Browse Source

修改了最新的文档

tags/v0.4.10
ChenXin 6 years ago
parent
commit
8dec821fad
20 changed files with 195 additions and 75 deletions
  1. +4
    -1
      README.md
  2. BIN
      docs/source/figures/fitlogChart.png
  3. BIN
      docs/source/figures/fitlogTable.png
  4. BIN
      docs/source/figures/workflow.png
  5. +1
    -0
      docs/source/index.rst
  6. +118
    -1
      docs/source/user/with_fitlog.rst
  7. +2
    -5
      fastNLP/core/batch.py
  8. +27
    -22
      fastNLP/core/callback.py
  9. +2
    -6
      fastNLP/core/dataset.py
  10. +1
    -3
      fastNLP/core/field.py
  11. +1
    -3
      fastNLP/core/instance.py
  12. +4
    -4
      fastNLP/core/losses.py
  13. +4
    -3
      fastNLP/core/trainer.py
  14. +2
    -6
      fastNLP/core/utils.py
  15. +5
    -15
      fastNLP/core/vocabulary.py
  16. +1
    -1
      fastNLP/io/dataset_loader.py
  17. +7
    -0
      fastNLP/modules/encoder/embedding.py
  18. +3
    -3
      fastNLP/modules/utils.py
  19. +11
    -1
      readthedocs.yml
  20. +2
    -1
      setup.py

+ 4
- 1
README.md View File

@@ -2,7 +2,7 @@

[![Build Status](https://travis-ci.org/fastnlp/fastNLP.svg?branch=master)](https://travis-ci.org/fastnlp/fastNLP)
[![codecov](https://codecov.io/gh/fastnlp/fastNLP/branch/master/graph/badge.svg)](https://codecov.io/gh/fastnlp/fastNLP)
[![PyPI version](https://badge.fury.io/py/fastNLP.svg)](https://badge.fury.io/py/fastNLP)
[![Pypi](https://img.shields.io/pypi/v/fastNLP.svg)](https://pypi.org/project/fastNLP)
![Hex.pm](https://img.shields.io/hexpm/l/plug.svg)
[![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest)

@@ -32,12 +32,14 @@ fastNLP 依赖如下包:
pip install fastNLP
```


## 参考资源

- [文档](https://fastnlp.readthedocs.io/zh/latest/)
- [源码](https://github.com/fastnlp/fastNLP)



## 内置组件

大部分用于的 NLP 任务神经网络都可以看做由编码(encoder)、聚合(aggregator)、解码(decoder)三种模块组成。
@@ -108,5 +110,6 @@ fastNLP的大致工作流程如上图所示,而项目结构如下:
</table>


<hr>

*In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!*

BIN
docs/source/figures/fitlogChart.png View File

Before After
Width: 2556  |  Height: 1450  |  Size: 272 kB

BIN
docs/source/figures/fitlogTable.png View File

Before After
Width: 2552  |  Height: 858  |  Size: 168 kB

BIN
docs/source/figures/workflow.png View File

Before After
Width: 2078  |  Height: 840  |  Size: 336 kB

+ 1
- 0
docs/source/index.rst View File

@@ -55,6 +55,7 @@ fastNLP 在 :mod:`~fastNLP.models` 模块中内置了如 :class:`~fastNLP.models
安装指南 <user/installation>
快速入门 <user/quickstart>
详细指南 <user/tutorial_one>
科研指南 <user/with_fitlog>

API 文档
-------------


+ 118
- 1
docs/source/user/with_fitlog.rst View File

@@ -2,4 +2,121 @@
科研向导
=================

本文介绍使用 fastNLP 和 fitlog 进行科学研究的方法
本文介绍结合使用 fastNLP 和 fitlog 进行科研的方法。

首先,我们需要安装 `fitlog <https://fitlog.readthedocs.io/>`_ 。你需要确认你的电脑中没有其它名为 `fitlog` 的命令。

我们从命令行中进入到一个文件夹,现在我们要在文件夹中创建我们的 fastNLP 项目。你可以在命令行输入 `fitlog init test1` ,
然后你会看到如下提示::

Initialized empty Git repository in /Users/fdujyn/workspaces/test1/.git/
Auto commit by fitlog
Initialized empty Git repository in /Users/fdujyn/workspaces/test1/.git/
Fitlog project test1 is initialized.

这表明你已经创建成功了项目文件夹,并且在项目文件夹中已经初始化了 Git。如果你不想初始化 Git,
可以参考文档 `命令行工具 <https://fitlog.readthedocs.io/zh/latest/user/command_line.html>`_

现在我们进入你创建的项目文件夹 test1 中,可以看到有一个名为 logs 的文件夹,后面我们将会在里面存放你的实验记录。
同时也有一个名为 main.py 的文件,这是我们推荐你使用的训练入口文件。文件的内容如下::

import fitlog

fitlog.commit(__file__) # auto commit your codes
fitlog.add_hyper_in_file (__file__) # record your hyperparameters

"""
Your training code here, you may use these functions to log your result:
fitlog.add_hyper()
fitlog.add_loss()
fitlog.add_metric()
fitlog.add_best_metric()
......
"""

fitlog.finish() # finish the logging

我们推荐你保留除注释外的四行代码,它们有助于你的实验,
他们的具体用处参见文档 `用户 API <https://fitlog.readthedocs.io/zh/latest/fitlog.html>`_

我们假定你要进行前两个教程中的实验,并已经把数据复制到了项目根目录下的 tutorial_sample_dataset.csv 文件中。
现在我们编写如下的训练代码,使用 :class:`~fastNLP.core.callback.FitlogCallback` 进行实验记录保存::

import fitlog
from fastNLP import Vocabulary, Trainer, CrossEntropyLoss, AccuracyMetric
from fastNLP.io import CSVLoader
from fastNLP.models import CNNText
from fastNLP.core.callback import FitlogCallback

fitlog.commit(__file__) # auto commit your codes
fitlog.add_hyper_in_file (__file__) # record your hyperparameters

############hyper
word_embed = 50
dropout = 0.1
############hyper

loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\t')
dataset = loader.load("tutorial_sample_dataset.csv")

dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')
dataset.apply(lambda x: x['sentence'].split(), new_field_name='words', is_input=True)
dataset.apply(lambda x: int(x['label']), new_field_name='target', is_target=True)
vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')
vocab.index_dataset(dataset, field_name='words',new_field_name='words')

model = CNNText((len(vocab),word_embed), num_classes=5, padding=2, dropout=dropout)

train_dev_data, test_data = dataset.split(0.1)
train_data, dev_data = train_dev_data.split(0.1)

trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,
loss=CrossEntropyLoss(), metrics=AccuracyMetric(),
callbacks=[FitlogCallback(test_data)])
trainer.train()

fitlog.finish() # finish the logging

用命令行在项目目录下执行 `python main.py` 之后,输出结果如下::

Auto commit by fitlog
input fields after batch(if batch size is 2):
words: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11])
target fields after batch(if batch size is 2):
target: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])

training epochs started 2019-05-23-21-11-51
Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714

Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.285714

Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.285714

Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.428571

Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.571429

Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.571429

Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.285714

Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.142857

Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.285714

Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.571429


In Epoch:5/Step:10, got best dev performance:AccuracyMetric: acc=0.571429
Reloaded the best model.

现在,我们在项目目录下输入 `fitlog log logs` ,命令行会启动一个网页,默认 url 为 ``0.0.0.0:5000`` 。
我们在浏览器中打开网页,可以看到如下的统计表格:

.. image:: ../figures/fitlogTable.png

如果我们点击action中的最后一个键钮,可以看到详细的 loss 图:

.. image:: ../figures/fitlogChart.png

更多的教程还在编写中,敬请期待~

+ 2
- 5
fastNLP/core/batch.py View File

@@ -30,11 +30,8 @@ class Batch(object):
"""
别名::class:`fastNLP.Batch` :class:`fastNLP.core.batch.Batch`

Batch 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出.
组成 `x` 和 `y`


Example::
Batch 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出,
组成 `x` 和 `y`::

batch = Batch(data_set, batch_size=16, sampler=SequentialSampler())
num_batch = len(batch)


+ 27
- 22
fastNLP/core/callback.py View File

@@ -54,6 +54,7 @@ __all__ = [
"GradientClipCallback",
"EarlyStopCallback",
"TensorboardCallback",
"FitlogCallback",
"LRScheduler",
"ControlC",
@@ -65,6 +66,7 @@ import os

import torch
from copy import deepcopy

try:
from tensorboardX import SummaryWriter
@@ -81,6 +83,7 @@ try:
except:
pass


class Callback(object):
"""
别名::class:`fastNLP.Callback` :class:`fastNLP.core.callback.Callback`
@@ -367,16 +370,17 @@ class GradientClipCallback(Callback):

每次backward前,将parameter的gradient clip到某个范围。

:param None,torch.Tensor,List[torch.Tensor] parameters: 一般通过model.parameters()获得。如果为None则默认对Trainer
的model中所有参数进行clip
:param None,torch.Tensor,List[torch.Tensor] parameters: 一般通过model.parameters()获得。
如果为None则默认对Trainer的model中所有参数进行clip
:param float clip_value: 将gradient 限制到[-clip_value, clip_value]。clip_value应该为正数
:param str clip_type: 支持'norm', 'value'
两种::

1 'norm', 将gradient的norm rescale到[-clip_value, clip_value]
2 'value', 将gradient限制在[-clip_value, clip_value], 小于-clip_value的gradient被赋值为-clip_value;
大于clip_value的gradient被赋值为clip_value.
2 'value', 将gradient限制在[-clip_value, clip_value],
小于-clip_value的gradient被赋值为-clip_value;
大于clip_value的gradient被赋值为clip_value.

"""
@@ -431,14 +435,13 @@ class EarlyStopCallback(Callback):
else:
raise exception # 抛出陌生Error


class FitlogCallback(Callback):
"""
别名: :class:`fastNLP.FitlogCallback` :class:`fastNLP.core.callback.FitlogCallback`

该callback将loss和progress自动写入到fitlog中; 如果Trainer有dev的数据,将自动把dev的结果写入到log中; 同时还支持传入
一个(或多个)test数据集进行测试(只有在trainer具有dev时才能使用),每次在dev上evaluate之后会在这些数据集上验证一下。
并将验证结果写入到fitlog中。这些数据集的结果是根据dev上最好的结果报道的,即如果dev在第3个epoch取得了最佳,则
fitlog中记录的关于这些数据集的结果就是来自第三个epoch的结果。
一个(或多个)test数据集进行测试(只有在trainer具有dev时才能使用),每次在dev上evaluate之后会在这些数据集上验证一下。
并将验证结果写入到fitlog中。这些数据集的结果是根据dev上最好的结果报道的,即如果dev在第3个epoch取得了最佳,则
fitlog中记录的关于这些数据集的结果就是来自第三个epoch的结果。

:param DataSet,dict(DataSet) data: 传入DataSet对象,会使用多个Trainer中的metric对数据进行验证。如果需要传入多个
DataSet请通过dict的方式传入,dict的key将作为对应dataset的name传递给fitlog。若tester不为None时,data需要通过
@@ -447,7 +450,9 @@ class FitlogCallback(Callback):
:param int verbose: 是否在终端打印内容,0不打印
:param bool log_exception: fitlog是否记录发生的exception信息
"""

# 还没有被导出到 fastNLP 层
# 别名: :class:`fastNLP.FitlogCallback` :class:`fastNLP.core.callback.FitlogCallback`
def __init__(self, data=None, tester=None, verbose=0, log_exception=False):
super().__init__()
self.datasets = {}
@@ -460,7 +465,7 @@ class FitlogCallback(Callback):
assert 'test' not in data, "Cannot use `test` as DataSet key, when tester is passed."
setattr(tester, 'verbose', 0)
self.testers['test'] = tester
if isinstance(data, dict):
for key, value in data.items():
assert isinstance(value, DataSet), f"Only DataSet object is allowed, not {type(value)}."
@@ -470,23 +475,23 @@ class FitlogCallback(Callback):
self.datasets['test'] = data
else:
raise TypeError("data receives dict[DataSet] or DataSet object.")
self.verbose = verbose
def on_train_begin(self):
if (len(self.datasets)>0 or len(self.testers)>0 ) and self.trainer.dev_data is None:
if (len(self.datasets) > 0 or len(self.testers) > 0) and self.trainer.dev_data is None:
raise RuntimeError("Trainer has no dev data, you cannot pass extra data to do evaluation.")
if len(self.datasets)>0:
if len(self.datasets) > 0:
for key, data in self.datasets.items():
tester = Tester(data=data, model=self.model, batch_size=self.batch_size, metrics=self.trainer.metrics,
verbose=0)
self.testers[key] = tester
fitlog.add_progress(total_steps=self.n_steps)
def on_backward_begin(self, loss):
fitlog.add_loss(loss.item(), name='loss', step=self.step, epoch=self.epoch)
def on_valid_end(self, eval_result, metric_key, optimizer, better_result):
if better_result:
eval_result = deepcopy(eval_result)
@@ -494,11 +499,11 @@ class FitlogCallback(Callback):
eval_result['epoch'] = self.epoch
fitlog.add_best_metric(eval_result)
fitlog.add_metric(eval_result, step=self.step, epoch=self.epoch)
if len(self.testers)>0:
if len(self.testers) > 0:
for key, tester in self.testers.items():
try:
eval_result = tester.test()
if self.verbose!=0:
if self.verbose != 0:
self.pbar.write("Evaluation on DataSet {}:".format(key))
self.pbar.write(tester._format_eval_results(eval_result))
fitlog.add_metric(eval_result, name=key, step=self.step, epoch=self.epoch)
@@ -506,10 +511,10 @@ class FitlogCallback(Callback):
fitlog.add_best_metric(eval_result, name=key)
except Exception:
self.pbar.write("Exception happens when evaluate on DataSet named `{}`.".format(key))
def on_train_end(self):
fitlog.finish()
def on_exception(self, exception):
fitlog.finish(status=1)
if self._log_exception:


+ 2
- 6
fastNLP/core/dataset.py View File

@@ -571,9 +571,7 @@ class DataSet(object):
def set_input(self, *field_names, flag=True):
"""
将field_names的field设置为input

Example::
将field_names的field设置为input::

dataset.set_input('words', 'seq_len') # 将words和seq_len这两个field的input属性设置为True
dataset.set_input('words', flag=False) # 将words这个field的input属性设置为False
@@ -605,9 +603,7 @@ class DataSet(object):
def set_padder(self, field_name, padder):
"""
为field_name设置padder

Example::
为field_name设置padder::

from fastNLP import EngChar2DPadder
padder = EngChar2DPadder()


+ 1
- 3
fastNLP/core/field.py View File

@@ -448,9 +448,7 @@ class EngChar2DPadder(Padder):
但这个Padder只能处理index为int的情况。

padded过后的batch内容,形状为(batch_size, max_sentence_length, max_word_length). max_sentence_length为这个batch中最大句
子长度;max_word_length为这个batch中最长的word的长度

Example::
子长度;max_word_length为这个batch中最长的word的长度::

from fastNLP import DataSet
from fastNLP import EngChar2DPadder


+ 1
- 3
fastNLP/core/instance.py View File

@@ -13,9 +13,7 @@ class Instance(object):
别名::class:`fastNLP.Instance` :class:`fastNLP.core.instance.Instance`

Instance是fastNLP中对应一个sample的类。每个sample在fastNLP中是一个Instance对象。
Instance一般与 :class:`~fastNLP.DataSet` 一起使用, Instance的初始化如下面的Example所示

Example::
Instance一般与 :class:`~fastNLP.DataSet` 一起使用, Instance的初始化如下面的Example所示::
>>>from fastNLP import Instance
>>>ins = Instance(field_1=[1, 1, 1], field_2=[2, 2, 2])


+ 4
- 4
fastNLP/core/losses.py View File

@@ -190,10 +190,10 @@ class LossFunc(LossBase):
找到相对应的参数名为value的参数,并传入func中作为参数名为key的参数
:param kwargs: 除了参数映射表以外可以用key word args的方式设置参数映射关系

Example::
使用方法::

>>> func = torch.nn.CrossEntropyLoss()
>>> loss_func = LossFunc(func, input="pred", target="label")
func = torch.nn.CrossEntropyLoss()
loss_func = LossFunc(func, input="pred", target="label")
# 这表示构建了一个损失函数类,由func计算损失函数,其中将从模型返回值或者DataSet的target=True的field
# 当中找到一个参数名为`pred`的参数传入func一个参数名为`input`的参数;找到一个参数名为`label`的参数
# 传入func作为一个名为`target`的参数
@@ -227,7 +227,7 @@ class CrossEntropyLoss(LossBase):

Example::

>>> loss = CrossEntropyLoss(pred='pred', target='label', padding_idx=0)
loss = CrossEntropyLoss(pred='pred', target='label', padding_idx=0)
"""


+ 4
- 3
fastNLP/core/trainer.py View File

@@ -498,14 +498,15 @@ class Trainer(object):
"""
使用该函数使Trainer开始训练。

:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现
最好的模型参数。
:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,
如果True, trainer将在返回之前重新加载dev表现最好的模型参数。
:return dict: 返回一个字典类型的数据,
内含以下内容::

seconds: float, 表示训练时长
以下三个内容只有在提供了dev_data的情况下会有。
best_eval: Dict of Dict, 表示evaluation的结果。第一层的key为Metric的名称,第二层的key为具体的Metric
best_eval: Dict of Dict, 表示evaluation的结果。第一层的key为Metric的名称,
第二层的key为具体的Metric
best_epoch: int,在第几个epoch取得的最佳值
best_step: int, 在第几个step(batch)更新取得的最佳值



+ 2
- 6
fastNLP/core/utils.py View File

@@ -68,18 +68,14 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1):
# res = [5 4 9 1 8]
# 0.0040721893310546875

可以看到第二次运行的时候,只用了0.0001s左右,是由于第二次运行将直接从cache.pkl这个文件读取数据,而不会经过再次预处理

Example::
可以看到第二次运行的时候,只用了0.0001s左右,是由于第二次运行将直接从cache.pkl这个文件读取数据,而不会经过再次预处理::

# 还是以上面的例子为例,如果需要重新生成另一个cache,比如另一个数据集的内容,通过如下的方式调用即可
process_data(_cache_fp='cache2.pkl') # 完全不影响之前的‘cache.pkl'

上面的_cache_fp是cache_results会识别的参数,它将从'cache2.pkl'这里缓存/读取数据,即这里的'cache2.pkl'覆盖默认的
'cache.pkl'。如果在你的函数前面加上了@cache_results()则你的函数会增加三个参数[_cache_fp, _refresh, _verbose]。
上面的例子即为使用_cache_fp的情况,这三个参数不会传入到你的函数中,当然你写的函数参数名也不可能包含这三个名称。

Example::
上面的例子即为使用_cache_fp的情况,这三个参数不会传入到你的函数中,当然你写的函数参数名也不可能包含这三个名称::

process_data(_cache_fp='cache2.pkl', _refresh=True) # 这里强制重新生成一份对预处理的cache。
# _verbose是用于控制输出信息的,如果为0,则不输出任何内容;如果为1,则会提醒当前步骤是读取的cache还是生成了新的cache


+ 5
- 15
fastNLP/core/vocabulary.py View File

@@ -44,9 +44,7 @@ class Vocabulary(object):
"""
别名::class:`fastNLP.Vocabulary` :class:`fastNLP.core.vocabulary.Vocabulary`
用于构建, 存储和使用 `str` 到 `int` 的一一映射

Example::
用于构建, 存储和使用 `str` 到 `int` 的一一映射::

vocab = Vocabulary()
word_list = "this is a word list".split()
@@ -159,9 +157,7 @@ class Vocabulary(object):
def has_word(self, w):
"""
检查词是否被记录

Example::
检查词是否被记录::

has_abc = vocab.has_word('abc')
# equals to
@@ -189,9 +185,7 @@ class Vocabulary(object):
@_check_build_vocab
def index_dataset(self, *datasets, field_name, new_field_name=None):
"""
将DataSet中对应field的词转为数字.

Example::
将DataSet中对应field的词转为数字,Example::

# remember to use `field_name`
vocab.index_dataset(train_data, dev_data, test_data, field_name='words')
@@ -234,9 +228,7 @@ class Vocabulary(object):
def from_dataset(self, *datasets, field_name):
"""
使用dataset的对应field中词构建词典

Example::
使用dataset的对应field中词构建词典::

# remember to use `field_name`
vocab.from_dataset(train_data1, train_data2, field_name='words')
@@ -280,9 +272,7 @@ class Vocabulary(object):
def to_index(self, w):
"""
将词转为数字. 若词不再词典中被记录, 将视为 unknown, 若 ``unknown=None`` , 将抛出
``ValueError``

Example::
``ValueError``::

index = vocab.to_index('abc')
# equals to


+ 1
- 1
fastNLP/io/dataset_loader.py View File

@@ -106,7 +106,7 @@ class DataSetLoader:
"""
别名::class:`fastNLP.io.DataSetLoader` :class:`fastNLP.io.dataset_loader.DataSetLoader`

定义了各种 DataSetLoader 所需的API 接口,开发者应该继承它实现各种的 DataSetLoader。
定义了各种 DataSetLoader (针对特定数据上的特定任务) 所需的API 接口,开发者应该继承它实现各种的 DataSetLoader。
开发者至少应该编写如下内容:


+ 7
- 0
fastNLP/modules/encoder/embedding.py View File

@@ -41,3 +41,10 @@ class Embedding(nn.Embedding):
"""
x = super().forward(x)
return self.dropout(x)

def size(self):
"""
Embedding的大小
:return: torch.Size()
"""
return self.weight.size()

+ 3
- 3
fastNLP/modules/utils.py View File

@@ -74,9 +74,9 @@ def get_embeddings(init_embed):
"""
根据输入的init_embed生成nn.Embedding对象。

:param init_embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即
embedding的大小和每个词的维度. 也可以传入 nn.Embedding 对象,
此时就以传入的对象作为embedding
:param init_embed: 可以是 tuple:(num_embedings, embedding_dim), 即embedding的大小和每个词的维度;也可以传入
nn.Embedding 对象, 此时就以传入的对象作为embedding; 传入np.ndarray也行,将使用传入的ndarray作为作为Embedding初始
化; 传入orch.Tensor, 将使用传入的值作为Embedding初始化。
:return nn.Embedding embeddings:
"""
if isinstance(init_embed, tuple):


+ 11
- 1
readthedocs.yml View File

@@ -1,6 +1,16 @@
version: 2

sphinx:
configuration: docs/source/conf.py

build:
image: latest

python:
version: 3.6
setup_py_install: true
install:
- method: setuptools
path: .

formats:
- htmlzip

+ 2
- 1
setup.py View File

@@ -16,7 +16,8 @@ setup(
version='0.4.0',
description='fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team',
long_description=readme,
license=license,
long_description_content_type='text/markdown',
license='Apache License',
author='FudanNLP',
python_requires='>=3.6',
packages=find_packages(),


Loading…
Cancel
Save