@@ -105,14 +105,16 @@ class LoadBestModelCallback(HasMonitorCallback): | |||||
def on_train_end(self, trainer): | def on_train_end(self, trainer): | ||||
if abs(self.monitor_value) != float('inf'): # 如果是 inf 说明从来没有运行过。 | if abs(self.monitor_value) != float('inf'): # 如果是 inf 说明从来没有运行过。 | ||||
if self.real_save_folder: | |||||
logger.info(f"Loading best model from {self.real_save_folder} with {self._real_monitor}: {self.monitor_value}...") | |||||
trainer.load_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict, | |||||
model_load_fn=self.model_load_fn) | |||||
else: | |||||
logger.info(f"Loading best model from buffer with {self._real_monitor}: {self.monitor_value}...") | |||||
self.buffer.seek(0) | |||||
trainer.load_model(folder=self.buffer, only_state_dict=self.only_state_dict) | |||||
# 如果是分布式且报错了,就不要加载了,防止barrier的问题 | |||||
if not (trainer.driver.is_distributed() and self.encounter_exception): | |||||
if self.real_save_folder: | |||||
logger.info(f"Loading best model from {self.real_save_folder} with {self._real_monitor}: {self.monitor_value}...") | |||||
trainer.load_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict, | |||||
model_load_fn=self.model_load_fn) | |||||
else: | |||||
logger.info(f"Loading best model from buffer with {self._real_monitor}: {self.monitor_value}...") | |||||
self.buffer.seek(0) | |||||
trainer.load_model(folder=self.buffer, only_state_dict=self.only_state_dict) | |||||
if self.delete_after_after: | if self.delete_after_after: | ||||
if not self.encounter_exception: # 防止出现死锁。 | if not self.encounter_exception: # 防止出现死锁。 | ||||
trainer.driver.barrier() | trainer.driver.barrier() | ||||
@@ -22,9 +22,10 @@ class ProgressCallback(HasMonitorCallback): | |||||
self.best_monitor_step = -1 | self.best_monitor_step = -1 | ||||
self.best_results = None | self.best_results = None | ||||
def record_better_monitor(self, trainer): | |||||
def record_better_monitor(self, trainer, results): | |||||
self.best_monitor_step = trainer.global_forward_batches | self.best_monitor_step = trainer.global_forward_batches | ||||
self.best_monitor_epoch = trainer.cur_epoch_idx | self.best_monitor_epoch = trainer.cur_epoch_idx | ||||
self.best_results = results | |||||
def on_train_end(self, trainer): | def on_train_end(self, trainer): | ||||
if self.best_monitor_epoch != -1: | if self.best_monitor_epoch != -1: | ||||
@@ -138,7 +139,7 @@ class RichCallback(ProgressCallback): | |||||
characters = '-' | characters = '-' | ||||
if self.monitor is not None: | if self.monitor is not None: | ||||
if self.is_better_results(results, keep_if_better=True): | if self.is_better_results(results, keep_if_better=True): | ||||
self.record_better_monitor(trainer) | |||||
self.record_better_monitor(trainer, results) | |||||
if abs(self.monitor_value) != float('inf'): | if abs(self.monitor_value) != float('inf'): | ||||
rule_style = 'spring_green3' | rule_style = 'spring_green3' | ||||
text_style = '[bold]' | text_style = '[bold]' | ||||
@@ -154,7 +155,6 @@ class RichCallback(ProgressCallback): | |||||
self.progress_bar.console.print_json(results) | self.progress_bar.console.print_json(results) | ||||
else: | else: | ||||
self.progress_bar.print(results) | self.progress_bar.print(results) | ||||
self.best_results = results | |||||
def clear_tasks(self): | def clear_tasks(self): | ||||
for key, taskid in self.task2id.items(): | for key, taskid in self.task2id.items(): | ||||
@@ -222,7 +222,7 @@ class RawTextCallback(ProgressCallback): | |||||
text = '' | text = '' | ||||
if self.monitor is not None: | if self.monitor is not None: | ||||
if self.is_better_results(results, keep_if_better=True): | if self.is_better_results(results, keep_if_better=True): | ||||
self.record_better_monitor(trainer) | |||||
self.record_better_monitor(trainer, results) | |||||
if abs(self.monitor_value) != float('inf'): | if abs(self.monitor_value) != float('inf'): | ||||
text = '+'*self.num_signs + base_text + '+'*self.num_signs | text = '+'*self.num_signs + base_text + '+'*self.num_signs | ||||
if len(text) == 0: | if len(text) == 0: | ||||
@@ -234,7 +234,6 @@ class RawTextCallback(ProgressCallback): | |||||
if self.format_json: | if self.format_json: | ||||
results = json.dumps(results) | results = json.dumps(results) | ||||
logger.info(results) | logger.info(results) | ||||
self.best_results = results | |||||
@property | @property | ||||
def name(self): # progress bar的名称 | def name(self): # progress bar的名称 | ||||
@@ -311,7 +310,7 @@ class TqdmCallback(ProgressCallback): | |||||
text = '' | text = '' | ||||
if self.monitor is not None: | if self.monitor is not None: | ||||
if self.is_better_results(results, keep_if_better=True): | if self.is_better_results(results, keep_if_better=True): | ||||
self.record_better_monitor(trainer) | |||||
self.record_better_monitor(trainer, results) | |||||
if abs(self.monitor_value) != float('inf'): | if abs(self.monitor_value) != float('inf'): | ||||
text = '+'*self.num_signs + base_text + '+'*self.num_signs | text = '+'*self.num_signs + base_text + '+'*self.num_signs | ||||
if len(text) == 0: | if len(text) == 0: | ||||
@@ -323,7 +322,6 @@ class TqdmCallback(ProgressCallback): | |||||
if self.format_json: | if self.format_json: | ||||
results = json.dumps(results) | results = json.dumps(results) | ||||
logger.info(results) | logger.info(results) | ||||
self.best_results = results | |||||
def clear_tasks(self): | def clear_tasks(self): | ||||
for key, taskid in self.task2id.items(): | for key, taskid in self.task2id.items(): | ||||
@@ -200,7 +200,7 @@ class JittorDataLoader: | |||||
return self.cur_batch_indices | return self.cur_batch_indices | ||||
def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = False, | |||||
def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = None, | |||||
drop_last: bool = False, num_workers: int = 0, buffer_size: int = 512 * 1024 * 1024, | drop_last: bool = False, num_workers: int = 0, buffer_size: int = 512 * 1024 * 1024, | ||||
stop_grad: bool = True, keep_numpy_array: bool = False, endless: bool = False, | stop_grad: bool = True, keep_numpy_array: bool = False, endless: bool = False, | ||||
collate_fn: Union[None, str, Callable] = "auto", | collate_fn: Union[None, str, Callable] = "auto", | ||||
@@ -230,7 +230,8 @@ def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = Fa | |||||
:param non_train_batch_size: 如果传入的 ``ds_or_db`` 为 :class:`Dict` 或 :class:`~fastNLP.io.DataBundle` 对象,可以通过改参数 | :param non_train_batch_size: 如果传入的 ``ds_or_db`` 为 :class:`Dict` 或 :class:`~fastNLP.io.DataBundle` 对象,可以通过改参数 | ||||
设置名称不为 `train` 的其他 ``dataset`` 的 ``batch_size``。 默认为 ``16``。 | 设置名称不为 `train` 的其他 ``dataset`` 的 ``batch_size``。 默认为 ``16``。 | ||||
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | :param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | ||||
:param shuffle: 是否打乱数据集, 默认为 ``False``。 | |||||
:param shuffle: 是否打乱数据集, 默认为 ``None``, 如果传入的 ``ds_or_db`` 可以判断出哪个是 'train' 则设置其 shuffle 为 True , | |||||
其它的为 False 。 | |||||
:param drop_last: 当 ``drop_last=True`` 时,:class:`JittorDataLoader` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据; | :param drop_last: 当 ``drop_last=True`` 时,:class:`JittorDataLoader` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据; | ||||
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。 | 若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。 | ||||
:param num_workers: 当 ``num_workers > 0`` 时, :class:`JittorDataLoader` 会开启 num_workers 个子进程来处理数据, 可以加快 | :param num_workers: 当 ``num_workers > 0`` 时, :class:`JittorDataLoader` 会开启 num_workers 个子进程来处理数据, 可以加快 | ||||
@@ -258,7 +259,7 @@ def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = Fa | |||||
dl_bundle = {} | dl_bundle = {} | ||||
for name, ds in ds_or_db.iter_datasets(): | for name, ds in ds_or_db.iter_datasets(): | ||||
if 'train' in name: | if 'train' in name: | ||||
dl_bundle[name] = JittorDataLoader(ds, batch_size=batch_size, shuffle=shuffle, | |||||
dl_bundle[name] = JittorDataLoader(ds, batch_size=batch_size, shuffle=True if shuffle is None else shuffle, | |||||
drop_last=drop_last, num_workers=num_workers, | drop_last=drop_last, num_workers=num_workers, | ||||
buffer_size=buffer_size, | buffer_size=buffer_size, | ||||
stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, | stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, | ||||
@@ -267,7 +268,7 @@ def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = Fa | |||||
else: | else: | ||||
dl_bundle[name] = JittorDataLoader(ds, | dl_bundle[name] = JittorDataLoader(ds, | ||||
batch_size=non_train_batch_size if non_train_batch_size else batch_size, | batch_size=non_train_batch_size if non_train_batch_size else batch_size, | ||||
shuffle=shuffle, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
drop_last=drop_last, num_workers=num_workers, | drop_last=drop_last, num_workers=num_workers, | ||||
buffer_size=buffer_size, | buffer_size=buffer_size, | ||||
stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, | stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, | ||||
@@ -279,14 +280,14 @@ def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = Fa | |||||
ds_dict = {} | ds_dict = {} | ||||
for name, ds in ds_or_db.items(): | for name, ds in ds_or_db.items(): | ||||
if 'train' in name: | if 'train' in name: | ||||
dl = JittorDataLoader(ds, batch_size=batch_size, shuffle=shuffle, | |||||
dl = JittorDataLoader(ds, batch_size=batch_size, shuffle=True if shuffle is None else shuffle, | |||||
drop_last=drop_last, num_workers=num_workers, buffer_size=buffer_size, | drop_last=drop_last, num_workers=num_workers, buffer_size=buffer_size, | ||||
stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, endless=endless, | stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, endless=endless, | ||||
collate_fn=collate_fn) | collate_fn=collate_fn) | ||||
else: | else: | ||||
dl = JittorDataLoader(ds, | dl = JittorDataLoader(ds, | ||||
batch_size=non_train_batch_size if non_train_batch_size else batch_size, | batch_size=non_train_batch_size if non_train_batch_size else batch_size, | ||||
shuffle=shuffle, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
drop_last=drop_last, num_workers=num_workers, | drop_last=drop_last, num_workers=num_workers, | ||||
buffer_size=buffer_size, | buffer_size=buffer_size, | ||||
stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, | stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, | ||||
@@ -296,7 +297,7 @@ def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = Fa | |||||
return ds_dict | return ds_dict | ||||
elif isinstance(ds_or_db, HasLenGetitemType): | elif isinstance(ds_or_db, HasLenGetitemType): | ||||
dl = JittorDataLoader(ds_or_db, batch_size=batch_size, shuffle=shuffle, | |||||
dl = JittorDataLoader(ds_or_db, batch_size=batch_size, shuffle=False if shuffle is None else shuffle, | |||||
drop_last=drop_last, num_workers=num_workers, buffer_size=buffer_size, | drop_last=drop_last, num_workers=num_workers, buffer_size=buffer_size, | ||||
stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, endless=endless, | stop_grad=stop_grad, keep_numpy_array=keep_numpy_array, endless=endless, | ||||
collate_fn=collate_fn) | collate_fn=collate_fn) | ||||
@@ -293,7 +293,8 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||||
:param batch_sampler: 实现了 __len__() 和 __iter__() 的实例化对象,,其__iter__() 方法每次都会返回一个 List 对象, List中的值为 | :param batch_sampler: 实现了 __len__() 和 __iter__() 的实例化对象,,其__iter__() 方法每次都会返回一个 List 对象, List中的值为 | ||||
dataset 的下标 index ;默认为 None,当其不为 None 时,bacth_size, shuffle 参数均失效。 | dataset 的下标 index ;默认为 None,当其不为 None 时,bacth_size, shuffle 参数均失效。 | ||||
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | :param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | ||||
:param shuffle: 是否将数据打乱,若``shuffle=True``则会将dataset打乱;若否则什么也不做。 | |||||
:param shuffle: 是否打乱数据集, 默认为 ``None``, 如果传入的 ``ds_or_db`` 可以判断出哪个是 'train' 则设置其 shuffle 为 True , | |||||
其它的为 False 。 | |||||
:param drop_last: 当 ``drop_last=True`` 时,``PaddleDataLoader`` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据; | :param drop_last: 当 ``drop_last=True`` 时,``PaddleDataLoader`` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据; | ||||
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。 | 若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。 | ||||
:param collate_fn: 用于从 dataset 取到的一个 batch 数据进行打包处理的 Callable 函数,其值应该为以下三个: ``[None, "auto", Callable]``. | :param collate_fn: 用于从 dataset 取到的一个 batch 数据进行打包处理的 Callable 函数,其值应该为以下三个: ``[None, "auto", Callable]``. | ||||
@@ -326,7 +327,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||||
dl_bundle[name] = PaddleDataLoader(ds, feed_list=feed_list, places=places, | dl_bundle[name] = PaddleDataLoader(ds, feed_list=feed_list, places=places, | ||||
return_list=return_list, | return_list=return_list, | ||||
batch_sampler=batch_sampler, batch_size=batch_size, | batch_sampler=batch_sampler, batch_size=batch_size, | ||||
shuffle=shuffle, | |||||
shuffle=True if shuffle is None else shuffle, | |||||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | ||||
use_shared_memory=use_shared_memory, | use_shared_memory=use_shared_memory, | ||||
use_buffer_reader=use_buffer_reader, | use_buffer_reader=use_buffer_reader, | ||||
@@ -337,7 +338,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||||
return_list=return_list, | return_list=return_list, | ||||
batch_sampler=batch_sampler, | batch_sampler=batch_sampler, | ||||
batch_size=non_train_batch_size if non_train_batch_size else batch_size, | batch_size=non_train_batch_size if non_train_batch_size else batch_size, | ||||
shuffle=shuffle, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | ||||
use_shared_memory=use_shared_memory, | use_shared_memory=use_shared_memory, | ||||
use_buffer_reader=use_buffer_reader, | use_buffer_reader=use_buffer_reader, | ||||
@@ -350,7 +351,8 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||||
for name, ds in ds_or_db.items(): | for name, ds in ds_or_db.items(): | ||||
if 'train' in name: | if 'train' in name: | ||||
dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, | dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, | ||||
batch_sampler=batch_sampler, batch_size=batch_size, shuffle=shuffle, | |||||
batch_sampler=batch_sampler, batch_size=batch_size, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | ||||
use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | ||||
timeout=timeout, worker_init_fn=worker_init_fn, | timeout=timeout, worker_init_fn=worker_init_fn, | ||||
@@ -359,7 +361,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||||
dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, | dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, | ||||
batch_sampler=batch_sampler, | batch_sampler=batch_sampler, | ||||
batch_size=non_train_batch_size if non_train_batch_size else batch_size, | batch_size=non_train_batch_size if non_train_batch_size else batch_size, | ||||
shuffle=shuffle, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | ||||
use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | ||||
timeout=timeout, worker_init_fn=worker_init_fn, | timeout=timeout, worker_init_fn=worker_init_fn, | ||||
@@ -369,7 +371,8 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||||
elif isinstance(ds_or_db, HasLenGetitemType): | elif isinstance(ds_or_db, HasLenGetitemType): | ||||
dl = PaddleDataLoader(ds_or_db, feed_list=feed_list, places=places, return_list=return_list, | dl = PaddleDataLoader(ds_or_db, feed_list=feed_list, places=places, return_list=return_list, | ||||
batch_sampler=batch_sampler, batch_size=batch_size, shuffle=shuffle, | |||||
batch_sampler=batch_sampler, batch_size=batch_size, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | ||||
use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | ||||
timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) | timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) | ||||
@@ -13,7 +13,7 @@ from ...envs import FASTNLP_BACKEND, SUPPORT_BACKENDS | |||||
from ..log import logger | from ..log import logger | ||||
def prepare_dataloader(dataset, batch_size: int = 16, shuffle: bool = False, drop_last: bool = False, | |||||
def prepare_dataloader(dataset, batch_size: int = 16, shuffle: bool = None, drop_last: bool = False, | |||||
collate_fn: Union[Callable, str, None] = 'auto', num_workers: int = 0, | collate_fn: Union[Callable, str, None] = 'auto', num_workers: int = 0, | ||||
backend: str = 'auto'): | backend: str = 'auto'): | ||||
""" | """ | ||||
@@ -28,7 +28,8 @@ def prepare_dataloader(dataset, batch_size: int = 16, shuffle: bool = False, dro | |||||
* 为字典型 或 :class:`~fastNLP.io.DataBundle` 数据时,返回 `Dict` 类型的数据。 | * 为字典型 或 :class:`~fastNLP.io.DataBundle` 数据时,返回 `Dict` 类型的数据。 | ||||
:param batch_size: 批次大小。 | :param batch_size: 批次大小。 | ||||
:param shuffle: 是否打乱数据集。 | |||||
:param shuffle: 是否打乱数据集, 默认为 ``None``, 如果传入的 ``ds_or_db`` 可以判断出哪个是 'train' 则设置其 shuffle 为 True , | |||||
其它的为 False 。 | |||||
:param drop_last: 当最后一个 batch 不足 batch_size 数量的是否,是否丢弃。 | :param drop_last: 当最后一个 batch 不足 batch_size 数量的是否,是否丢弃。 | ||||
:param collate_fn: 用于处理一个 batch 的函数,一般包括 padding 和转为 tensor。有以下三种取值: | :param collate_fn: 用于处理一个 batch 的函数,一般包括 padding 和转为 tensor。有以下三种取值: | ||||
@@ -218,7 +218,7 @@ class TorchDataLoader(DataLoader): | |||||
def prepare_torch_dataloader(ds_or_db, | def prepare_torch_dataloader(ds_or_db, | ||||
batch_size: int = 16, | batch_size: int = 16, | ||||
shuffle: bool = False, | |||||
shuffle: bool = None, | |||||
sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | ||||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | ||||
num_workers: int = 0, collate_fn: Union[Callable, str, None] = 'auto', | num_workers: int = 0, collate_fn: Union[Callable, str, None] = 'auto', | ||||
@@ -252,7 +252,8 @@ def prepare_torch_dataloader(ds_or_db, | |||||
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | :param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | ||||
:param non_train_batch_size: 非 'train' 数据集的 ``TorchDataLoader`` 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | :param non_train_batch_size: 非 'train' 数据集的 ``TorchDataLoader`` 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 | ||||
:param shuffle: 是否打乱数据集, 默认为 ``False``。 | |||||
:param shuffle: 是否打乱数据集, 默认为 ``None``, 如果传入的 ``ds_or_db`` 可以判断出哪个是 'train' 则设置其 shuffle 为 True , | |||||
其它的为 False 。 | |||||
:param sampler: 实现了 __len__() 和 __iter__() 的实例化对象,其 __iter__() 方法每次都会返回 dataset 的一个下标 index , | :param sampler: 实现了 __len__() 和 __iter__() 的实例化对象,其 __iter__() 方法每次都会返回 dataset 的一个下标 index , | ||||
默认为None, 当其不为 None 时, shuffle 参数无效。 | 默认为None, 当其不为 None 时, shuffle 参数无效。 | ||||
:param non_train_sampler: 非 'train' 数据集的的实现了 __len__() 和 __iter__() 的实例化对象,其 __iter__() 方法每次都会返回 dataset 的一个下标 index , | :param non_train_sampler: 非 'train' 数据集的的实现了 __len__() 和 __iter__() 的实例化对象,其 __iter__() 方法每次都会返回 dataset 的一个下标 index , | ||||
@@ -290,7 +291,7 @@ def prepare_torch_dataloader(ds_or_db, | |||||
for name, ds in ds_or_db.iter_datasets(): | for name, ds in ds_or_db.iter_datasets(): | ||||
if 'train' in name: | if 'train' in name: | ||||
dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=batch_size, | dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=batch_size, | ||||
shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
shuffle=True if shuffle is None else shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | ||||
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | ||||
multiprocessing_context=multiprocessing_context, generator=generator, | multiprocessing_context=multiprocessing_context, generator=generator, | ||||
@@ -300,7 +301,7 @@ def prepare_torch_dataloader(ds_or_db, | |||||
else: | else: | ||||
dl_bundle[name] = TorchDataLoader(dataset=ds, | dl_bundle[name] = TorchDataLoader(dataset=ds, | ||||
batch_size=non_train_batch_size if non_train_batch_size else batch_size, | batch_size=non_train_batch_size if non_train_batch_size else batch_size, | ||||
shuffle=shuffle, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
sampler=non_train_sampler if non_train_sampler else sampler, | sampler=non_train_sampler if non_train_sampler else sampler, | ||||
batch_sampler=batch_sampler, | batch_sampler=batch_sampler, | ||||
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | ||||
@@ -316,7 +317,7 @@ def prepare_torch_dataloader(ds_or_db, | |||||
for name, ds in ds_or_db.items(): | for name, ds in ds_or_db.items(): | ||||
if 'train' in name: | if 'train' in name: | ||||
dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=batch_size, | dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=batch_size, | ||||
shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
shuffle=True if shuffle is None else shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | ||||
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | ||||
multiprocessing_context=multiprocessing_context, generator=generator, | multiprocessing_context=multiprocessing_context, generator=generator, | ||||
@@ -326,7 +327,7 @@ def prepare_torch_dataloader(ds_or_db, | |||||
else: | else: | ||||
dl_bundle[name] = TorchDataLoader(dataset=ds, | dl_bundle[name] = TorchDataLoader(dataset=ds, | ||||
batch_size=non_train_batch_size if non_train_batch_size else batch_size, | batch_size=non_train_batch_size if non_train_batch_size else batch_size, | ||||
shuffle=shuffle, | |||||
shuffle=False if shuffle is None else shuffle, | |||||
sampler=non_train_sampler if non_train_sampler else sampler, | sampler=non_train_sampler if non_train_sampler else sampler, | ||||
batch_sampler=batch_sampler, | batch_sampler=batch_sampler, | ||||
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | ||||
@@ -340,7 +341,7 @@ def prepare_torch_dataloader(ds_or_db, | |||||
elif isinstance(ds_or_db, HasLenGetitemType): | elif isinstance(ds_or_db, HasLenGetitemType): | ||||
dl = TorchDataLoader(dataset=ds_or_db, batch_size=batch_size, | dl = TorchDataLoader(dataset=ds_or_db, batch_size=batch_size, | ||||
shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
shuffle=False if shuffle is None else shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | ||||
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | ||||
multiprocessing_context=multiprocessing_context, generator=generator, | multiprocessing_context=multiprocessing_context, generator=generator, | ||||