xAJnl>guvQPPvvmt%Hs{GMtk=}D!Di~b0HOxGG~ZJ^dm{e3z8%Xv-NE5J zNh3%+Y-3+MS5hfFOHq|ORzi`yk2(iE46^tVe}z9Nijh@0j2D_b$~fM z)4#^N;6s|cFdi?w02P@#vY?~8rL8DE+pvf{0vXjj$}Qi#&1bEOy;`n3x!8NW!d{&_2_Bre z1Bey8n~32&?>f6XS!W@<{$?h;Nj#6Eqq;%MG16|IrdWf~0i2(t+K) zf5x1=R!WDw66(4;d%4^?K@h{aCn6NQB1k^Glu9T(r%fX}Cox++gd?In*T+>niISMR zgbL)mIPA&0IW&tr?cpao1$#8S5Q9Rzff_x$`}P(*UqzF=Y2P_J0H?4#hl3h9j+@Rr znaTgVQ)p^Diz{wAWqA6$eRemzUGYD>4PmD|+Go4X9eq3%l>Y zHBRNb>Oa7|v)cc=W?z}S^8PA3IN%<=27dLs2XNIqko&N_K{au^hD~TZJ57x{YhX@2 z`NSQ(4L}#XkB$PnxIK5feXD!Ci>^Psyv#Q|(eVyE7yU*(TqUVIcaf91?-jH=>f?Dk z4&~^)mp|aViPcj(ep;wJa}7W|yxIx9c~|N@l53zlVyfu7rl2N0!c$7Tyi#R6?sS$r zxc~pVrc!}CU*O~0QiwKLm;LjaBT?Aabi-QcjnTMOW zJH-gS#?Xh*m_O9?4$@iOySl$J&l9B&&qW?5}^V;$JZ-6O05aK`+yWZeS9E2PLI^Pp`)F< zm^4(p8A`vqKq^(_Nfzw9Ckf`esoY?^3-<;*u)mBu zdrG%FCgtipJ(Gewh!vbXA}Me@n>AFr{IcCVo9gvDWEzjV6bQ4s@~(9}-QTG@lC6w9 z{n(AWASXgRq<4R^!nCh*()uc!~rTBY0G!S4s-`$hE)GCp@bzc{~ z;m1}rQdI#vDWg<8GVc<)5Cd>^ymwvjuGqTLQMMq#f z8>q#+`!)$Yj1vqz(@?6sK%mV$!5H(qL||LIGV`;%7td%sf~QD4Y);_1J|lxXdt=GG zbY!GE;;TD66~G<4(~}3i^!MPrU>+Dd)tOa25}6OY1?h)8^ou1sqy_`M#xVmqd72PA zLN>`eWJeu4vyorh^r|AjI`LuF-QlBCEr@t*s-wbnQXA6w5_C1Pt3ed=?bEtq(xF z4p3LT>+zDig&PaK{^Vi2^q`%*1$;HVHqsim*sof=P+5ia`L^~vSS{1MScyWWf-FFndo_VM`OH3m?xoRgnoaHjT9#pry zs)ph`)^(}8#qgxO;UZ1Ejs?%W&{h+?0`|T0 z*fPYrO@&)m>Fiw7`0%dN1w6_Qmvb%0ttf5ZU2N7_C-m>kZ$H0*jilIirjo>U6E zVloFkrMU1rPx2Exgfo=9DeQ^7yd4U>i$h_&`=_?N)u((s@x7kBQqfdAD&R!Cm$*SZ z{5OH(cMLH+73SHzeQR7i{c?`GYjHF^<=`_rs%~jJXe5NY zHA|5^9q3p*c*s(`iZRZ-uZHG43A?4dyV4vyw~dcH4DbHC;^sZPn~MiL51P`ue1}H7 z5*k^&DVwJ|#<{q=o=(}jSH`qEgr7baBM z?r_?>O3(bfn`I!pZY+MfHyboOqu6!4Ue*zx1X4-8B%H@Qbql~dNa7*8E-vOgBeI&hzNy4K5?2(w395QL z60^}f)T{wK^l})x&|PypyZRkG&KK-EoG)cOIDiQ}FAh$;<|p(!r|kec+u9U7Tf{y( z#=r?YT*4(hp?Lzmkh-Qk6hmsfuZ5L4T7nEZM6_2u$Ah6f4&gLCX%3=1M~Q+v)SbaR zM!CAYVW|1JFnzH+FKE*|4XiZ00XOiwZWy>cPa{CQyI!|EV^|ZtW#NUphi-?wu#Lw& zYCsUZw9tn-+-q~ZuWv>?{{fpkLmeKxZnSQ@*`Fjl&^esEc}FQc|1=srUh1^GQZ`q- z7R~{>WMPv$^oxKzlk#u7IWw?45tNs^yUw6HIVn9nQ#J!S3l!SC%2k-U%Je$DuzANj z9ks1vWYaD2YJV687ai<)&jW=j{n z^S%_lHmL?Y9K2n;eQ2CJ#tOQ;z~&>ozzT%C^?PYNL*RzI#!CJ=cxODiiA>kLx3xw* zgaA-G`=D4n;to)}f(B+hnWw3{D`ql0C9?!QCdq}oHZ_VnJ-xBK^cqRJ{#%4R2HLT^ z4-%3(RsIIOP(tXtb4^`3mtYh;<||&k_Pw7xX~cFsW&?~oCR!ssdlV+Tv)TeYJAM^B zl#-viev}|Q_imrOezoSj+Z|FoZz?Uh98cRku#kv6Do9B@esN*F=c>^>zG>h*M0Nx` zxy9JLN6Qtx`GJi*d7uBg{(Jd6RWpLT=7*U)0E&yeP-})f0q^-d%89$YU3auQfjY80 zSt~p}1fW$sq6aBG9ahUbC#$o&do?CJkR94PiH*6uUY0_4nzjp98#$EK1zi;dhmewBl~=R~Tyou#t8aCW`CNaqMVUST}E=0vPJLhMhxT=w<5 zZMzw}aK4T_vmrt}qSUTD*z`C(^lO?t2U&Ew_dGzopexS1P!Hie5NTqj3xL}DoI?VyS9F$)>UEdJAb(;*k+=b)2)KcO+w$%hY+om}@uo=2Lemo^TW;g{s zMh59SG-+SFgmW1@S8L@wn}!iPO+zTWLlT=fcrkiBee=FMs^EJ(eZ~*HyJ7}B@(aP9B*87ag4lgLmIy07D>=tJ_Uj6~P4St$xCFnvM(4OZ!iXq5Hz)YK*CNzAHNX)( zlI$A1nT?q{L{px-y&<{0!mD9CxaGXO-tu0&%N+?lqw0%1a3`QVAVBZD-LopZjix0$ zEa_=G)*S-6%2hc$*B-vRyq~?iY3_q;oS zNul>VvuC!v7Wo&wjOgDx+$X2HP#q_{2C|F1vw4)feAIHh6Y6@rB#gtnIdsdqQ>wYT zz^GX~$s1cda~R^hK+b8qF`p8>TF#I>buRh3X9W{InH^(0ZdX=4Hi#-b8M_NTY6*2a z6|~~J8`hmXrUe5#uUjoV;zxuyA~d`_Z>-xon9)DH$lQQCc2p+ zkO2Sy00000004kL00000000000000000000000000000000000000000000000000 z000000000000000000000000000000000000000000000004kL004kL0000000000 z00000000000000000000000000000000000000000000000000000000000000000 z000000000000000004kL004kL004kL00000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000004kL004kL004kL z004kL000000000000000000000000000000000000000000000000000000000000 z00000000000000000000004kL004kL004kL004kL004kL00000000000000000000 z0000000000000000000000000000000000000000000000000000000004kL004kL z004kL004kL004kL004kL000000000000000000000000000000000000000000000 z0000000000000000000000000004kL004kL004kL004kL004kL004kL004kL00000 z000000000000000000000000000000000000000000000000000000000000004kL z004kL004kL004kL004kL004kL004kL004kL000000000000000000000000000000 z000000000000000000000000000000004kL004kL004kL004kL004kL004kL004kL z004kL004kL0000000000000000000000000000000000000000000000000000000 z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL000000000000000 z00000000000000000000000000000000000004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL0000000000000000000000000000000000000000 z00000004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z0000000000000000000000000000000000000000004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL0000000000000000000000000 z0000000000004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL000000000000000000000000000000004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL0000000000 z000000000000000004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL00000000000000000000004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL000000000000000004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL0000000000004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL00000004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL5C8xG z00000004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL5C8xG00000004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL5C8xG00000004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kLkO2Sy00000004kL000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000004kL004kL00000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000004kL004kL004kL000000000000000000000000000000 z0000000000000000000000000000000000000000000000000000000004kL004kL z004kL004kL0000000000000000000000000000000000000000000000000000000 z0000000000000000000000000004kL004kL004kL004kL004kL000000000000000 z000000000000000000000000000000000000000000000000000000000000004kL z004kL004kL004kL004kL004kL0000000000000000000000000000000000000000 z000000000000000000000000000000004kL004kL004kL004kL004kL004kL004kL z00000000000000000000000000000000000000000000000000000000000000000 z004kL004kL004kL004kL004kL004kL004kL004kL0000000000000000000000000 z00000000000000000000000000000000000004kL004kL004kL004kL004kL004kL z004kL004kL004kL00000000000000000000000000000000000000000000000000 z00000004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL0000000000 z0000000000000000000000000000000000000000004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL00000000000000000000000000000000000 z0000000000004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL0000000000000000000000000000000000000000004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL00000000000000000000 z000000000000000004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL000000000000000000000000000000004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL00000 z00000000000000000000004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL00000000000000000000004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL000000000000000004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL0000000000004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL00000004kL004kL004kL004kL004kL004kL004kL z004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL z5C8xG000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000096100000k}@^CNqmL7KdA}3EC6r3E(i@gt+AcF zFhb@#PloNh;1318d%+64?)`*2Mu~Ae>sX|`2eI+IS#6lS$}|)_2kv&fM5O1uX7Opf zZ}k8@KX#M5@W%+eZ=oYRFukC>J%VpMAk8ehC$-Bw_mB&_VHp;@LNlYh*{C)=Yq2ss zDIm8y{|SaXDF`;bK2aw-h~tO6$HO7KIS7ipW==Xh5M*LJiT*x4+eP0zRW3z4L%ngl zr9Ij_)DCPr)0L4s^{@E63!CY>VUk!pokr8UDEFE>X1=LAsY4Mx5;8A5rjI+kyh!6a z;A9j$c_4JWw7BrR)4{5|ZMmkqM)tG1sy_%l!Z;zkQ$c<_AvW+kdP^WYr%fTf$9Ty* zC8%k=@JW%pyHO22ZVc?aJko@>5J;#zHQ1XxFX+*`OmQMT&x*G?OB-f8M}Is!%nWtA zNy*APZ)N#Bk`qQe)9Nz39pD+f{bw3H87o7)wyFobbzDfh^y{9y0^m-&OAop{sWIuh z3lLbm_`0;Y{nq-tT??MNUcM^3Rs|+KK~O)tCkyGk0g5U*y>(_hCZk`wc+OG0(YtOtLS(<5|sqKPo|7J6v_BI z7oE+!o`teJfKvv%;Nr5pybQoR6U+mu%DciuiQ~{K`lP$43k{<^> z0&*9;bl5t)Le*5fOTJ~iQ0H~LZsJZo^}EMByEHvKP*He2K zSsNKV>o+F64TO#J-)~~>wG7? zaKmxDu&a|i8&?uNa0r;Z;p-Q@AfJT0ve0EY^--ESW>GY~TT?PTxf%62EkT()>rhBM zMJM7rt(nKWw{NGsxR|rN9Njg%1R&zNwi}tehf-F%)*Gz6aUzktc@H)`R1JE%O4s5% zW-2PYP&))YA^|ZxFaQ7m000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z0000000RI300000;0@+HK=JB3jJ9w)$9wI(xsQ(=|{6w%i;g?CgVzEj*s{K|S;ion~uYUt;?H^8DiPxgsCJQL}> zlH-9pe=D858`#6Tw@rw9MZa{%L64DwvLUIQ?ekdM2T~7nNlt?K$O8B}wAWBxe*yJs} z$@CRD3DEGoGI|8OJ9>yb*|KQ8LYMEn``-JzVi74k#a7)rH9_CJ7u)K*pj90_K$gfm za4n%b${PSY4>#evmu{$r+w(WGp=5` z)*B{0&TBEc%TxTjP}Q)!S-_pUA~qyEZh`o`ciP9iyTXJ#9NvdJfy4$p1ZI%Db1JXA zxdxcLy1aqB$E*B2e0lr3Y`*ckC)#_xz2HSU3*jX?VRgW}ROtykaz3m)VmIDA2G1b8 zWl27|N5UdK;00K`gr5MqE0r|7?j+GXg1yqb#8WCgxfO~$@Q^J%;*6R*(54MM*;>84 zB(x;E^C=I!>(*(!fa`0yRhhaxq1+}r#^evZG_KV=kEJZUHQRJMxH`E!HU<*BpD%*E zoXMcP4i|Sk+?LV201AdY9!Sl+^XBNhAMB4je*l*|uTwX?yxc3ib3FvRa@@H(_|&jF z8pRAd8p4;n^fjeBxSqE>nJrj7ALRb;KwZnG3Ff-9SrFr@~^t|A^HmHld zxXJ`Q5}i{$RVyD$T&U z&e?iAh7`3tXLbBL8SF&6?5l;mVy;X)mp~4@G-_5nM#&4kc043Jyp;tz@8e0k?Qokr zbje1$W9gGT52gS;ArX%|cM}CX0#N)rhHXSV8|p(my{eo%n4Awi?@Eijr=A!*HjAG;@b>CF88b4y^0+5F*qeMj1jb-ndGb)t+sx0g#jNDmD?ON>H18h$cr%)I?2?d=zE*)UK@Y^7~-~?2= ztE(zK7Xrn+6+PcO@WX~Y3$9Z<{3}MhqVV-R`}m4H-HNKbr^OOI>;>z*K<6YqYv~8P z;#(IyGRLaBSdDAE*D-%QQ?M#M1?0uLMC*+_?j-NLL!AD+Mh?Nd22G~C(&0V4emi13 zPaDd-y+BU9pbJAhVq$^36B%DU&a1q<;fe{pr|rr+{lq}L6dr{qI}dka#6!P-`t2i1j94D+WVQi8OiZHKmcvLnYMsDY2iz} z5acGkNzza}RE`S0kXC@aTbQ!BW}dz~32L1@59uX5K~T>;>9i!gECG8w%M#nWd>GKX zA)6e$Po5||%o3Tri|akSC0T|%32Ilnvqa0eJHL@UZ==CEnDkFPI1SY={JbTW(yI*%b7mSX( zp5rb&oo9`_hFGS&VosVo%CaH6DH`6pMD<&|ha_!0bGgyH*E1eGq7ccvWAh z9&uv4(pDlnHS7L6Mf5?uppxReYhQ>w3o2|pWaEuIp~R9reQ2J%f;$5{#RWq=dmEX& z4%NB5qRS3EYOyyvSJY~}U8%D>L>{HQT^Ce4{3u|%^=HL9PgRe*0@J0uwU$1;_<5&1 zVz}+Re>Mxe%udg_y*j@;4Z|osbK+yXaQ@0Wz-fQHAz7)sfw$2+&yAuyJiB?j<=UOQ zgzA+$tB&IBRV@P<4R3Ac8SG46hD6=hyAIoS)9T zwW4;sD-01leP*V-OS?b2!ci2xOxWl;W0jS=);7|c4Tj}gPR1}B1Wp3L$ z;)OOmyWEMqqRyMVQv4}Avr0X@4zFLlDUXRf2X%_OW>C30M^eqZ zp<{MDnz)xdbq;bnwTrU3?LCCN1Q$a*h9?F*lo?Sx6`AcjuYr8L!NnoG2TL40rY!8d zZ#=R*Txu6R(iW_{_sPz@w;y^ux<`h*>v=mP81(J z*v&9JxG1|k?X&?pVz8V%vf&-Q?BC%!97fN&iClm>-7=y(+Yx2E5c{jVFzz9}ptnA| zK?xnbLuZA&-K#&lB8l_6i+%?@M5}|kb@uSQDpUYGP^{0o!X#+C#;`xUGw++bN1{_Z z$I~4<72wc3ITsT>6Be2}>kw1C{>H*Q?7C9BA_FbGE#|#DGyw-Zw3$RZQriZ-Pht~0 z(sGcz`An3%@(jDXS+y6uM{Bmc92rGCm&}$to9w_k{j|M14vbK|Rzs&eJZH7Ld&K!W z!4+=2vXcosAT%>PK*xzZxM*EGdBC+iKH#Fen_$1Z>hD9nfTRJv9Q%^IbERlIwVq=< zxiHE+0Ug1-k|?e_0hUd@5C8xG0000000000000000000000000000000000000000 z0000000000000000000000000000000000000000000005C8xG000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z0000000RI300000(#Xv`mDIjGhLy6sDUjkj53l39Ce4{ViZ|;#dj!0@=ocL zM`EWuqSHscWjVV#TV(@18mNxD57#)n^rR;{l*;TpAS)w0e-EQPcjbP(?S=%rf`oRw z?!_WKo5J-v&$R12Ybxuz0fjX^Im@0rrGARM@QNb43Xs`5GVwFJp5;5e`7=U2&_qHy zXUuQBq%i%lF-!}uj z4GWXJr=R~k*GG*!%YL6cS*M}99&0?is-ttfA?{(kq7Dl^QWX=ttv{cpkWc(XEh7N){_d;~M_eYRCL1UmiLi@@)$7$|5 znFJraEngr!Yajo{cV3*yzWg0NN zmuV6_)B_tlA)50$n+Pd9*!Lj3;I@4{h84a%7tbBMun60{#+Ge7$vX8r4sLb4qkx$_ z4kI+Y2i(XzV~Xy(^$WK<{16d5G*$DwV=J6H>j%I)$0b8Nx8Rw)c%<~arYzYz{~i!J zd;+vP)qmZ*E&y6Q;00K``5DK&qJx<`o$ryn8DCnxB4T>Hya!r3`8InzFr-yHL?*qv zJH$#ng&2>#q__*c`863l#$=8>ltsO~!0=$Z8yDw1=gKF&dvdkApZ5d3Ry7g5eu&Gv z zH?4BL5+kZS1Pk6g|Fe?3BGiyNS)UI)0r+yf6G^E%veA}005$%+0IRjU;bx(Eryx9x$Mh4JM8Ye6sR0MLS4-~97Er`R2VWm25&|@S-)hw8`~p2Y0_pqls&mS z8%=;cCN?F!eA1=6LxPe#b8F{2ZZW33sWh-V=32_TuVe|lXODwCWzFln6_&I+hT3#I z_mw`obzKs@-aucxM%RYCT?3iCbP6Oo3>{BAi4an}YE36P3Stwz>IBm~FS$-Teoc5h zM)q>NH{A3(Ph`%#?uUK62C0C&8MZS$%>VxvZ?GuSSI?R*2ezdZ@_F@OT9#a0gVUn1fI*kLt)a*}EUKJ5QseBqk~Flu4yv|1v~-ueR>&s36U9Y5f;2)qX$;)F zbw1j>^cvf{)3hr+RQZU!(C*2+FFU?G{E!2?20Oz!Kk|O^f%U&U&Egik1=r2IAcC{J7MqZ~|274@k3kT-A%r!&H7Zr-fC#y}vv>|d9>*_Amv zLKOr(p)t<9MSj&fm$ojv+19W;l5Xlewp9zgCY~g{&KPsNo}l|XxYgG?QXzf3w||m5 z?j^cAkIyE&-Q&GGh z5Ud8gqZetq8P9<{x6Xz(?E4{+Jd<%>>lh*jWSU6}sdE2hMzP|#zO}m0SFan-DAqd1d#Fh%Y_aNdt{;A?S z!EFY-2@vf(QdJwhv)@iTQ&RUkYbxhDn)DAn3+6Vw;*%4-egE3Ke5fitIRp?r7*5Z; z)a~cIY9#DD>u;|-&VSOopv79eaL$Un`J;5at4#qtR}qsuTf?qAP*y6vZrz$Y?noEB z5__Dx>Iql7vF{zb@<2X4nsO1nxnkqIfrT_ZtHXo5jVrx6qDcq6$Hw(McuDO%LSqiR z_vy4e*A$LCj+4H+*=b5VWeDdxFCL0KdB27{4ktpq)JcZC@S)hd3)7OkQZ(JXM;E5N zxn-9;*>(6k5IGDx`ID?YBM$`_xeb&Hjs3ko&psQdzJ(DFob1_o9l3}+v ztUL_8c`KAWAiS_V=jyCHH$M(LkH>pFHz#8}mLQh8UdgOF6UV8%=wJ!E7^4roL>!Sk z3lDHS4^@%8G`M^`8rBOvoOiammj~Xw=ex$dQ(*Wy8@`h~1>xblP^6o@o>1sK2xptR z0O6;+0D~qxymv&rvO(HBGGstJMjPBbT|G>^l)nKyfL5$L%q;>vMU)9Wyqfd81olz8 z$2omGkKaJNe6xZ)jQAZq9XAR*%oY#5k7PbOV%bYP$QX#c`%$Vq3YgD4Ifx{@8=;N7 z8wmb9AS<@KG0ufN3q$I>F4S5)&7Kjw;0-sOdeR)p2m=Vc5D%dDIuS$Tt)qFZTrRfem17~Qu zNiz$)V@mrwJ#d!1r#q=UwPW|Yl%#Mx1wW*_3WshzCGPjTE+YE7xO4$LH9EjK4cDT)%11l9EzqSr9voOa zc>NG;T9OCV|xj#ld=!TX&=ag?eA>q?JTrp8R3B8s)!Xewd zwdevn869OjhpK=&ZpGs~qTne!8L%w8%Z9N#i|GnH3!GQH*FOq9!Y5w5&?ZK_J+BA6 z*fF5GQhJoT72tHcx7-swjqD0NkVI*_vjhb_PoSebB9!;L(4C>X`_eAef?+XPuW9#4%t;7Dq``hktQ>d)Q0OEc;`v)n#A z&j=~J8|?VG6Fiq5yw6Io2dQfeTAK=@-Ac@2+~fvmzfoTv^e&(odSaaHiKgFfAIq zWonH)-tB_C)=&*S9o`?i267oXgVA_9e45}o4W1>uKHiQz{wsRCo2P8M#Jr@u#aY-q zg281xh$V!(WI(IDoSVKp5C8xG0000000000000000000000000000000000000000 z0000000000000000000000000000000000000000000005C8xG000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z000000096100000?;#w!D=QVfuLf+pjWnt}Ir6@|lxBWBLwEH&7iQ-?8*+O)S;7Lk zlUGMPwTN!KE0pa#(5!L1`BSet@fmSVG7i{{!KZ(DJL+z|Cx+D;v~(y z_|K<2W2ln6!y4|pWkuvXp{%sLGZUb^-Ts8Uo+T$coWM1_j+d%DM^Z(-tAWNm>Sf}* zQ%o(q?@F>fXM43e^hp%FlmYs?9W2{C4#0Cf{#PQr7-NP#>pX@zU5OSv#72+0^MGVL zYujAA#$+!%b$1TC^yPLuZCWzD{k%Y^;ww zegp`-X7>cW+_kbi9%{5a9gIUeKHs#w((^Svj)p0^M%jcsboh_Dree)J;f-cIo!HjA zif{qFxk~A}X)Y8zOW0!cl2nx-*1vTk{Or0PT6?8 zG`fep=B_uq@lXIe8NCZURsYbtqSUCn?3V00-jg9c_RX(60afQa3FtJvg0DI}BId-r z@-^+etE$?()82Tz*<6mhJGZC2X8TjS{c?r8si#pr4uvi}_l1_bJRkr&)2_ulEWa7N z(lcJW`(6>clGr@F*r=+!=^zBW{mPiUhh(a|L^r3rcrY2fxDO>gQ$YhgkeI~0D{kF9 zFlO<)c-*VJ8FW#+|F(`i6f%c9Cp%F*#l9H4Ill0_Jm4<8H<=*4cNTWKpfkWcXL=62 z&E^?74{JR<-20X~10wvq%RYp>V$?>wN28s*<{p(h!dm(|L=x0?n$Wf3mA0rfGvw{Z-+xdRA1O1nn8yCwWQMs?u1 z>NqvLytQvUrcg~gESAl@aAQe5H0%ewqzJS;MsS_G6d^>s`2w;$`S}jLy5FC=C%g2# zM?p2bjNAA;U7J0-raOf^OLEn_6%OCLf(~E24!@~8o>i+nwuhcNp?+z*SuoDKP<_d~ z?1}9>)t?JIUUAqwa_9*>UF$D87YTSgs=M90ZYUtUs&!{O9Q)n89&50?$J9eS_c%qn z+1dBHJ>amrJ`k(C_vHsY{IH+AtaaEsP3nTXmz!QZ3Hl~H{`Mif5Xud^32$|~5C8xG z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000KmY&$0000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000005C8xG00000004kL004kL004kL004kL004kL004kL w004kL004kL004kL004kL004kL004kL004kL004kL004kL004kL0RRC1{~Twms{jB1 literal 0 KcmV+b0RR6000031 diff --git a/test/data_for_tests/embedding/small_gpt2/vocab.json b/test/data_for_tests/embedding/small_gpt2/vocab.json new file mode 100644 index 00000000..8f9feeda --- /dev/null +++ b/test/data_for_tests/embedding/small_gpt2/vocab.json @@ -0,0 +1 @@ +{"\u0120This": 0, "\u0120is": 1, "\u0120a": 2, "\u0120demo": 3, "\u0120sentence": 4, "\u0120another": 5, "\u0120this": 6, "\u0120text": 7, "a": 8, "\u0120model": 9, "\u0120voc": 10, "ab": 11, "<|endoftext|>": 12, "A": 13, "B": 14, "C": 15, "D": 16, "E": 17, "F": 18, "G": 19, "H": 20, "I": 21, "J": 22, "K": 23, "L": 24, "M": 25, "N": 26, "O": 27, "P": 28, "Q": 29, "R": 30, "S": 31, "T": 32, "U": 33, "V": 34, "W": 35, "X": 36, "Y": 37, "Z": 38, "b": 39, "c": 40, "d": 41, "e": 42, "f": 43, "g": 44, "h": 45, "i": 46, "j": 47, "k": 48, "l": 49, "m": 50, "n": 51, "o": 52, "p": 53, "q": 54, "r": 55, "s": 56, "t": 57, "u": 58, "v": 59, "w": 60, "x": 61, "y": 62, "z": 63} \ No newline at end of file diff --git a/test/data_for_tests/embedding/small_roberta/config.json b/test/data_for_tests/embedding/small_roberta/config.json new file mode 100644 index 00000000..4814927b --- /dev/null +++ b/test/data_for_tests/embedding/small_roberta/config.json @@ -0,0 +1 @@ +{"architectures": ["RobertaForMaskedLM"], "attention_probs_dropout_prob": 0.1, "finetuning_task": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 16, "initializer_range": 0.02, "intermediate_size": 20, "layer_norm_eps": 1e-05, "max_position_embeddings": 20, "num_attention_heads": 4, "num_hidden_layers": 2, "num_labels": 2, "output_attentions": false, "output_hidden_states": false, "torchscript": false, "type_vocab_size": 1, "vocab_size": 68} \ No newline at end of file diff --git a/test/data_for_tests/embedding/small_roberta/merges.txt b/test/data_for_tests/embedding/small_roberta/merges.txt new file mode 100644 index 00000000..2af8d178 --- /dev/null +++ b/test/data_for_tests/embedding/small_roberta/merges.txt @@ -0,0 +1,39 @@ +#version: tiny +a b +c e +e l +e m +e n +en ce +en t +h e +he r +i s +o c +o d +o t +ot her +x t +Ġ T +Ġ a +Ġ d +Ġ is +Ġ m +Ġ s +Ġ t +Ġ v +ĠT h +ĠTh is +Ġa n +Ġan other +Ġd em +Ġdem o +Ġm od +Ġmod el +Ġs ent +Ġsent ence +Ġt e +Ġt h +Ġte xt +Ġth is +Ġv oc diff --git a/test/data_for_tests/embedding/small_roberta/small_pytorch_model.bin b/test/data_for_tests/embedding/small_roberta/small_pytorch_model.bin new file mode 100644 index 0000000000000000000000000000000000000000..73282346e7efbf48855b12c48dbce9191cbd36f5 GIT binary patch literal 29928 zcmVV?E0Zr)xSPcLG0BmV=bZli`Wo~3?VQz5(h*$~$004A(aAjX}X?kUIaRYsE1SnVq z0001UXm4_KaRo~PSOWk60BLS?aRy5SSOfq70Bmn=XK@Eh1a);TfC6JZ*pU3E?;$YX>4-}Uvgz)b!lv5Uvy<|b8m8Ab}|Za11Kn12LJ#7 zb98TVVP|D=1Y>k>a${%;Mr?0kbW?P1a$#p>3ULKk4*&oFF*GnXI506cI59UhGBYx9 z23P|C003ifb#VtxKm<;7aR^aM082zm5QcFHOAt!|hH(msXaFfvaSL>D3{r6oSS0`e z0A+1rWn^S&ZfA2YaBp*IbZKvHUuA7#Wn^S&ZfA2YcV%g3XmoK7XaguHXar~lSPuXI z05LQ$HaIXbH#jmfH!?9caSvz*O+W!oba4<-O8`q0OAv-}5lawD0fuoBiD&>RQgIV> zaTHQ<6<8+#003oeVr67xX>Mn8E_82eWo}<|d2nT4Wo=?*WMpY>XLBxhWoc(XLBx0VR>b8PH%E;E_Y>VXJ~YB9%ut7 zC};#|1y~ON001#GFg7?aF*i9iFgY+cGI1Yh2TKr6ba5b2O8`p{g>fNE0fliQiD&>R zQgI`6aU@c4C0H2%003oeVr67xX>Mn8E=*y0WpYk$a&0bRX<>75CTIgFC};#|1y~ON z001#GFg7?aF*i3kI5#mhGI1wp2TKr6ba5zAO8`p{g>flM0fliYiD&>RQgJJEaV%1C zEm$i6003ofV{c?-axQFPd1Z1gFfL(qbY*UIX>V>Wb7gF1E^&2ba(OOyWoc(saXCu?g>gEGXaFfvaXWNzJW_EzSSbJi0A+4tZ)9b1E^J|WWpXYsE@5RQgK6caYRyaMOY^Q003ofV{c?-axQFP zd1Z1gFfL(qbY*UIX>V>Wb7gF1E^B3ZE@Ek6b8$v!11KnH1ZV|V4*&oFF*GnXI506c zH8V3gH!(7CM`#C25KeS)NKs1wOAv)|NlO8RaY~7304Y*&OLTEeQgKaKD*ylhWo~0{ zWMy(LY+-q2axO3~VRUq5ZggpHZZ30WY-TQYVQh6}E_Y>VXJ~YBPG|!tC};#|1y~ON z001#GFg7?aF*h|cGdVaoIB`#C2TcG0PIPflQA+?z5K9n-aZyVUO96&)Qi*5)DN=D$ zba7NtaaC9;0001GZewp`WpXZTVR>b8E-)@(baZ8IbZKvHE^}pUW-fMNY;|QWVrgM> zaaL#pC@5$IXa!gg0000nG%z+eFflhaFg7+ZGB|NpXa`FWPIPftQA+?z5QTABO96#( zT8U@?DN=D;ba7l#aa~v~0001GZewp`WpXZTVR>b8E-)@(baZ8IbZKvHE^l>oaCLMp zWMyu1WiEGRX=iA3ab9QxC@5$IXa!gg0000nG%z+eFflhZGc+(VH!^WwXa`LI0Zw#r zU{Ol|OAt#ChH+s_5K94uabk&R04Y*&V{~z3QgLNiD*ylhWo~0{WMy(LY+-q2axO3~ zVRUq5ZggpHZZ275W@rN_C};#|1y~ON001#GFg7?aF*h|c zG&43iHgRWY2TKr6ba7}=O8`p{g>h+10fljDiD&>RQgLf^acoj?ZCEh?003ofV{c?- zaxQFPd1Z1gFfL(qbY*UIX>V>WZ*_EVb#yLFVR>b8PH%E;E_Y>VXJ~YBZfFB2C};#| z1y~ON001#GFg7?aF*h|cH8wXeG;wce2TKr6ba8M|O8`p{g>i990fljLiD&>RQgL&1 zadc8~byzO|003ofV{c?-axQFPd1Z1gFfL(qbY*UIX>V>WZ*_EVb#yLFVR>b8PH%E; zE@Ek6b8&WP11KnH1ZV|V4*&oFF*GnXI506cH8V9fI5;qIcW4Jo5KeS)cu`9LOAv)| zc}oF>ae9ep04Y*&dvtMpQgMA)DF6TfWo~0{WMy(LY+-q2axO3~X>N37a&2W~X<>9_ zE@WkHb7d}fWoc(*ZSSJ7g0A+4tZ)9b1E^J|WWpXYs zE@^IbWpZt0WNBe^WiDi8ZgXWWVrgM>afWCEC@5$IXa!gg0000nG%z+eFflhZGd40f zG&pgGXa`FaPIPgIQA+?z6oqk#O96#(iiv0dDN=EZba9MQagA6b0001GZewp`WpXZT zVR>b8E-)@{b#!obbS`9NZgXWWcV%g3XmoLoXaguHXar~lSPuXI05LQ$HaIXbH#IXh zGch(eagS&RO+W!oba9YTO8`p{OB9B2kxLXy0fupsiD&>RQgM@Xag75mS_VgC};#|1y~ON001#GFg7?a zF*h|cHZwRfG;x<`2TKr6ba9wbO8`p{g>jin0fljziD&>RQgNGfahy_domeLT003of zV{c?-axQFPd1Z1gFfMO(bZ~WaE=*y0WpYk$a&0bmWoc((^bWo~0{WMy(LY+-q2axO3~Z*_EVb#yLFVR>b8PH%E;E@Ek6b8)6<11KnH1ZV|V z4*&oFF*GnXI506cH8VCeGdMJHr)URD5KeS)s8LG*OAv)|sY?NcajJ=E04Y*&t8{U! zQgN+VD*ylhWo~0{WMy(LY+-q2axO70VRUq5ZggpHZZ30WY-TQTb!BpSE_Y>VXJ~YB zu4n@&C};#|1y~ON001#GFg7?aF*h|cHZ(UdG;yzJ2TcG0PIPgwQA+?z5K9n-aj{Df zO96&)vWaK_DN=E>baAv&akW?}0001GZewp`WpXZTVR>b8E-@})baZ8IbZKvHE^}pU zW-f7cWpa5gVrgM>akgj!C@5$IXa!gg0000nG%z+eFflhZGd46hI52UyXa`FWPIPg& zQA+?z5QTBMO96#(x`}82DN=E}baA{=alKe60001GZewp`WpXZTVR>b8E-@})baZ8I zbZKvHE^}pUW-e=Gc`kQlX=iA3alU8+C@5$IXa!gg0000nG%z+eFflhZGd49aH8yd- zXa`LI0Zw#rz)?#8OAt#ChH=455K94ual(mc04Y*&!*p@PQgOvtCjbBdWo~0{WMy(L zY+-q2axO70VRUq5ZggpHZZ30WY-TQNWqB@QX<>75#%Kd5C};#|1y~ON001#GFg7?a zF*h|cH!?FdGI7Uf2TKr6baBX0O8`p{g>lJC0flkOiD&>RQgO?4am-S2%~&e{003of zV{c?-axQFPd1Z1gF)m?rbY*UIX>V>Wb7gF1E_PvTb!9GhWoc(saoI}& zg>l-6XaFfvaocop+){DfSSRQgP#SapY2QV>WZ*_EVb#yLdWo~n2E@Ek6b8+Tq11KnH1ZV|V4*&oFF*GnXI506c zH8VIgIW#nJ=V%8@5KeS)=ut}mOAv)|=}Q5Haq5X^04Y*&>vVDKQgQ8AF#rGnWo~0{ zWMy(LY+-q2axO70VRUq5ZggpHZZ275_GkkrC};#|1y~ON001#GFg7?aF*h|cI5;*nHgWf82TKr6baD7mO8`p{ zg>m^y0flk;iD&>RQgQoqar{zo{a7gg003ofV{c?-axQFPd1Z1gF)nFtbY*gFWn^h# zbY(7NWo~n2E_Y>VXJ~YB{%8XzC};#|1y~ON001#GFg7?aF*h|cI5{vhFmeBA2Tec$ zPIPhr0RR9|O8`q0OAv-~0RaF2OAt!|hH?S{004<-04Y*(0|5X4baDg%002^Q1pxp6 zSSJ7g0A+4tZ)9b1E^J|WWpXYtE@^IbWpZt0WNBe^WiDi8ZgXWWVrgM>as~ka0B8d! zC};#|1y~ON001#GFg7?aF*h|cIW##rGI9q2003wQOB7CYatHwc08vW-OB9822>}2A zO96#)3IPBBiD&>RQgRCc004Ay3;_TDQgRIe003Ac0001GZewp`WpXZTVR>b8E-@}| zb#!obbS`9NZgXWWcV%g3XmoN80RRAK11KnH1ZV|V4*&oFF*GnXI506cH8VLiF*Z1I z4*>uGXa`L|0Zw#s5CH%HQA+?z5K9z>auERl081200furC0RRArXaFfvauWdn0CaK` z0RR9}auopp09YXa003ofV{c?-axQFPd1Z1gF)nX)bZ~WaE@WkHb7d}KX<>7676AYN zXaguHXar~lSPuXI05LQ$HaIXbH#IXkH8V6cau)#r0B8qG5KeS*7y$qPQA+?z5QTCX z0RR9?0fllJ0RRArXaFfvavK2v0CaL30RR9}avcEx09Ypg003ofV{c?-axQFPd1Z1g zF)nX)bZ~WaE=*y0WpYk$a&0bmWoc(sav=c#080Udav}i$0EuV-DN=GH0RRAW zawGu&08(-#0RRA4B>(^bWo~0{WMy(LY+-q2axO70Z*_EVb#yLFVR>b8PH%E;E@Ek6 zb8;pD003wMC@5$IXa!gg0000nG%z+eFflhZG%zsaw!1-080Udaw-7;0EuV-DN=GP0RRAWax4J=08(--0RRA46951JaBpvHWpXZL zWo~n2E_Y>VXJ~YCE&%`lXaguHXar~lSPuXI05LQ$HaIXbH#IacH#IXhaxVb@0B8qI z00B;Paxeh^08vW-OAt#ChH^0h002u6O96&*G64VpiD&>RQgSl^004AyGywnrQgSr` z003AK0001RZ*Od6axP?LZgXWWVrgM>ay9_~0B8d!C};#|1y~ON001#GFg7?aF*h|d zFgG_bGIBQo003wQOAtRQgS;1004Ay zJOKazQgS^3004D;ay|h709XkC003WYWprU=VRT_~KLG#$XaFfvazFt904P`h0001T zK>+{&eR4tp003AA0001XWpZb8E--Rb0RRAfa#aBU0BS=4002t? zb66Pw003ofV{c?-axQFPd1Z1gFfL(qbY*UIX>V?FRsjG2eR5X;003%30RR9?0drU$ z0001GZewp`WpXZTVR>b8E-)@(baZ8IbZKvHE^}pUW^z~o004b*Spfh5YC{14080UL zSR?=d0A+4tZ)9b1E^J|WWpXYsE@5b8E-)@(baZ8IbZKvHE^}pUW-fMN zY;|RFUI73AeR5v`003%30RR9?0drU;0001GZewp`WpXZTVR>b8E-)@(baZ8IbZKvH zE^}pUW-erMZ*XsQbaG$;004b*VF3UDYC{14080ULSReoZ0A+4tZ)9b1E^J|WWpXYs zE@5b8E-)@(baZ8IbZKvHE^l>oaCLMpOksIta!zk@ZE|J-004b*X8`~J zYC{14080ULSSSDh0A+4tZ)9b1E^J|WWpXYsE@5b8E-)@{b#!ob zbaHM1004b*Zvg-RYC{14080ULSR4QV0A+4tZ)9b1E^J|WWpXYsE^l>oaCLMpWMyu1 zWpZ!<004b*aRC4TYC{14080ULSReoZ0A+4tZ)9b1E^J|WWpXYsE^l>oaCLMpOksIt za!zk@ZE|t}004b*a{&MVYC{14080ULSRMcX0A+4tZ)9b1E^J|WWpXYsE^l>oaCLMp zWO8qCZ*_EXbO8VWeR6dH003%30RR9?0drUn0001GZewp`WpXZTVR>b8E-`X;0RRAf za(4j$0BS=4002t?b66Pw003ofV{c?-axQFPd1Z1gF)m?rbY*UIX>V?FcmV(aeR6pL z003%30RR9?0drU$0001GZewp`WpXZTVR>b8E-@})baZ8IbZKvHE^}pUW^#G~004b* zdjS9dYC{14080ULSR?=d0A+4tZ)9b1E^J|WWpXYtE@5b8E-@})baZ8I zbZKvHE^}pUW-fMNY;|RFfB^sieR6>T003%30RR9?0drU;0001GZewp`WpXZTVR>b8 zE-@})baZ8IbZKvHE^}pUW-erMZ*XsQbaH|L004b*g8={lYC{14080ULSReoZ0A+4t zZ)9b1E^J|WWpXYtE@5b8E-@})baZ8IbZKvHE^l>oaCLMpOksIta!zk@ zZE}bK004b*i2(orYC{14080ULSSSDh0A+4tZ)9b1E^J|WWpXYtE@5b8E-@}|b#!obbaIdZ004b*kpTbzYC{14080ULSR4QV0A+4tZ)9b1E^J|WWpXYt zE^l>oaCLMpWMyu1Wpa`M004b*lK}t#YC{14080ULSReoZ0A+4tZ)9b1E^J|WWpXYt zE^l>oaCLMpOksIta!zk@ZE}q<%YC{14080ULSRMcX0A+4tZ)9b1E^J|W zWpXYtE^l>oaCLMpWO8qCZ*_EXmH_|&eR7up003%30RR9?0drUe0001RZ*Od6a&njf z004b*nE?O*YC{14080ULSPTFF0B~<_Y-MsTWMyu1WpbJU004b*n*jg-YC{14080UL zSP=jK0B~<_Y-MsTVPkY@c42gBZ*Fp&0RRAfa-9JH0BS=4002t?b9HlKE`S1EaR4Y- z4*&oFF*GnXI506cH8U|eGB7Z40ayiO{>^>jk~LIhZ^i z8VEgCCFHvjfz~{aaf!S55)wUll1aSht_i$Zivhji@Yp-8r zStvUbT$#Mnb%8ru6cN3TTiClzn*zOtioLt{am_qlLUp>ri;p^ELH;@iog_Sqp4>Nd zJJ`G_gCx5PJ14y+C*V4TxW&8=R|h>rkFq?)NJ6~p#{oT92co}fsZy%M}ulB+y& zP`JAQPXxUNdU`v3{tZ0RFEqS%;F>yQ{=GZG58=Gz;!wO$k_SA+Njg1rNsqfY+OfPx zlC-;GiIlrj98Nv?3bH%rJlMN^F!4NCRE)e?qT9Uk+=M(6gDpF7kq)}NF;Kjjdq%t< zEUmnNwv#*pA9uT?s{y=tC)&L8tqMF~bXz-Rtv$PYVqCk)@dZ58Y8yNz3qQQH`Mx|( z$oe=&JgmGS){i`;7RkGkmPR}U;Xk}Nqi4GX%1k`BDHFYOh9kR*Q^GtM6tFx^Y^*z2 zjYd3V2ot@c=QF(5kd2qDh9pL=99e0?ufh{`HVb@TB^GQ;yb&}ywE)0 z2?x9+6d<}EO^v#XrJ20D+`hbLE74E#RTavpsJ6Sxd6qr0-8@{}Yc8NS1h!4Gr z&hWe7x|6(SKO#J1#R9w#@&G-V$?il^vJq2trxshiU&P!eB?V{{E58BcE`IVjlH<4i0wLj2`@bo zn0CEI;W53}Q?fh~(8N6BxCK1Vcz`@?5!5_B=K4H}#nHTK5SF~nX2Cj1w_3c@)W5uU z-srnqN|d{=9ag+RX(>Gi{)xP(+=4to5pKMHdjhF^ zvogHbuPRCza>0| zBc8lT=`g$_1cy1oNqxJ*bK|>~;}N`23Jg8mLxsE({93%3F-km_cWaDqvLU_gdr3Vt zcm=(3v7Nm4l>d_vW1p^!+=ERwX>R zU$47Dv9dfA-;+EdMDRL&+337Xd6>K~2&=r_ZzsHS8e+VZF~z(Q2M0TM$)G$~#mu~q zvYI?)>TA35mLR>FGa$Uj&Aq&5h@L!0mcu(4h-|qd2n0Q3zzIDIA!0oBcM&|s%(Fak zBayq_TXHI9oh$%jG=ozco6q=)1d)>aaXT61h8xz^%LwDGEFT`f9xXK~g#6qkKFY zMwz@4@!7krypcPSlG{91kR3cP^2j<4T@<-4h`YSZS(QAk+7vzMS|L0FCHTBGVzN4& zMq0cg?QT55y6iiYwnROY+GabKpwc{F=Y%}ZFBLsy-Ltw+{q{RvUMsw?Z4NzU@q4_) zI0U>`-;6xeKvO)@BaS(wgx)&>?8`hf2?0H`DkD5<^tU`m@gln|8YeuG6&$^)F&aFA z3oJWt3)(t$26jA4pP{_PcX>QjrHDKn`7^y(6B0Z|HzB>os1H33D#pB0aGp6(4Ng1U z_Ru_@tGGOnsLi~PBxbx53Vgikf5$vr+C02aHI_UcyP&*F()_!1F7mvw(xJP4?bE!< z0;oIgI+46}I}klKOBcKQsUbTV3ZpzVyaPK&FsVC7*wH&f3+_9sYq-3fCq6t9ueH0$ z7pFWj=$JfN)bu+qZ{xf-P>Q)o10TIN?ZUhJY??egCCNOyUn)FAqBT6uil?{UNi#bT z00000000000000000000000000000000000000000000000000000000000000000 z000000000000000000000000G00000000000DwOL0DwOL0DwOL0DwOL0DwOL0DwOL z0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOb000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z000000000$0RR910001M@2orob&xxSP(r+vQ}#TfW3oI)R4+SZUf;ZZ`XW4R1K2!2 zN*6tbKv2BW*Zw;N^ZdLZy}Ud#*fYE@c)C1hpxwNDk*++mVSc;w&!9O1p~E~xB2~QL zAC5c^@tr&iO6d>m@yS z1QfhZ(+@lccqY9sChWT-H5R<}Pj5VbTLQcrVf?y6WS6`Ys-C>W#W_7hz&bp+*VQ{$ zr5U`?%O1Rtd~CeyILbU+B7?lP?x?!T@d>+XmF2vNe51S`V6{BUMp?Yd!L7UMQyaXe zUAR0oQgpma?N2+~RL#4BDiJ*R{7pUS-u66U>Y2RTdC$DmsVO*Ig#kU?S~t806>2;s z%2B+z)vdfhlykY|6r(&?qv|^)BiOtfs46_(V4*t_-v7LKaU;DPU)8(<#~?i{;cz_p z-K9KTwkEy9#|pj1DB-+Alp{RJ`C&Y#0x&wKmO{JO>Ak#6FAKXbbxge-LYKTrq{BSk zciuaFoYvdR|mcH zMIF3g{1LpgvbsA9icmX&_w>BkLk_#01dKZ2-z~gC3QRoezLmTSwH`fc-I=^q%YwWK zer!AMfs(w>MdZA9qLDlxhAKQeMU6b7aNs&{$%i~aJz=~8&_BFVzX83)v(G$zs3JXl zGTb}jIrF*_usOW5bRWG3!d^RVe84-nrK`NV6g54h6XLv0nu9z~DBwF$YnnXChrv8b zBcQvg+~~RxYL7fu-kH2>2lKn23@*J4Lv1{l&J#TZIuE>%)-*g&(k;9U<=8tE;ubtl zeg(amudX`pKrJ~GaE`nI<}bW%P4PVFY7)Cym99Ldh6FuI$L%|ktj4>AHfuezv#LAL z?$tX>;b=St*0a2xO&mPkQFy%2IFP&d7Xv+O0Rg-OUT3`Bd(ONnRpq)DN9?=%JC{5# z`M*4j59qvURu(-{vW7gsvT3?G5ZSyNZ2mimfZ@DU4!OI~SfRXS9=kk~S-!g@h!woC zHyF4|#?ibI3IaX&@#4J4xR*OPnsYpGNl3g7q@28hM2S2s@_szZTJt(rXoS2ThPb?j zV6D1@{=z)aV2(Taf-=3?ayz_4@K-#OVvsykFhx8>eq+2Cyb2U7an{~RzBwaj{U>7`FIR-qByyv=UJBPTQpxiokstY_yE$Y04AD%o}4Jkal z0W7@5e}gASpBgBiR@J&QXlbb`DIOD4SmSMof4kAytzJLbF* zxfncrn~pmmo)WxsGPOK%6H`2tfE&A%-vzy*EnvKbuQI)96k)vd$k04%eO@~gt@ONZ zZo9gB=F7aWFK0XahTuF#jr}|6#5cYB7nMBTd<;9>94%K39CCB z?$W#_d5AnqF`YY7E)hL^@ix2M&A_~!ol3iwiVHpUEXh0qu_nCO!n!;Tk|4eA%bYyD zz4ki}^Pam?haSDgoxwW~O>4YYToXNwl*Bw%H!eJ~0nQKma?p|d+c!3jH0 z8PPnz&wf16s?a-%V7xr($^bkw9_qXkjFJc<}*DxOX51bN(;Ql=P$h}RfIf-`x`t)#F)E*yUM)# zO~1TGUtYX#Bgi}38@arlpJhBaUcNkGM7=xgj$FBEyth1GmkK>OcLP1y8j!n!OWixl zQPn#PaCy4~#IC%quH-ydJ+wT2)QCH)8}~eh6m=`@4IFh?X9y7bx zo6ft*T`j!QoSHl#hRi%N&HcPiRf4?Y)9O5eiE2DaOOrg%^2@vZVhcS9DvP|gnWDUN z^hP{yIDkCIgAY9>E0nq*&$K*x!ic-|#MQjpR@b}Vl^DH9Gz+~dlnT3Ys{lKx4xqcT z65hO~)lIyD@1neBXOz5Bsg1h>85lh&E2BK@+2uRQcE-ACPlY_bgNi()E}1&DMYuWz zcp$t)(@wimDg-<8{4~6(xsbXS7uh@yo!2`~rl36L_zk=l@`5}actJbY^=mxxJcK(s zy(2u`81THf8cjUgT_8OHn>{>dG)=tbwePyg&%eA^$GSXq4*feg8SOD4SQIb*ywtB$r-d^oP7~>rFjN zoVU9E{sFv8A{{*~#ASXaPK=oUJ@dLOZ;vlkL0W<~O`DB?-I5{{1_%h>pAmLB6}=t(-b5E1jrhQzybheW%@L8&{*DtWwADtA2w_dPr|bT7O2t4KSWa%Md1zY07+N_)Kg ze2}~*I`}%CIGwpmX<9r7ivPTIQN_G9pl3Xu{TjRzP0cyLOtie%s=~Z|rz<;RGm<_)R)Hi$y)P zn;twn`s6%=avVGjp@usakd8aW{Lnll3fa8g{2IDI#;80qbJ#n+oWneC@AWtF_Nc-^{WZX`Ule-6D>Ve32hW%|1nPu0Azj?O!RB$d1X zKHj|U;n}>iC(=A4Gn>2|K~KD|PUXA;Nku!soL;*mHNLyBBi_2yM;^UhP@%h$&-j+0pvWu8F{>`ofSI* ztC2f$|G+$9dO*8A16Vv{63jflT{=6Gr0+Y>xnzPH1@oe(M~+7v2nXR zBfYz4C+s`R0mQt_=#RV^8XG%?V2->UORBrZ8TGuN9+SNAK;FE86vVt)O&2^{B85Ea zNUu7w{<6CxVUj#Ef_1zCFrmErC(OGkexW?Qq~JT;rl-8PxsE($w-~%m1{yr=GO|2? zQ0}{z*_u238W=ioA=5kg-#Wb2duzP<8iKr3XnwrGnZ-Nxg~Gh!i;_HS2=KgJ{9`-s z#t1weHvPP>Y-BtXc9Azzoh-bVM~ge_%*i{BMXfwS6tcVqz4N?B7@WMs5mq|~VH7+@ zm&-f>Jqf%x=t8~2mTbI4`i8qNaW}h}_NO}gYmYoV*CV_X3d}nxf8;#=;*Y%N3QN5A z^Ljj$0tLMrn1DPLx}&@xd8)kltiC*^eapQ3(yct*kTty$dIUVeP!2uQR);*NyK}lO zZiqZHcs0CYAw)fFJmEaHstr0bKPx<5T~MPodnQXjpWtTnn8pC3K9Wp=!mag#f0-6gwYvyrA1X0 zod-N8dUm{Af9O2*p6k3~k7>N?P-;8Z8ic!w@u)k8Iv2f(FfF}rCc(U7f)c!rw!u6r zDBHW4@hCfzy~4Xh1DU+^QVBc|0000000000000000000000000000000000000000 z000000000000000000000000000000000000000000000000000RR9100020XQny3 zjdi?~5!yU?@Q=K7VPZRi{B65r?us~bH9>gl_L92PyNU{pEbmk_&Xgcm(W zI90n(Ltnfz`oO#}R-e1odCocv+333i6a&1@SbaRzh+#Zw?+d-?5CgngV4OQvtEIff zir~ECNbWjLz)C%=JeRv`Z-TolQ0YAB#T-1{(W1KqgJry!*C0JBMCd%KTe-ad_XoX@ zc91+y9~-@rcAUE6{$e^wt>ipTT+=*)U%NX+dvLsymD#(CqJ2D2;5j@j2+ccX5%9cz zO0GP7v`D-s0ew5vxUW0#>b|)(o!UGpu(-VNd1pKiKf*jOmZZC(NjW{w?6A8%B9^>C zMUy)`(Ud&L&~&_c*#$kTu|YdrozXkQq=LFhsd77y^a#Bk#6&!kpe()Vi~PLMxD&i6 za|yi?h1R^*DbEJj;OnL6^gw49I3k%Qjok`rj9%v71O+T@dv!+``JAAkxD!{ z0D`-h2Ln7n8s)kIelEPccE!1wT_ieSv)enx@_9VIhz+`=kjuPH@+dr#*nvE<`~KFGw(b;Di6C4=u|uxc8k2A zw==t^d>K60|ChYCzDheiI?XzdP~<$|f<(IRqanQ*y>2|&d%V2wPdU9IZali*7m_?! zbT>VF`v^NQ%&WV##7{itq=CGrVF*3{p$5Epl8QX%)uFrx*Pl8~6eqm4n=U-9c7VH2 zW(T~F{!_dK-uApazPr34ZFfCY2>QHKHl#cLV>~=6=b}0tg5SDypGCZ0(Y!lt6`;E! zJBqx1Dv3EtsJ*+gu$8qUSsf z=fS)Z3iZ4fWURao3!%JMaYH@crU^afWCJ}z)Resb4?;ZsF*3b@Wb?ZM&G@^MZ=5`2 zkgYttaD%)mgGxMkri8ozlm~lTs;wC&mg1x*XU5C5rvF*Isdh0wg z@0mQ~N$$8)E1$fQ)Zn~oPz5}!`FA`*e_1-oII}wt0000000000000000000000000 z00000000000000000000000000000000000000000000000000000000000000000 z0RR910002ZO`tk>IApwabD_LO&>y`iMb$j3Z{fT;shqrmt<^j=laf5EftS3OFT6YM zs0cls4+A{FiDJB0?PR+tmn4Dqp-2QKLJ>UidqQv&g$- z{Lj2{j_^C}%@RF%a$Pw2S022)J&8OW>%F|x?Fzkon0`D3^c}nI)hj(~(uBO%WqG`d zHg`LzwZ6Q0#j(0B>+C#X;%zz*wP-vW#lXBvH#Iz@(c!xo6w5rdPR+Y`RSrFb28lZ) z2qL`jE;zgdIS0C#0xvvjL?pbEEdV?{ zRQ)*0%l$jE`pG*`U(vjZmz%qQ)Au_{Ok6y4alO2m`H;L}0L!~n%DX!AqS8F1fkwLb z%aT0D$7(!Rt027az7f1e6>`1!o8~(YSarQ?d?q}cYrj0OzUaIQqpCb*AO$@>y3{*I z6Fog^G7&r8=V3f&Ag{Yekn=foI1N2L*NHphX6-r&cQU+&(5^dAmXN$EBjCCee1JTP z>%%-(-08fN6xO^?z6reVI?X)Fv0OZ0dlfqgj&3}88dAI1&tN=Lfl|A@#RR>5DG5WX8PkyllOJYDc^?#8$hK zb`(7#<7~R24*ok!{wzBMQaC!&NIX0_6x%#JHOMjM3 zDT}e$2TbVgS65G)%oMt-ic2 z*8RM1B#66wWyw1PueUt5M5Vm{O&Yy~;v~ET`VG95 z%w9V_9pF3ph44Hj2g^K^GK@SM;BvbsF*m%cR;IkPs3E*{&%-$}kP^BO0000000000 z00000000000000000000000000000000000000000000000000000000000000000 z0000000000000000RR910002KjS;-q))YHls8PHJ%<{XmR`$D!n<2gZxo*5p?(n=1 zWs1B8Inz8#U8X!Q6p_5`fVRB%6pg&}*9N`812j9*xT!ql^w&Ht$fY~h?vT8cQp7y{ z0u;KRNs&Ab_{2J=>cl#RcA+}SeV#n^5|%q#Ursu&-Xp#FSg$3WtKmAPT1z=D zT~fTttC2bz`ZhdMSlPNDw}ZSe#)v$IkEc8x_ntiG37kBiHjg~vCUU#x3Ol^1nsvNL zIgdP<%w4=e*s8nG1;IOFhe$jy{Rg^65EZ?T;^aFQ%LctSSAx=DjG7!5@mef1R!+X1>Q17{^p~^c|YqvWvu-81>EC9PS z)q=e0G!(s|BmF!fLF~Jy?^HYpr$^ z=1RPpw}iX)R02I!L*6?TljuAG2!TAIi`l!B!J|7_EUY}?;jz1}V6r<41_V155FWiD zpG&-Nih(>w1Rgur=07~oy$?Oj5DB~G)91WXj&HoTILo?lY8^b-zA8LvzCgOia`n7q zYCXKhWe>ckF2Fo_HxfO$lij@QEWkV|No%_qrV_pHk$gQ~9JxF6T4y{;?f|{UCCED& zC$PJ53ZJ~2$&9=p^KCl^+mk#T{~bG?Jrlefx2-%oB@H|zh$_7X0@%AdR=~S~2I9Q# z>94!SP=&k&-{w1_DMh=@d>*`R8wER?df<7vF?5DdNk41+v3O-Q`- zhta$`a{E0d%}1 z3cx%N000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000G00000000000DwOL0DwOL0DwOL0DwOL0DwOL z0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOb0000000000 z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000$0RR910000QgrK|$IWxSZ3y-`rNH#p501G_H$>6&N7V^5y+{(Ne z!+|^eoB`i7dS^?2WtI=N`Pj_6WOcj9EJZ z5SqLxP@+3mfgQYZ`-VK6L@K?>mF_$j=Sn-hE$Tb%1*JUblAyZGh}Aq(R60AQ85g`O z(aXD82uZy1kTN{j?$W$w#y$Z_fT27IB7?jB8dW1VyrR6I zDj7WVJW{)1n?Sry0*X9SgyK6_&EPrM9FM$RZ8tpE%-g&q(I-89B=9^?@7lbph~&HW zd4W8=GlsnE9M8O9Ub8$W+SWU>VSBudA27UfGa$Ua78yOD#_qg_7{t4rP_MiaqRKp- ziod+TxW_VZ^-4h!8wg(v>{@cJ8`UycN7SBd@$mYf3xY7L&ZhhnqZ- z%ho)gw`DxniUT{i0hT&&1uQ*qAJe=6W}tHZ?rww!A#m zzso#!zmGcG81y?6RK>eTN3A>^R3|;jZb&>v5i-3O0c$)sb3DBEU5`BXNSeI2o_{<( zN-(_Ml_$JJyA?fRe$G5tLv1_;=c>Fl3unAkW6``|R6M-b=Q2Fk3|=~>Q{22AWnsKL z35YyGWDh&E9lSf)y$`+cIDK2b`ZQz3GTc!<|jQAv7|gn9z;EE$;Z1KzNkFe0-LOclKpH=MkoLAJaTf6lwu0K+=$aAQ0aQUJXMUWPnSfoi-4 z>O{Pk98|n?xlKHyl!m*fES$W;t|B}hPXW9pH@Ca6aq~QfjV(P##}T}X%FH`*8=E{Z zbpSms_|`k2hUdFn3fnxSCL+?cP~72p(#Ab zwT3(ilCZpMpO`#ME}A@h(wDsH-EKUzUB0{NcCNeuY&*S*UWB~#f66@cyGK2jeh563 zhL$`quBQRX~d zIy1aoRD8T*e80N{U}C#fzYDqe{>Ks5iTA+B3YT1j9RT8qT~E-_JXRCgQptSnazxn^rs& z00000000000000000000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000000$0RR910002HT){aLrK3B2 z+!r&-b=iz6L~x}y}-M9 z!a6(&BVN6*t+cvTsgJxPFn~L9y|FwAx%oT>4j;Qor-;0CQE9xCr3StI@b^2AR~2F0cA`7COp83F3RS#!!jn9plY6@tclx`A(g{58d0)Gh&zL+P3l+SK(9*oF zG^0F4y+}Jy&8ECI{wTe#k(E28$%Z`HgAY9qxePlK=jXhc1m(K~0wX*Q{7bxhForoh zpAo#ShYh+E5@oz+YGA!Vvb#HgLx{VRn$o<-E95)Dt~R}%Sg5>?-21%kC^KxRC)l@>iSA}Bn{=M_D-6=FR6JnuX$asj*!u`s(E(9=95cp$txbI?0M zzs9^KeZ#uJGA%pF@*}%%Up+jzoP@orM7O-cT?IV+OlrIh@+v*@21LBRVoJQOLFYV5 z*MYp^I`%s%meRa$xu!f}Cn~(fVtYMF0n)s8=JC3XDHl8)w1qo&ZO%L);59rHJD|E< zyVJX+cO^YJVU@h99(6i#P@ud#h3h=`b}_s;ea*Z!&5S(KNCLeP{}DYrVtPBAR?R#V z$Jsm3iI}>f%g(%v9E3cFi-;jev~|?#xK43`cXTRim|*ivDm!u!h<|Fj+VTq znTWg$ahp7u@=`pQ@Y}l+EXcfNq8z-%4>r4@bm+WoSB|=roUXf7*|xhCD@{DYfwVi= zO>MlyO(?u)gg88yD#1Lr4==sHgO0qaOsl(8ZzR0N3+g=bi~cCp7w0^$ z8PmKHZd<(P$uqjs)uFqNG@3k6ranBIM#8%%s0_W=ud=!$_XWChA4NRE2^YQfN%Xst zAws-9L2|q*h>N_U{bRf-l9@X&GZ;J$jh;MbeO^1c6hk~of*8C-cPYF)_NzS07?Qg^ z5t%!L#-uzxIG#K+e|)@?Kq0+K-J`n@00000000000000000000000000000000000 z000000000000000000000000000000000000000000000000000000G0000000000 z0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL z0DwOL0DwOL0DwOb00000000000000000000000000000000000000000000000000 z00000000000000000000000000000000000000000RR910002jqLRBkYg{~Mnclme z8m~O&SdYAnRA9W}?=?N8HO{kpsN6+NL}y_6R%VXA-*sb}zh- z43xVoZKpfDE>}D}S|mLCR;0Z1mx#L}vvs&dl4ZM7{PsM38Zf--GqOCpp>w<^!GSzI zzz{q($Qr%F38OpJc(=T~2pYMSO4vLEX(l|UwTirOZ!^5S-_1M{fuXxxS_r%garC=_ z+pN5VSWmo|dgVL8+V8w2EJi(!X%swa%1S(GdWgI`o&>y)+ebY8hD1EBgE~FL0wugs zt^>Su{;Rxz{J}gu6pp+PIZM1;s@yuAJczs;UroG0<^H^liK#q}n~OY7r-nR$mg~D7 zDbc*bc%nR;u+2H9>D)S|EZw_ZfGs??#o|0ZR6;y+Q(HV)wE?}f_6NM3`vSU347@xo zIt)D+aJ{^X<;c6{iR!%m2%S6w1_Hh62VJ}p=d?IrOMJY5!!SLCyPmwPTY|jGFX+0R zXH-1!!}z;~aK}27%w9XcDiu9ox&l0g$1gqg^HIDC3*|fZ+J`(u-2%G~fTTR&c`du2 z_YFKI%BwpfOWHm|&x8ri%sMWwvwlo7pRNoG7! z8%#W~(&4<21%tZxSvx%BXNU7I`3i3>c^2~WJtu$R1(qd2>MNfy1JyRAIT z8sxmVRTMp&uthrup$5Iz7DPS5kSe`!^PW6;J6gQ(rCvMDG@ZM8*Bd4>~bv~N5+FWbDDo(MhU(xE%*RmZ!Xd~v*cqq#c|FI>DUIg&hmSM0of z2UWYKJ+VAY911-Bi-tT6Gypv>ttGv(8}U42>J&VNEV?_F0eHQM6&t<$uyZ=OrFuO3 z=rX%=-dj6qMI*g{(F;5uqXs<>=-)eQ{D-{MGZ8&f?jk*G-1)mp=8QY!wiP{JIFmei z$pk$v`>8ycW;#6?`U5;xSs6UOn4~-q00000000000000000000000000000000000 z000000000000000000000000000000000000000000000000000000G0000000000 z00000000000000000000000000000000000000000000000000000000000000000 z0000000000000000RR910000h{8T(=Y8^cE!=JoVJ48G$&dWSor|r5)c7wba2Ee-u zZ1+3ArIWg>^isW>T#>t(I=(zh8PB|q_1im7+C#h3U)nliIgPw2g&l5b>5*a(wr5?PkVwO8~ zHWoZGK^MF-HM6|zw|+dz|L{AvnT$JJR_#0h4g@?)qa!_O#=bkpRj0Z+@rt~0I)pu1 zq=dYb37)**DVIFz0CYTOq{KXCS(Q9O6?weW6tlbq#I`#*wH`Z!wFf*)z-T>RVzE{ZOuIQ#=^WtXAiwu)yuqVzSg?_#u_}K?7lmUkM+4ly8*n< z0hGJy|B1X2goZqr!n`~LQyo0;i5WfW_D{Rz0slM;;L^N5&5%4-C15_dK3X;58NjN=8KGQpIz!SY5B)q%XgDbqpD8{^<%eFiQ#h1EwFs?l7 zH9ehsRxv!dM~*utI+VOoT93RUDownH>kGUlttve=gK50MA&k7@?iW1(OEiaopru!KDGvUa>B@cTPv+VeZh;|)CTw|l%+GXuPj zhRi&welWXYf6BWPOr$%Gt=+tsw7NUrub({UdsVzyi>SP?KTW)qhNHX`(pNi42(CM6 zt_Z#NOanc*A;i21RMxuZO98!qw~4$*y(B!wQI$M$Pwl)Nn=ZT;>XAI#<{Lbm5_&vK zMhZN*Z?!x7wdXt%u#i0G?f|?6hfF*Vv7o#Bi&ebxHFmRrEYWu^&9#s?I#FU=h7X0hBzk-h#X`DZ#v$6Fa;)6YRW_%-*{U z9O=A-ha^0n8a=#4V@W)nzL>o41qZ#`G%vgYtT{WO8&EvoT@}4kqwKruHIBRlixRyY z7fC&@*+e|kQ=~lWk|4ZCXrVdwfGfOqSeQF4eXBg=vgSNB1O>f(7pXkz-6OnEUx7Tt zI=s9y^Etc1j5Iu5MzuVK%#^%*48uB5Pq#cCJaWA5$Ui*b=%2jG`ba#1O7*+oEs{Lm zq|iL6v0b}Nd{sPxo7y|T%bGl;(%U?+c^^Hr03*GULS{UhuUEX+Y?nL+eQ-SQI7vK{ zVs$)UDTlnSbT+)b0+Bov#?Mpl=wMV@3dRV>fD8Rg94;?(A3&cD%Wxl&tQPsTiMvA*x{*8v z1j{?B6Vg0@wT8Qo2OYhw-pIU1#W=hM9_l;f7Y{ugAjCWyQQf@8!UMfWZcIEi{i3|C zfdM^UFc!RKLJGPfDdfCK%bdJj=i$8Dc`rPKtggHl?dZJJk0lRUhp;|#qI ztdP8!)Qh~*yZk&GaWA~RrNF#I)(gGwMIbz;-AlYM>p;8%`+q!SbuGM<^^ZGBbJZeAjLePmBc%51pqvO zV5~es`pdkrl9aqt-Rrwkc1*lrh#0(gIB2`hU>7}5;T63No2)#Io zGflmU-JZGvtqnYF=o-ACidH)Vg#tb6p0vC#R8c*-nF77MJ%+qm`3^lLOe{MhUemmj z$FI0*o0s1dv(6~#MVwkSMc zY!|&Sv*x?~7dyN=YyvzJ-0QkVmO4Gh)-t@52${QS_24@lKB+vW*eAW)pjD$TqhoXa~#!j3$2zX3gh_Dwuw>(M-rRDU~^svJGw;qtr*h{C*#M|-@= zDA>Ci&>_5)?aaKc_aZzAWQIH}J|jHf*nhk!ZeTpNqn*5BPmVk?8VkAxYCpUW8j?Ju zg$TS8u9Un$ViCL!juX5>GoCzc!4|#z7(G00`*ypOxr@6}5ZSxktEjvdT@$_cudlrG z8;-kDm`uFYGeA3c9*w+rqDZ{c(q_AWqffh6ce=Y!EhfE~ZMr;9l<+4%o4ixo*lev zl773eQ3gDq0%5!Jt~|U4otQjSc^o{e;kLW$^VhsyBFVhG>7Ti{OR+pe(gnT75(B+n zkmtMDIg32j#+tjY0#Q92&!xN5u{u48PE|eM8J)aro(nvnqPDziW-hyl#tS`VjugBC ztBAU8MghEQ`=Go8)jzyfg;P9B9hkf@_L%6*5K!Lk8Ie)xP5>!00&tg1quYfr{ z9k@I_=z%9o76I-R_w&A`0L49vTsoPfObvpu?Uq^G+SDqp+_T%kM=P^vtj$(KA;99+CO+EKjZ*h9LXpA)>qb)mZvql>%_AjUh3?qWRW zw!*slm!Lcy(C$1hJc7J*Cz`xh7!SLlo-DisM@78kon|_5 zhzq?uBIP?&2C%#m>~_3Y2AI0`;*>e0$%?yzwonc;Y-6;3zx=dnLU^5Gp*R zQVzWOyobDUYdE`Ig}A$J-N3tm>g~M7SVB85rrSHYqo_K!PXs+w?NvO_B~iO;pb0&T zIn%tJYU(^cx*5FZ4;wm8t(3f#F}u83F?c)48W}xM0C_vy^CdmOf~Y%=9KSqQd!;;8 zWH`K{2rayHIwCv|)XTh$W+pW7tUK6}sBq6-Og4nxvmz+CpNE^L8IGsF;74lvx;-S2E zJBquRj(@uwnb15_E)zV?tH-)tYsx#zjXyj~x~sgfZe+af^?f|$Wf465s+l~(N!+}0 zV3)iWB^Eu_-2go8=!Lxa%45BLiy*xXzDvCJjF`L@HXppsC~-YmItRSAxv;$IJ;1xR zp$ff$v68%<*P%Qi4P3k)CqO*els-H)4M4mTZlFBEH?+K*=0iLrtx~%?iweC4jZ!-> zEEPO(;+i{GY!N+`vf4aCp3S=Hnv6WN0yaEYLj=1aYFE66(5k#!4I{joYmL0XSE{=9 z_NKf$Qx-hA=zqLLzpFeD%|1Ova|XSSotnDmRWLkuXem9tJHGxW#;-fq zvamdRAFn)3IFdZpSP;CYtB*Vs05ZK@TIjrka!VW>OfWgt7Y6`s00d~CdQjh{PD zWXC*L9E7}~FUP#c?LRz0o)^4fx$?ZQ{YJd9!MMC(k=45#J~+D|tQ0)78S6Z_?)keT z^M1UHhz-3`j_JEOGz+~+tDZb9@1nd?tr9%*zh*olaZ$Rkmy0~WoaQ=<`~y8uRKYyU zLpHrD)v-Loh3q^)8>l?6XOBDyB7(WuZnZqn$sN19B@(^e?6^E5t|C39H1oQvWYxM4 zetNu;?900IJ&-&poe{iUe=NKrf@M6g`l38Wxd=SM=&rkGF%3P5w-8o#^-sR%tm#^}3kG8nxq2jjb8k4L;jR1Uo=6T~|&#jd;e7|=WEaEiPGf_%Ik zYLUDWr|7$vgTuTR2Ejbkof^79C!RdQJ)OHa;@Z670P#FFyPZ6^rs_Ny7u-BH05ClU zP|Uj)_Z7V%kWM^@sTn)yM-RO+aS%K;(9XQYP%*p#_7}XKK^{3t{olMLKWaOcbd04~R0aCmFJ_)^3y0W?%f}y;|<_0_o{)xO>ph7%=)3H3HHxs><*A%?dTQ55- zYu&m@{wTbcmm1^ z99KP!NB}$`nmfF6PQN-dfX+Jt2tmDG*Dk!hW`n%>^~}82CFMM!r2)NEuy(ox@`F34 z!8JLQca=H}+Go56Yj3=v$_u;90499zAIR;WC(9qc?iK&!lR@Kd~bh^f5QgSxzuz?8f0Ba*zm1x-8# zMmfFkYp^{0s)jswoyjZy&rjB#Sz)=M=m!;WZ9%;AjjB9%Y}~wHN9($s z$SS!KVUIk;U7)=8vlF{G6^Oh-UjaNU?e4r8FNC|<%7!~;x9vQ14oW=2R{K2pv;aJ+ z&96KS{gb=P@UOakW*EGO2a>$cyyHBHBr7{q6dS$Lm`%GmFA+U*Vtza!_su*rELl9@ zX9+!0J%HV-`tWih=b zf{MG1`>#Ai(Hp$AT|>Jvn>aiTjsUyoP{TUro2$IoQl7Y8LOwi;vaP!tEu1@){R}*^ z43E3T$R#|lAc{P$oFcs)p2@tysOr0&cQd=?iE6rOF)+O_DfhdnTsXYv&k?%-_Aa~^ zW~IE|5AD1DiCDabD|Ea$`F=bUtS38R9{{}tCc`{L8H_u|Ohvp42S7a~K`Oe&-R?V- z&)K}i>Z3bzr4_yZ$OOIVJpsJ1<>I?$TOvLCot?aE)U~_mnsPiQmmj=oV}rau>xDd= zfegGNOFg(D89*R6B98A17k=MKn&JDb^Lu|a4{}(#|umQcWfvr6F@D;pD zyBj=rfhxPEUw^#*)bhF;a%Q{$&*wasU=lmi-2y#NT~|C?tQ$RTO*K5Z;~P0wZihT& zJ|MjUUj;qz(Y8F4y9m61@EE)aS#7(5RY<)B&xkw+@Myhdifg=4M-#ls2LL@_f(1RG zBLO_tnTx!gTGBiq^TIo2{7gHbS}(m87mU2*4mQ2hwyrz_eRsV2qX#`NCF8r5nQJ`Z zsJOgdhyuO16q3AYqAb12I2Af?X{kGcKyWQB6Wuh%>NlL9=d7w)_UiAOxgvIaa%5*fWU!qz;VaUngH)`z@RcQ?EqFp<2# zBRjnTy&S!K*(f|YMRL3binl!cE~vX;L$16q(26{`2g^Kn1PDFlBVfGWKo~vU)B!v= zPBgsplpZ{IRtUXwNf15I)4#mQQG2@NJ`}ubZZf+&H7C5#7v4Oit=zg0*!4V_3&cCX zqprJ66feBN=3cx=wi>*PKw3QDYYn_!ikiGuJE^?5JP*B1p|iWG#JN1~pzFJ_5tKUN z(j2|ZVFf%pq8vTM#8tdkZ@s)H4Awi)iPt=j5DB~m&9uBPzWcmu938w}*cLl4O+!3y z;zT>9mA5+v#7eua4YNF_=%&29@>V)<2P{02pD#T9q>?(3uZuib?VUXPnCLs5{sg=8 zV!XQmzr4CMgO59Ip{qOR;cyB!EieZNM<}-DEYgaIU&3_i;TN3 zO2a%f5}LcJJte&53PU`{cuKrrKGnO&(uuqgz5~5S|3JKAiL5*uAN`D22MFPjS5D^CLZj?}j^%>sh=Cc(}W~ttY$!u9`dPe3HDq zRM5I-mqEKXA1FL{usJ&le~-HWkrupvMuWU#V)eWgm;St)$Vfc95%W86Et0%GA?7@F zQ%^i88GyYx6zjVbv9UZOWRW})9k;wWnngUBq2)YDsS><*1=PINjc7cC;$6JTzlOZ> zuClx}L4LgI;0HYZ3c9<(#|OOv5v4pbX(GMH+G@RhSW~>I4XV72emcB=qz*k@wShgQ zDhNFF8)7`9_e(qcvCKL^Uq!s*?UFhx06;vDLi4-<4(q$Cjz7Cln%}%{ z%ndz}+XX!{AecOo8;87cNE5xwHz_=Cq3SzXmj}B5a8|vy$p1VBc*#7F?`OR3YnHt5 zPO-fBQz1L6HIuyfkhi=F7_GZ0L2Eo&aI(C`$`HJV^Gv-J?FcNo4TyHzOJ_9iY3*a;-d5&&fOMj$l3f z4CXxJdT>0$wr{)Am0mpfU>7{zLrp!-OrX4*d)Pc2l6<>cWeL1n+zUK_^4L7?&SATq z-p;&9zEL`~DqcH-ZxTJ6-g`XNhkHHR4j(-H(rG;H2s6BB)`&cInhibhrnfwBdjdSA zZzw&c&q6$>&hNWVC?UM}-FiF#WQ#oa?yb9p$w54w%-=lg2F$z|p<}zEpY*!$+cv!B zn_oQCl-s;SC*Hh=Z<4#=@h`k&S^+&cG_EF!(LQ|LUo-~~PH!E zS2DZ_mKHo-?w33?YePJ3NdP;cqFFrtH8VUV)2F-*v%Wj2k^a0usmr{<1iL)!Bh9>2 zOFO&|Gda9QFCsm`Ft59U%-Oqq^b@?t`3F6Z_oX}|!3Vq#%`rQfl4U%JL}$FbOu0Pk zdpW#QCHJ~g64yL=2DLoLFbll#G=n@RSo1reVJ^HTB=9_Qa;!Y+ys12@68?;R3yc_K!S;O6j~u{jxmQ3obnS!ZthXI}1ErFQdFtOSU|r@5ekM!)LsBheJKb zIfA^+l$N}(pS8TIcq}_gp!m9gvy#02?&!RtcyBzCkK4S06iK|Roz1*?t)ROH)Tlcz z{qeeU^Nu`Z6^gr?tT{Zy4#K={Cj7h6%9y;d%$7Tn&B?o~YJ@yTFRDEAu6Mj2HHEyO zZMHlsU!pu>)(AaD+^{^pD^|PVyc0aY)pES9lngyIz>GZRCf_?S4{$t6n@Q8fLu8L5{o*nMXXY zO)|Wsd#gO_jJvxKe&@VdcL_W$k5auRL)JV~k*~WvvPV1hMYB9PD;K+ocgwrP^yWJ_ z9~eEV6T7?V%8@)|xL~|rw+1}$w(vZ7ckDaYu|~ZH8u2_b01`U(k()fHhTJ<400000 z0001H3^}|CjW@kAeQiA6n;*Rw97sD??hw6vPp3R=D{MW`MzlJ0)405O81y`qwVk}u zZ(cjMzQ;R3JchjFKh`=B00000000000DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL m0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwOL0DwPshAwyj literal 0 KcmV+b0RR6000031 diff --git a/test/data_for_tests/embedding/small_roberta/vocab.json b/test/data_for_tests/embedding/small_roberta/vocab.json new file mode 100644 index 00000000..376b658f --- /dev/null +++ b/test/data_for_tests/embedding/small_roberta/vocab.json @@ -0,0 +1 @@ +{"": 0, "": 1, "": 2, "": 3, "": 4, "A": 5, "B": 6, "C": 7, "D": 8, "E": 9, "F": 10, "G": 11, "H": 12, "I": 13, "J": 14, "K": 15, "L": 16, "M": 17, "N": 18, "O": 19, "P": 20, "Q": 21, "R": 22, "S": 23, "T": 24, "U": 25, "V": 26, "W": 27, "X": 28, "Y": 29, "Z": 30, "a": 31, "b": 32, "c": 33, "d": 34, "e": 35, "f": 36, "g": 37, "h": 38, "i": 39, "j": 40, "k": 41, "l": 42, "m": 43, "n": 44, "o": 45, "p": 46, "q": 47, "r": 48, "s": 49, "t": 50, "u": 51, "v": 52, "w": 53, "x": 54, "y": 55, "z": 56, "\u0120This": 57, "\u0120is": 58, "\u0120a": 59, "\u0120demo": 60, "\u0120sentence": 61, "\u0120another": 62, "\u0120this": 63, "\u0120text": 64, "\u0120model": 65, "\u0120voc": 66, "ab": 67} \ No newline at end of file diff --git a/test/embeddings/test_bert_embedding.py b/test/embeddings/test_bert_embedding.py index fe4702ab..1593c53f 100644 --- a/test/embeddings/test_bert_embedding.py +++ b/test/embeddings/test_bert_embedding.py @@ -3,6 +3,8 @@ from fastNLP import Vocabulary from fastNLP.embeddings import BertEmbedding, BertWordPieceEncoder import torch import os +from fastNLP import DataSet + @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis") class TestDownload(unittest.TestCase): @@ -45,12 +47,83 @@ class TestBertEmbedding(unittest.TestCase): result = embed(words) self.assertEqual(result.size(), (1, 4, 16)) + # 自动截断而不报错 + embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.1, + only_use_pretrain_bpe=True, auto_truncate=True) + words = torch.LongTensor([[2, 3, 4, 1]*10, + [2, 3]+[0]*38]) + result = embed(words) + self.assertEqual(result.size(), (2, 40, 16)) + + def test_bert_embedding_2(self): + # 测试only_use_pretrain_vocab与truncate_embed是否正常工作 + with open('test/data_for_tests/embedding/small_bert/vocab.txt', 'r', encoding='utf-8') as f: + num_word = len(f.readlines()) + Embedding = BertEmbedding + vocab = Vocabulary().add_word_lst("this is a texta and [SEP] NotInBERT".split()) + embed1 = Embedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + only_use_pretrain_bpe=True, truncate_embed=True, min_freq=1) + embed_bpe_vocab_size = len(vocab)-1 + 2 # 排除NotInBERT, 额外加##a, [CLS] + self.assertEqual(embed_bpe_vocab_size, len(embed1.model.tokenzier.vocab)) + + embed2 = Embedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + only_use_pretrain_bpe=True, truncate_embed=False, min_freq=1) + embed_bpe_vocab_size = num_word # 排除NotInBERT + self.assertEqual(embed_bpe_vocab_size, len(embed2.model.tokenzier.vocab)) + + embed3 = Embedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + only_use_pretrain_bpe=False, truncate_embed=True, min_freq=1) + embed_bpe_vocab_size = len(vocab)+2 # 新增##a, [CLS] + self.assertEqual(embed_bpe_vocab_size, len(embed3.model.tokenzier.vocab)) + + embed4 = Embedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + only_use_pretrain_bpe=False, truncate_embed=False, min_freq=1) + embed_bpe_vocab_size = num_word+1 # 新增##a + self.assertEqual(embed_bpe_vocab_size, len(embed4.model.tokenzier.vocab)) + + # 测试各种情况下以下tensor的值是相等的 + embed1.eval() + embed2.eval() + embed3.eval() + embed4.eval() + tensor = torch.LongTensor([[vocab.to_index(w) for w in 'this is a texta and'.split()]]) + t1 = embed1(tensor) + t2 = embed2(tensor) + t3 = embed3(tensor) + t4 = embed4(tensor) + + self.assertEqual((t1-t2).sum(), 0) + self.assertEqual((t1-t3).sum(), 0) + self.assertEqual((t1-t4).sum(), 0) + class TestBertWordPieceEncoder(unittest.TestCase): def test_bert_word_piece_encoder(self): embed = BertWordPieceEncoder(model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.1) - from fastNLP import DataSet ds = DataSet({'words': ["this is a test . [SEP]".split()]}) embed.index_datasets(ds, field_name='words') self.assertTrue(ds.has_field('word_pieces')) result = embed(torch.LongTensor([[1,2,3,4]])) + + def test_bert_embed_eq_bert_piece_encoder(self): + ds = DataSet({'words': ["this is a texta model vocab".split(), 'this is'.split()]}) + encoder = BertWordPieceEncoder(model_dir_or_name='test/data_for_tests/embedding/small_bert') + encoder.eval() + encoder.index_datasets(ds, field_name='words') + word_pieces = torch.LongTensor(ds['word_pieces'].get([0, 1])) + word_pieces_res = encoder(word_pieces) + + vocab = Vocabulary() + vocab.from_dataset(ds, field_name='words') + vocab.index_dataset(ds, field_name='words', new_field_name='words') + ds.set_input('words') + words = torch.LongTensor(ds['words'].get([0, 1])) + embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + pool_method='first', include_cls_sep=True, pooled_cls=False) + embed.eval() + words_res = embed(words) + + # 检查word piece什么的是正常work的 + self.assertEqual((word_pieces_res[0, :5]-words_res[0, :5]).sum(), 0) + self.assertEqual((word_pieces_res[0, 6:]-words_res[0, 5:]).sum(), 0) + self.assertEqual((word_pieces_res[1, :3]-words_res[1, :3]).sum(), 0) \ No newline at end of file diff --git a/test/embeddings/test_gpt2_embedding.py b/test/embeddings/test_gpt2_embedding.py new file mode 100644 index 00000000..01e00410 --- /dev/null +++ b/test/embeddings/test_gpt2_embedding.py @@ -0,0 +1,268 @@ + +import unittest +import torch +import os + +from fastNLP.modules.tokenizer.gpt2_tokenizer import GPT2Tokenizer +from fastNLP.embeddings import GPT2WordPieceEncoder, GPT2Embedding +from fastNLP import DataSet, Vocabulary + + +class TestGPT2Embedding(unittest.TestCase): + @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis") + def test_download(self): + vocab = Vocabulary().add_word_lst("This is a test .".split()) + embed = GPT2Embedding(vocab, model_dir_or_name='en') + words = torch.LongTensor([[2, 3, 4, 0]]) + print(embed(words).size()) + + for pool_method in ['first', 'last', 'max', 'avg']: + embed = GPT2Embedding(vocab, model_dir_or_name='en', pool_method=pool_method) + print(embed(words).size()) + + def test_gpt2_embedding(self): + weight_path = 'test/data_for_tests/embedding/small_gpt2' + vocab = Vocabulary().add_word_lst("this is a texta sentence".split()) + embed = GPT2Embedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1) + requires_grad = embed.requires_grad + embed.requires_grad = not requires_grad + embed.train() + words = torch.LongTensor([[2, 3, 4, 0]]) + result = embed(words) + self.assertEqual(result.size(), (1, 4, 16)) + + embed = GPT2Embedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1, + only_use_pretrain_bpe=False, language_model=True) + embed.eval() + words = torch.LongTensor([[2, 3, 4, 0]]) + result = embed(words) + self.assertEqual(result.size(), (1, 4, 16)) + embed.get_lm_loss() + + vocab.add_word("NotInGpt2") + embed = GPT2Embedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1, + only_use_pretrain_bpe=False, auto_truncate=True, min_freq=1) + words = torch.LongTensor([[2, 3, 4, 0]*20]) + result = embed(words) + self.assertEqual(result.size(), (1, 80, 16)) + + def test_gpt2_ebembedding_2(self): + # 测试only_use_pretrain_vocab与truncate_embed是否正常工作 + Embedding = GPT2Embedding + weight_path = 'test/data_for_tests/embedding/small_gpt2' + vocab = Vocabulary().add_word_lst("this is a texta and".split()) + embed1 = Embedding(vocab, model_dir_or_name=weight_path,layers=list(range(3)), + only_use_pretrain_bpe=True, truncate_embed=True, min_freq=1) + # embed_bpe_vocab_size = len(vocab)-1 + 2 # 排除NotInBERT, 额外加##a, [CLS] + # self.assertEqual(embed_bpe_vocab_size, len(embed1.model.tokenzier.vocab)) + + embed2 = Embedding(vocab, model_dir_or_name=weight_path, layers=list(range(3)), + only_use_pretrain_bpe=True, truncate_embed=False, min_freq=1) + # embed_bpe_vocab_size = num_word # 排除NotInBERT + # self.assertEqual(embed_bpe_vocab_size, len(embed2.model.tokenzier.vocab)) + + embed3 = Embedding(vocab, model_dir_or_name=weight_path, layers=list(range(3)), + only_use_pretrain_bpe=False, truncate_embed=True, min_freq=1) + # embed_bpe_vocab_size = len(vocab)+2 # 新增##a, [CLS] + # self.assertEqual(embed_bpe_vocab_size, len(embed3.model.tokenzier.vocab)) + + embed4 = Embedding(vocab, model_dir_or_name=weight_path, layers=list(range(3)), + only_use_pretrain_bpe=False, truncate_embed=False, min_freq=1) + # embed_bpe_vocab_size = num_word+1 # 新增##a + # self.assertEqual(embed_bpe_vocab_size, len(embed4.model.tokenzier.vocab)) + + # 测试各种情况下以下tensor的值是相等的 + embed1.eval() + embed2.eval() + embed3.eval() + embed4.eval() + tensor = torch.LongTensor([[vocab.to_index(w) for w in 'this is a texta and'.split()]]) + t1 = embed1(tensor) + t2 = embed2(tensor) + t3 = embed3(tensor) + t4 = embed4(tensor) + + self.assertEqual((t1-t2).sum(), 0) + self.assertEqual((t1-t3).sum(), 0) + self.assertEqual((t1-t4).sum(), 0) + + def test_gpt2_tokenizer(self): + from fastNLP.modules.tokenizer import GPT2Tokenizer + + tokenizer = GPT2Tokenizer.from_pretrained('test/data_for_tests/embedding/small_gpt2') + print(tokenizer.encode("this is a texta a sentence")) + print(tokenizer.encode('this is')) + + def test_gpt2_embed_eq_gpt2_piece_encoder(self): + # 主要检查一下embedding的结果与wordpieceencoder的结果是否一致 + weight_path = 'test/data_for_tests/embedding/small_gpt2' + ds = DataSet({'words': ["this is a texta a sentence".split(), 'this is'.split()]}) + encoder = GPT2WordPieceEncoder(model_dir_or_name=weight_path) + encoder.eval() + encoder.index_datasets(ds, field_name='words') + word_pieces = torch.LongTensor(ds['word_pieces'].get([0, 1])) + word_pieces_res = encoder(word_pieces) + + vocab = Vocabulary() + vocab.from_dataset(ds, field_name='words') + vocab.index_dataset(ds, field_name='words', new_field_name='words') + ds.set_input('words') + words = torch.LongTensor(ds['words'].get([0, 1])) + embed = GPT2Embedding(vocab, model_dir_or_name=weight_path, pool_method='first') + embed.eval() + words_res = embed(words) + + # 检查word piece什么的是正常work的 + self.assertEqual((word_pieces_res[0, :4]-words_res[0, :4]).sum(), 0) + self.assertEqual((word_pieces_res[0, 5:]-words_res[0, 4:]).sum(), 0) + self.assertEqual((word_pieces_res[1, :2]-words_res[1, :2]).sum(), 0) + + +class TestGPT2WordPieceEncoder(unittest.TestCase): + @unittest.skipIf(True, "Only for local debugging") + def test_eq_transformers(self): + # 测试能否正确得到类似于transformers的结果 + weight_path = '' + + # tokenizer = transformers.GPT2Tokenizer.from_pretrained(weight_path) + + ds = DataSet({'words': ["this this this a is texta model vocab".split(), 'this is'.split()]}) + + import transformers + input1 = ' '.join(ds[0]['words']) + input2 = ' '.join(ds[1]['words']) + tokenizer = transformers.GPT2Tokenizer.from_pretrained(weight_path) + idx_list1 = tokenizer.encode(input1) + idx_list2 = tokenizer.encode(input2) + + pad_value = tokenizer.encode('<|endoftext|>')[0] + tensor = torch.nn.utils.rnn.pad_sequence([torch.LongTensor(idx_list1), + torch.LongTensor(idx_list2)], + batch_first=True, + padding_value=pad_value) + gpt2 = transformers.GPT2Model.from_pretrained(weight_path, output_hidden_states=True) + gpt2.eval() + tensor = tensor + output, _, trans_hidden_states = gpt2(tensor, attention_mask=tensor.ne(pad_value)) + + encoder = GPT2WordPieceEncoder(model_dir_or_name=weight_path, layers=list(range(13))) + encoder.eval() + encoder.index_datasets(ds, field_name='words', add_endoftext=False) + word_pieces = torch.LongTensor(ds['word_pieces'].get([0, 1])) + + self.assertEqual(idx_list1, ds[0]['word_pieces']) + self.assertEqual(idx_list2, ds[1]['word_pieces']) + + word_pieces_res = encoder(word_pieces) + + self.assertEqual((torch.cat(trans_hidden_states, dim=-1)-word_pieces_res).sum(), 0) + + @unittest.skipIf(True, "Only for local usage") + def test_generate_small_gpt2(self): + # 因为GPT2使用的是GPT2的tokenizer,所以没办法直接生成权重,需要用点下面的方式 + weight_path = '' + tokenizer = GPT2Tokenizer.from_pretrained(weight_path) + + used_pairs = {} + used_vocab = {} + # 修改这里即可获得更多的sentence的数据 + sent1 = "This is a demo sentence" + sent2 = "another demo" + sent3 = 'this is a texta model vocab' + all_tokens = [] + + for sent in [sent1, sent2, sent3]: + tokens = [] + for word in sent.split(): + word = ' '+ word + token = "".join( + tokenizer.byte_encoder[b] for b in word.encode("utf-8") + ) + _token, _used_pairs = tokenizer.get_used_merge_pair_vocab(token) + tokens.extend(_token.split()) + used_pairs.update(_used_pairs) + all_tokens.extend(tokens) + token_ids = tokenizer.convert_tokens_to_ids(tokens) + used_vocab.update({t:i for t,i in zip(tokens, token_ids)}) + + print(used_pairs) + import json + with open('test/data_for_tests/embedding/small_gpt2/vocab.json', 'w') as f: + new_used_vocab = {} + for idx, key in enumerate(used_vocab.keys()): + new_used_vocab[key] = len(new_used_vocab) + new_used_vocab['<|endoftext|>'] = len(new_used_vocab) + for i in range(65, 91): + if chr(i) not in new_used_vocab: + new_used_vocab[chr(i)] = len(new_used_vocab) + for i in range(97, 123): + if chr(i) not in new_used_vocab: + new_used_vocab[chr(i)] = len(new_used_vocab) + + json.dump(new_used_vocab, f) + + with open('test/data_for_tests/embedding/small_gpt2/merges.txt', 'w') as f: + f.write('#version: small\n') + for k,v in sorted(sorted(used_pairs.items(), key=lambda kv:kv[1])): + f.write('{} {}\n'.format(k[0], k[1])) + + new_tokenizer = GPT2Tokenizer.from_pretrained('test/data_for_tests/embedding/small_gpt2') + new_all_tokens = [] + for sent in [sent1, sent2, sent3]: + tokens = new_tokenizer.tokenize(sent, add_prefix_space=True) + new_all_tokens.extend(tokens) + print(all_tokens, new_all_tokens) + + self.assertSequenceEqual(all_tokens, new_all_tokens) + config = { + "architectures": [ + "GPT2LMHeadModel" + ], + "initializer_range": 0.02, + "layer_norm_epsilon": 1e-05, + "n_ctx": 20, + "n_embd": 16, + "n_head": 4, + "n_layer": 2, + "n_positions": 20, + "vocab_size": len(new_used_vocab) + } + with open('test/data_for_tests/embedding/small_gpt2/config.json', 'w') as f: + json.dump(config, f) + + # 生成更小的merges.txt与vocab.json, 方法是通过记录tokenizer中的值实现 + from fastNLP.modules.encoder.gpt2 import GPT2LMHeadModel, GPT2Config + + config = GPT2Config.from_pretrained('test/data_for_tests/embedding/small_gpt2') + + model = GPT2LMHeadModel(config) + torch.save(model.state_dict(), 'test/data_for_tests/embedding/small_gpt2/small_pytorch_model.bin') + print(model(torch.LongTensor([[0,1,2,3]]))) + + def test_gpt2_word_piece_encoder(self): + # 主要检查可以运行 + weight_path = 'test/data_for_tests/embedding/small_gpt2' + ds = DataSet({'words': ["this is a test sentence".split()]}) + embed = GPT2WordPieceEncoder(model_dir_or_name=weight_path, word_dropout=0.1) + embed.index_datasets(ds, field_name='words') + self.assertTrue(ds.has_field('word_pieces')) + result = embed(torch.LongTensor([[1, 2, 3, 4]])) + + embed = GPT2WordPieceEncoder(model_dir_or_name=weight_path, word_dropout=0.1, + language_model=True) + embed.index_datasets(ds, field_name='words') + self.assertTrue(ds.has_field('word_pieces')) + result = embed(torch.LongTensor([[1, 2, 3, 4]])) + + def test_generate(self): + weight_path = 'test/data_for_tests/embedding/small_gpt2' + + encoder = GPT2WordPieceEncoder(model_dir_or_name=weight_path, language_model=True) + + # 测试一下各项东西是否正常work + print(encoder.generate_from_str('this', max_len=20, do_sample=False, num_beams=1, temperature=1, top_k=50, top_p=1.0, + repetition_penalty=1.0, length_penalty=1.0)) + print(encoder.generate_from_str('this', max_len=20, do_sample=True, num_beams=3, temperature=1, top_k=50, top_p=1.0, + repetition_penalty=1.0, length_penalty=1.0)) + print(encoder.generate_from_str('this', max_len=20, do_sample=True, num_beams=3, temperature=2, top_k=20, top_p=2.0, + repetition_penalty=2.0, length_penalty=1.5)) diff --git a/test/embeddings/test_roberta_embedding.py b/test/embeddings/test_roberta_embedding.py new file mode 100644 index 00000000..c2e80a8a --- /dev/null +++ b/test/embeddings/test_roberta_embedding.py @@ -0,0 +1,252 @@ + +import unittest + +import torch +import os + +from fastNLP import DataSet, Vocabulary +from fastNLP.embeddings.roberta_embedding import RobertaWordPieceEncoder, RobertaEmbedding + + +class TestRobertWordPieceEncoder(unittest.TestCase): + @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis") + def test_download(self): + vocab = Vocabulary().add_word_lst("This is a test .".split()) + embed = RobertaEmbedding(vocab, model_dir_or_name='en') + words = torch.LongTensor([[2, 3, 4, 0]]) + print(embed(words).size()) + + for pool_method in ['first', 'last', 'max', 'avg']: + for include_cls_sep in [True, False]: + embed = RobertaEmbedding(vocab, model_dir_or_name='en', pool_method=pool_method, + include_cls_sep=include_cls_sep) + print(embed(words).size()) + + def test_robert_word_piece_encoder(self): + # 可正常运行即可 + weight_path = 'test/data_for_tests/embedding/small_roberta' + encoder = RobertaWordPieceEncoder(model_dir_or_name=weight_path, word_dropout=0.1) + ds = DataSet({'words': ["this is a test . [SEP]".split()]}) + encoder.index_datasets(ds, field_name='words') + self.assertTrue(ds.has_field('word_pieces')) + result = encoder(torch.LongTensor([[1,2,3,4]])) + + def test_roberta_embed_eq_roberta_piece_encoder(self): + # 主要检查一下embedding的结果与wordpieceencoder的结果是否一致 + weight_path = 'test/data_for_tests/embedding/small_roberta' + ds = DataSet({'words': ["this is a texta a sentence".split(), 'this is'.split()]}) + encoder = RobertaWordPieceEncoder(model_dir_or_name=weight_path) + encoder.eval() + encoder.index_datasets(ds, field_name='words') + word_pieces = torch.LongTensor(ds['word_pieces'].get([0, 1])) + word_pieces_res = encoder(word_pieces) + + vocab = Vocabulary() + vocab.from_dataset(ds, field_name='words') + vocab.index_dataset(ds, field_name='words', new_field_name='words') + ds.set_input('words') + words = torch.LongTensor(ds['words'].get([0, 1])) + embed = RobertaEmbedding(vocab, model_dir_or_name=weight_path, + pool_method='first', include_cls_sep=True, pooled_cls=False) + embed.eval() + words_res = embed(words) + + # 检查word piece什么的是正常work的 + self.assertEqual((word_pieces_res[0, :5]-words_res[0, :5]).sum(), 0) + self.assertEqual((word_pieces_res[0, 6:]-words_res[0, 5:]).sum(), 0) + self.assertEqual((word_pieces_res[1, :3]-words_res[1, :3]).sum(), 0) + + @unittest.skipIf(True, "Only for local debugging") + def test_eq_transformers(self): + weight_path = '' + ds = DataSet({'words': ["this is a texta model vocab".split(), 'this is'.split()]}) + encoder = RobertaWordPieceEncoder(model_dir_or_name=weight_path) + encoder.eval() + encoder.index_datasets(ds, field_name='words') + word_pieces = torch.LongTensor(ds['word_pieces'].get([0, 1])) + word_pieces_res = encoder(word_pieces) + + import transformers + input1 = ' '.join(ds[0]['words']) + input2 = ' '.join(ds[1]['words']) + tokenizer = transformers.RobertaTokenizer.from_pretrained(weight_path) + idx_list1 = tokenizer.encode(input1) + idx_list2 = tokenizer.encode(input2) + self.assertEqual(idx_list1, ds[0]['word_pieces']) + self.assertEqual(idx_list2, ds[1]['word_pieces']) + + pad_value = tokenizer.encode('')[0] + tensor = torch.nn.utils.rnn.pad_sequence([torch.LongTensor(idx_list1), + torch.LongTensor(idx_list2)], + batch_first=True, + padding_value=pad_value) + roberta = transformers.RobertaModel.from_pretrained(weight_path, output_hidden_states=True) + roberta.eval() + output, pooled_output, hidden_states = roberta(tensor, attention_mask=tensor.ne(pad_value)) + + self.assertEqual((output-word_pieces_res).sum(), 0) + + @unittest.skipIf(True, "Only for local usage") + def test_generate_small_roberta(self): + """ + 因为Roberta使用的是GPT2的tokenizer,所以没办法直接生成权重,需要用点下面的方式 + + :return: + """ + weight_path = '' + from fastNLP.modules.tokenizer import RobertaTokenizer + tokenizer = RobertaTokenizer.from_pretrained(weight_path) + + used_pairs = {} + used_vocab = {} + # 修改这里即可获得更多的sentence的数据 + sent1 = "This is a demo sentence" + sent2 = "another demo" + sent3 = 'this is a texta model vocab' + all_tokens = [] + + for sent in [sent1, sent2, sent3]: + tokens = [] + for word in sent.split(): + word = ' '+ word + token = "".join( + tokenizer.byte_encoder[b] for b in word.encode("utf-8") + ) + _token, _used_pairs = tokenizer.get_used_merge_pair_vocab(token) + tokens.extend(_token.split()) + used_pairs.update(_used_pairs) + all_tokens.extend(tokens) + token_ids = tokenizer.convert_tokens_to_ids(tokens) + used_vocab.update({t:i for t,i in zip(tokens, token_ids)}) + + import json + with open('test/data_for_tests/embedding/small_roberta/vocab.json', 'w') as f: + new_used_vocab = {} + for token in ['', '', '', '', '']: # 必须为1 + new_used_vocab[token] = len(new_used_vocab) + for i in range(65, 91): + if chr(i) not in new_used_vocab: + new_used_vocab[chr(i)] = len(new_used_vocab) + for i in range(97, 123): + if chr(i) not in new_used_vocab: + new_used_vocab[chr(i)] = len(new_used_vocab) + for idx, key in enumerate(used_vocab.keys()): + if key not in new_used_vocab: + new_used_vocab[key] = len(new_used_vocab) + json.dump(new_used_vocab, f) + + with open('test/data_for_tests/embedding/small_roberta/merges.txt', 'w') as f: + f.write('#version: tiny\n') + for k,v in sorted(sorted(used_pairs.items(), key=lambda kv:kv[1])): + f.write('{} {}\n'.format(k[0], k[1])) + + config = { + "architectures": [ + "RobertaForMaskedLM" + ], + "attention_probs_dropout_prob": 0.1, + "finetuning_task": None, + "hidden_act": "gelu", + "hidden_dropout_prob": 0.1, + "hidden_size": 16, + "initializer_range": 0.02, + "intermediate_size": 20, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 20, + "num_attention_heads": 4, + "num_hidden_layers": 2, + "num_labels": 2, + "output_attentions": False, + "output_hidden_states": False, + "torchscript": False, + "type_vocab_size": 1, + "vocab_size": len(new_used_vocab) + } + with open('test/data_for_tests/embedding/small_roberta/config.json', 'w') as f: + json.dump(config, f) + + new_tokenizer = RobertaTokenizer.from_pretrained('test/data_for_tests/embedding/small_roberta') + new_all_tokens = [] + for sent in [sent1, sent2, sent3]: + tokens = new_tokenizer.tokenize(sent, add_prefix_space=True) + new_all_tokens.extend(tokens) + print(all_tokens, new_all_tokens) + + self.assertSequenceEqual(all_tokens, new_all_tokens) + + # 生成更小的merges.txt与vocab.json, 方法是通过记录tokenizer中的值实现 + from fastNLP.modules.encoder.roberta import RobertaModel, BertConfig + + config = BertConfig.from_json_file('test/data_for_tests/embedding/small_roberta/config.json') + + model = RobertaModel(config) + torch.save(model.state_dict(), 'test/data_for_tests/embedding/small_roberta/small_pytorch_model.bin') + print(model(torch.LongTensor([[0,1,2,3]]))) + + +class TestRobertaEmbedding(unittest.TestCase): + def test_roberta_embedding_1(self): + weight_path = 'test/data_for_tests/embedding/small_roberta' + vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInRoberta".split()) + embed = RobertaEmbedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1) + requires_grad = embed.requires_grad + embed.requires_grad = not requires_grad + embed.train() + words = torch.LongTensor([[2, 3, 4, 1]]) + result = embed(words) + self.assertEqual(result.size(), (1, 4, 16)) + + embed = RobertaEmbedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1, + only_use_pretrain_bpe=True) + embed.eval() + words = torch.LongTensor([[2, 3, 4, 1]]) + result = embed(words) + self.assertEqual(result.size(), (1, 4, 16)) + + # 自动截断而不报错 + embed = RobertaEmbedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1, + only_use_pretrain_bpe=True, auto_truncate=True) + words = torch.LongTensor([[2, 3, 4, 1]*10, + [2, 3]+[0]*38]) + result = embed(words) + self.assertEqual(result.size(), (2, 40, 16)) + + def test_roberta_ebembedding_2(self): + # 测试only_use_pretrain_vocab与truncate_embed是否正常工作 + Embedding = RobertaEmbedding + weight_path = 'test/data_for_tests/embedding/small_roberta' + vocab = Vocabulary().add_word_lst("this is a texta and".split()) + embed1 = Embedding(vocab, model_dir_or_name=weight_path,layers=list(range(3)), + only_use_pretrain_bpe=True, truncate_embed=True, min_freq=1) + # embed_bpe_vocab_size = len(vocab)-1 + 2 # 排除NotInBERT, 额外加##a, [CLS] + # self.assertEqual(embed_bpe_vocab_size, len(embed1.model.tokenzier.vocab)) + + embed2 = Embedding(vocab, model_dir_or_name=weight_path, layers=list(range(3)), + only_use_pretrain_bpe=True, truncate_embed=False, min_freq=1) + # embed_bpe_vocab_size = num_word # 排除NotInBERT + # self.assertEqual(embed_bpe_vocab_size, len(embed2.model.tokenzier.vocab)) + + embed3 = Embedding(vocab, model_dir_or_name=weight_path, layers=list(range(3)), + only_use_pretrain_bpe=False, truncate_embed=True, min_freq=1) + # embed_bpe_vocab_size = len(vocab)+2 # 新增##a, [CLS] + # self.assertEqual(embed_bpe_vocab_size, len(embed3.model.tokenzier.vocab)) + + embed4 = Embedding(vocab, model_dir_or_name=weight_path, layers=list(range(3)), + only_use_pretrain_bpe=False, truncate_embed=False, min_freq=1) + # embed_bpe_vocab_size = num_word+1 # 新增##a + # self.assertEqual(embed_bpe_vocab_size, len(embed4.model.tokenzier.vocab)) + + # 测试各种情况下以下tensor的值是相等的 + embed1.eval() + embed2.eval() + embed3.eval() + embed4.eval() + tensor = torch.LongTensor([[vocab.to_index(w) for w in 'this is a texta and'.split()]]) + t1 = embed1(tensor) + t2 = embed2(tensor) + t3 = embed3(tensor) + t4 = embed4(tensor) + + self.assertEqual((t1-t2).sum(), 0) + self.assertEqual((t1-t3).sum(), 0) + self.assertEqual((t1-t4).sum(), 0) diff --git a/test/modules/encoder/test_bert.py b/test/modules/encoder/test_bert.py new file mode 100644 index 00000000..35802811 --- /dev/null +++ b/test/modules/encoder/test_bert.py @@ -0,0 +1,24 @@ +import unittest + + +from fastNLP.modules import BertTokenizer + + +class TestBertTokenizer(unittest.TestCase): + def test_run(self): + # 测试支持的两种encode方式 + tokenizer = BertTokenizer.from_pretrained('test/data_for_tests/embedding/small_bert') + + tokens1 = tokenizer.encode("This is a demo") + tokens2 = tokenizer.encode("This is a demo") + tokens3 = tokenizer.encode("This is a demo".split()) + tokens4 = tokenizer.encode("This is a demo".split()) + + self.assertEqual(len(tokens1)-2, len(tokens2)) + self.assertEqual(len(tokens3)-2, len(tokens4)) + + self.assertEqual(tokens1[0], tokenizer.cls_index) + self.assertEqual(tokens1[-1], tokenizer.sep_index) + + +