@@ -20,6 +20,7 @@ class ProgressCallback(HasMonitorCallback): | |||||
must_have_monitor=must_have_monitor) | must_have_monitor=must_have_monitor) | ||||
self.best_monitor_epoch = -1 | self.best_monitor_epoch = -1 | ||||
self.best_monitor_step = -1 | self.best_monitor_step = -1 | ||||
self.best_results = None | |||||
def record_better_monitor(self, trainer): | def record_better_monitor(self, trainer): | ||||
self.best_monitor_step = trainer.global_forward_batches | self.best_monitor_step = trainer.global_forward_batches | ||||
@@ -29,6 +30,8 @@ class ProgressCallback(HasMonitorCallback): | |||||
if self.best_monitor_epoch != -1: | if self.best_monitor_epoch != -1: | ||||
msg = f"The best performance for monitor {self._real_monitor}:{self.monitor_value} was achieved in" \ | msg = f"The best performance for monitor {self._real_monitor}:{self.monitor_value} was achieved in" \ | ||||
f" Epoch:{self.best_monitor_epoch}, Global Batch:{self.best_monitor_step}." | f" Epoch:{self.best_monitor_epoch}, Global Batch:{self.best_monitor_step}." | ||||
if self.best_results is not None: | |||||
msg = msg + ' The evaluation result: \n' + str(self.best_results) | |||||
logger.info(msg) | logger.info(msg) | ||||
@property | @property | ||||
@@ -147,9 +150,11 @@ class RichCallback(ProgressCallback): | |||||
results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | ||||
not key.startswith('_')} | not key.startswith('_')} | ||||
if self.format_json: | if self.format_json: | ||||
self.progress_bar.console.print_json(json.dumps(results)) | |||||
results = json.dumps(results) | |||||
self.progress_bar.console.print_json(results) | |||||
else: | else: | ||||
self.progress_bar.print(results) | self.progress_bar.print(results) | ||||
self.best_results = results | |||||
def clear_tasks(self): | def clear_tasks(self): | ||||
for key, taskid in self.task2id.items(): | for key, taskid in self.task2id.items(): | ||||
@@ -227,9 +232,9 @@ class RawTextCallback(ProgressCallback): | |||||
results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | ||||
not key.startswith('_')} | not key.startswith('_')} | ||||
if self.format_json: | if self.format_json: | ||||
logger.info(json.dumps(results)) | |||||
else: | |||||
logger.info(results) | |||||
results = json.dumps(results) | |||||
logger.info(results) | |||||
self.best_results = results | |||||
@property | @property | ||||
def name(self): # progress bar的名称 | def name(self): # progress bar的名称 | ||||
@@ -316,9 +321,9 @@ class TqdmCallback(ProgressCallback): | |||||
results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | results = {key:trainer.driver.tensor_to_numeric(value) for key, value in results.items() if | ||||
not key.startswith('_')} | not key.startswith('_')} | ||||
if self.format_json: | if self.format_json: | ||||
logger.info(json.dumps(results)) | |||||
else: | |||||
logger.info(results) | |||||
results = json.dumps(results) | |||||
logger.info(results) | |||||
self.best_results = results | |||||
def clear_tasks(self): | def clear_tasks(self): | ||||
for key, taskid in self.task2id.items(): | for key, taskid in self.task2id.items(): | ||||
@@ -35,6 +35,7 @@ from fastNLP.envs import rank_zero_call | |||||
from fastNLP.core.log import logger | from fastNLP.core.log import logger | ||||
from fastNLP.envs import FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | from fastNLP.envs import FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | ||||
from fastNLP.core.utils.exceptions import EarlyStopException | from fastNLP.core.utils.exceptions import EarlyStopException | ||||
from fastNLP.core.dataloaders import OverfitDataLoader | |||||
class Trainer(TrainerEventTrigger): | class Trainer(TrainerEventTrigger): | ||||
@@ -244,7 +245,20 @@ class Trainer(TrainerEventTrigger): | |||||
注意该参数仅当 ``Trainer`` 内置的 ``Evaluator`` 不为 None 时且有需要该参数但是没有设置该参数的 *callback* 实例才有效; | 注意该参数仅当 ``Trainer`` 内置的 ``Evaluator`` 不为 None 时且有需要该参数但是没有设置该参数的 *callback* 实例才有效; | ||||
:param n_batches: 迭代多少个 ``batch`` 的训练结束。当该值不为 -1 时,将直接忽略 ``n_epochs`` 的值。 | |||||
:param n_batches: 总共迭代多少个 ``batch`` 的训练结束。当该值不为 -1 时,将直接忽略 ``n_epochs`` 的值。 | |||||
:param overfit_batches: 使用该参数来支持 '过拟合' 的功能;支持的值为 ``-1``、``0`` 或者 大于 0 的整数,表示使用多少个 batch 的数据 | |||||
来进行过拟合训练;其中 0 为表示不进行任何操作;-1 表示使用所有的数据进行训练; | |||||
.. note:: | |||||
您可以使用该参数来简单地查看您的模型是否是 '正确的',即您的模型是否能够在少量的数据上快速进行收敛,从而说明损失函数以及优化器等 | |||||
没有问题。当使用该参数时,我们会直接从 ``train_dataloader`` 中提取固定数量的 batch,然后在所有 epoch 中都是用这些数据 | |||||
来进行训练; | |||||
.. warning:: | |||||
在使用该参数时,您同样可以指定 ``metrics`` 参数来进行简单的验证,当该参数和 ``metrics`` 同时出现时,我们会将 evaluate_dataloaders | |||||
直接替换为在过拟合中所使用的训练数据;因此您需要保证您的 ``metrics`` 是能够在 ``train_dataloader`` 上使用的; | |||||
:param marker: 用于标记一个 ``Trainer`` 实例,从而在用户调用 ``Trainer.on`` 函数时,标记该函数属于哪一个具体的 ``Trainer`` 实例;默认为 None; | :param marker: 用于标记一个 ``Trainer`` 实例,从而在用户调用 ``Trainer.on`` 函数时,标记该函数属于哪一个具体的 ``Trainer`` 实例;默认为 None; | ||||
@@ -372,6 +386,7 @@ class Trainer(TrainerEventTrigger): | |||||
monitor: Union[str, Callable] = None, | monitor: Union[str, Callable] = None, | ||||
larger_better: bool = True, | larger_better: bool = True, | ||||
n_batches: int = -1, | n_batches: int = -1, | ||||
overfit_batches: int = 0, | |||||
marker: Optional[str] = None, | marker: Optional[str] = None, | ||||
**kwargs | **kwargs | ||||
): | ): | ||||
@@ -469,9 +484,6 @@ class Trainer(TrainerEventTrigger): | |||||
n_batches=n_batches | n_batches=n_batches | ||||
) | ) | ||||
if metrics is None and evaluate_dataloaders is not None: | |||||
raise ValueError("You have set 'evaluate_dataloaders' but forget to set 'metrics'.") | |||||
if metrics is not None and evaluate_dataloaders is None: | if metrics is not None and evaluate_dataloaders is None: | ||||
raise ValueError("You have set 'metrics' but forget to set 'evaluate_dataloaders'.") | raise ValueError("You have set 'metrics' but forget to set 'evaluate_dataloaders'.") | ||||
@@ -495,33 +507,42 @@ class Trainer(TrainerEventTrigger): | |||||
else: | else: | ||||
_dist_sampler = None | _dist_sampler = None | ||||
self.dataloader = self.train_dataloader | |||||
self.driver.set_deterministic_dataloader(self.dataloader) | |||||
self.dataloader = self.driver.set_dist_repro_dataloader(dataloader=self.train_dataloader, dist=_dist_sampler, | |||||
reproducible=self.callback_manager._need_reproducible_sampler) | |||||
# 进行 overfit 相关的设置; | |||||
if overfit_batches != 0: | |||||
self.dataloader = OverfitDataLoader(self.dataloader, overfit_batches) | |||||
self.overfit_batches = overfit_batches | |||||
self.evaluator = None | self.evaluator = None | ||||
self.monitor = monitor | self.monitor = monitor | ||||
self.larger_better = larger_better | self.larger_better = larger_better | ||||
if metrics is not None and evaluate_dataloaders is not None: | |||||
check_evaluate_every(evaluate_every) | |||||
progress_bar = kwargs.get('progress_bar', 'auto') # 如果不为 | |||||
if not (isinstance(progress_bar, str) or progress_bar is None): # 应该是ProgressCallback,获取其名称。 | |||||
progress_bar = progress_bar.name | |||||
self.evaluator = Evaluator(model=model, dataloaders=evaluate_dataloaders, metrics=metrics, | |||||
driver=self.driver, evaluate_batch_step_fn=evaluate_batch_step_fn, | |||||
evaluate_fn=evaluate_fn, input_mapping=evaluate_input_mapping, | |||||
output_mapping=evaluate_output_mapping, fp16=fp16, verbose=0, | |||||
use_dist_sampler=kwargs.get("evaluate_use_dist_sampler", use_dist_sampler), | |||||
progress_bar=progress_bar, | |||||
check_dataloader_legality=kwargs.get('check_dataloader_legality', True)) | |||||
if metrics is not None: | |||||
if overfit_batches != 0: | |||||
evaluate_dataloaders = self.dataloader | |||||
if evaluate_dataloaders is not None: | |||||
check_evaluate_every(evaluate_every) | |||||
progress_bar = kwargs.get('progress_bar', 'auto') # 如果不为 | |||||
if not (isinstance(progress_bar, str) or progress_bar is None): # 应该是ProgressCallback,获取其名称。 | |||||
progress_bar = progress_bar.name | |||||
self.evaluator = Evaluator(model=model, dataloaders=evaluate_dataloaders, metrics=metrics, | |||||
driver=self.driver, evaluate_batch_step_fn=evaluate_batch_step_fn, | |||||
evaluate_fn=evaluate_fn, input_mapping=evaluate_input_mapping, | |||||
output_mapping=evaluate_output_mapping, fp16=fp16, verbose=0, | |||||
use_dist_sampler=kwargs.get("evaluate_use_dist_sampler", use_dist_sampler), | |||||
progress_bar=progress_bar, | |||||
check_dataloader_legality=kwargs.get('check_dataloader_legality', True)) | |||||
else: | |||||
raise ValueError("You have set 'evaluate_dataloaders' but forget to set 'metrics'.") | |||||
if train_fn is not None and not isinstance(train_fn, str): | if train_fn is not None and not isinstance(train_fn, str): | ||||
raise TypeError("Parameter `train_fn` can only be `str` type when it is not None.") | raise TypeError("Parameter `train_fn` can only be `str` type when it is not None.") | ||||
self._train_step, self._train_step_signature_fn = self.driver.get_model_call_fn("train_step" if train_fn is None else train_fn) | self._train_step, self._train_step_signature_fn = self.driver.get_model_call_fn("train_step" if train_fn is None else train_fn) | ||||
self.train_fn = train_fn | self.train_fn = train_fn | ||||
self.dataloader = self.train_dataloader | |||||
self.driver.set_deterministic_dataloader(self.dataloader) | |||||
self.dataloader = self.driver.set_dist_repro_dataloader(dataloader=self.train_dataloader, dist=_dist_sampler, | |||||
reproducible=self.callback_manager._need_reproducible_sampler) | |||||
self.evaluate_batch_step_fn = evaluate_batch_step_fn | self.evaluate_batch_step_fn = evaluate_batch_step_fn | ||||
self.kwargs = kwargs | self.kwargs = kwargs | ||||
@@ -7,10 +7,13 @@ __all__ = [ | |||||
'prepare_paddle_dataloader', | 'prepare_paddle_dataloader', | ||||
'prepare_torch_dataloader', | 'prepare_torch_dataloader', | ||||
"prepare_dataloader" | |||||
"prepare_dataloader", | |||||
"OverfitDataLoader" | |||||
] | ] | ||||
from .jittor_dataloader import JittorDataLoader, prepare_jittor_dataloader | from .jittor_dataloader import JittorDataLoader, prepare_jittor_dataloader | ||||
from .torch_dataloader import TorchDataLoader, prepare_torch_dataloader, MixDataLoader | from .torch_dataloader import TorchDataLoader, prepare_torch_dataloader, MixDataLoader | ||||
from .paddle_dataloader import PaddleDataLoader, prepare_paddle_dataloader | from .paddle_dataloader import PaddleDataLoader, prepare_paddle_dataloader | ||||
from .prepare_dataloader import prepare_dataloader | |||||
from .prepare_dataloader import prepare_dataloader | |||||
from .utils import OverfitDataLoader |
@@ -1,4 +1,5 @@ | |||||
from typing import Callable, Any, Union | |||||
import os | |||||
from typing import Callable, Any, Union, Sequence | |||||
from abc import ABC | from abc import ABC | ||||
import inspect | import inspect | ||||
import ast | import ast | ||||
@@ -6,7 +7,8 @@ import ast | |||||
from ..log import logger | from ..log import logger | ||||
from ..utils.cache_results import get_func_calls, truncate_start_blanks | from ..utils.cache_results import get_func_calls, truncate_start_blanks | ||||
__all__ = [ | __all__ = [ | ||||
"indice_collate_wrapper" | |||||
"indice_collate_wrapper", | |||||
"OverfitDataLoader" | |||||
] | ] | ||||
@@ -111,6 +113,35 @@ class HasLenGetitemType(ABC): | |||||
return NotImplemented | return NotImplemented | ||||
class OverfitDataLoader: | |||||
""" | |||||
实现一个简单的迭代器来模拟实际的 dataloader,从给定的 dataloader 中取出部分数据,来让 Trainer 实现 overfit 的功能; | |||||
""" | |||||
def __init__(self, dataloader, overfit_batches: int): | |||||
self.dataloader = dataloader # 需要将实际的 dataloader 挂载到该对象上,从而应付一些对于实际的 dataloader 的操作; | |||||
self.batches = [] | |||||
self.overfit_batches = int(overfit_batches) | |||||
if self.overfit_batches > len(dataloader): | |||||
logger.warning("Parameter 'overfit_batches' is bigger than the length of 'train_dataloader'.") | |||||
for idx, batch in enumerate(dataloader): | |||||
if idx < self.overfit_batches or self.overfit_batches <= -1: | |||||
self.batches.append(batch) | |||||
def __len__(self): | |||||
return len(self.batches) | |||||
def __iter__(self): | |||||
for batch in self.batches: | |||||
yield batch | |||||
def __getattr__(self, item): | |||||
return getattr(self.dataloader, item) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
def demo(*args, **kwargs): | def demo(*args, **kwargs): | ||||
pass | pass | ||||
@@ -140,9 +140,6 @@ if _NEED_IMPORT_TORCH: | |||||
import torch.distributed as dist | import torch.distributed as dist | ||||
from torch.nn.parallel import DistributedDataParallel | from torch.nn.parallel import DistributedDataParallel | ||||
from torch.utils.data import BatchSampler | from torch.utils.data import BatchSampler | ||||
from torch.utils.data import RandomSampler as TorchRandomSampler | |||||
from torch.utils.data import SequentialSampler as TorchSequentialSampler | |||||
from torch.utils.data import BatchSampler as TorchBatchSampler | |||||
__all__ = [ | __all__ = [ | ||||
'TorchDDPDriver' | 'TorchDDPDriver' | ||||
@@ -31,6 +31,7 @@ from fastNLP.envs import rank_zero_call | |||||
from fastNLP.envs import FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | from fastNLP.envs import FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | ||||
from fastNLP.core.log import logger | from fastNLP.core.log import logger | ||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, ReproduceBatchSampler, RandomSampler | from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, ReproduceBatchSampler, RandomSampler | ||||
from fastNLP.core.dataloaders import OverfitDataLoader | |||||
class TorchDriver(Driver): | class TorchDriver(Driver): | ||||
@@ -92,7 +93,7 @@ class TorchDriver(Driver): | |||||
self.grad_scaler.update() | self.grad_scaler.update() | ||||
def check_dataloader_legality(self, dataloader): | def check_dataloader_legality(self, dataloader): | ||||
if not isinstance(dataloader, DataLoader): | |||||
if not isinstance(dataloader, DataLoader) and not isinstance(dataloader, OverfitDataLoader): | |||||
raise TypeError(f"{DataLoader} is expected, instead of `{type(dataloader)}`") | raise TypeError(f"{DataLoader} is expected, instead of `{type(dataloader)}`") | ||||
if len(dataloader) == 0: | if len(dataloader) == 0: | ||||
logger.rank_zero_warning("Your dataloader is empty, which is not recommended because it " | logger.rank_zero_warning("Your dataloader is empty, which is not recommended because it " | ||||
@@ -181,18 +181,16 @@ def replace_sampler(dataloader: "DataLoader", sampler): | |||||
instance_attrs = {k: v for k, v in vars(dataloader).items() if not k.startswith('_')} | instance_attrs = {k: v for k, v in vars(dataloader).items() if not k.startswith('_')} | ||||
# 'multiprocessing_context' 是 user-defined function; | # 'multiprocessing_context' 是 user-defined function; | ||||
instance_attrs["multiprocessing_context"] = dataloader.multiprocessing_context | |||||
if getattr(dataloader, 'multiprocessing_context', None) is not None: | |||||
instance_attrs["multiprocessing_context"] = dataloader.multiprocessing_context | |||||
# 拿到 dataloader '__init__' 函数的默认函数签名; | # 拿到 dataloader '__init__' 函数的默认函数签名; | ||||
init_params = dict(inspect.signature(dataloader.__init__).parameters) | init_params = dict(inspect.signature(dataloader.__init__).parameters) | ||||
# 这里为什么要单独弄的原因在于,用户在定制自己的 dataloader 的同时可能为了方便只设定一些参数,而后面直接使用 **kwargs 的方式,这时如果 | |||||
# 其在初始化自己的 dataloader 实例的时候加入了一些其它的新的参数(首先这一步是必要的,因为我们只能通过这样加 sampler;另一方面,用户 | |||||
# 可能确实通过 **kwargs 加入了一些新的参数),如果假设用户是这样使用的: "super().__init__(**kwargs)",那么我们就只能去 DataLoader | |||||
# 中寻找; | |||||
# 防止用户的 DataLoader 是继承了 pytorch 的 DataLoader,然后还是使用了 **kwargs 的方式对父类传参数 | |||||
has_variadic_kwargs = any(v.kind is v.VAR_KEYWORD for k, v in init_params.items()) | has_variadic_kwargs = any(v.kind is v.VAR_KEYWORD for k, v in init_params.items()) | ||||
if has_variadic_kwargs: | |||||
# 这里之所以这样写是因为用户自己定制的 Dataloader 中名字一样的参数所设置的默认值可能不同;因此不能直接使用 update 覆盖掉了; | |||||
if has_variadic_kwargs and isinstance(dataloader, DataLoader): | |||||
# 防止用户写入了 super().__init__(**kwargs) | |||||
for key, value in dict(inspect.signature(DataLoader.__init__).parameters).items(): | for key, value in dict(inspect.signature(DataLoader.__init__).parameters).items(): | ||||
if key not in init_params and key != 'self': | if key not in init_params and key != 'self': | ||||
init_params[key] = value | init_params[key] = value | ||||
@@ -204,7 +202,8 @@ def replace_sampler(dataloader: "DataLoader", sampler): | |||||
non_default_params.add("dataset") | non_default_params.add("dataset") | ||||
reconstruct_args = {k: v for k, v in instance_attrs.items() if k in non_default_params} | reconstruct_args = {k: v for k, v in instance_attrs.items() if k in non_default_params} | ||||
reconstruct_args.update({"sampler": sampler, "shuffle": False, "batch_sampler": None}) | |||||
if isinstance(dataloader, DataLoader): | |||||
reconstruct_args.update({"sampler": sampler, "shuffle": False, "batch_sampler": None}) | |||||
batch_sampler = getattr(dataloader, "batch_sampler") | batch_sampler = getattr(dataloader, "batch_sampler") | ||||
if batch_sampler is not None and isinstance(batch_sampler, ReproducibleBatchSampler): | if batch_sampler is not None and isinstance(batch_sampler, ReproducibleBatchSampler): | ||||
@@ -218,35 +217,31 @@ def replace_sampler(dataloader: "DataLoader", sampler): | |||||
and p.name not in reconstruct_args | and p.name not in reconstruct_args | ||||
} | } | ||||
# 这种错误针对的是 __init__ 中的参数没有用同样名字的 self 挂上; | |||||
# 在 attribute 中没有找到这些参数,导致了没有办法重新初始化 | |||||
if required_args: | if required_args: | ||||
required_args = sorted(required_args) | required_args = sorted(required_args) | ||||
dataloader_self_name = dataloader.__class__.__name__ | dataloader_self_name = dataloader.__class__.__name__ | ||||
raise Exception( | raise Exception( | ||||
f"Trying to inject `DistributedSampler` into the `{dataloader_self_name}` instance. " | |||||
"This would fail as some of the `__init__` arguments are not available as instance attributes. " | |||||
f"The missing attributes are {required_args}. " | |||||
f"HINT: If you wrote the `{dataloader_self_name}` class, define `self.missing_arg_name` or " | |||||
"manually add the `DistributedSampler` as: " | |||||
f"`{dataloader_self_name}(dataset, sampler=DistributedSampler(dataset))`." | |||||
f"Need to inject arguments {required_args} into the __init__ of `{dataloader_self_name}`. " | |||||
f"But they are not found in the attribute of `{dataloader_self_name}`, fastNLP cannot determine its " | |||||
f"value when try to reinitialize `{dataloader_self_name}`, please add `{required_args}` to be " | |||||
f"`{dataloader_self_name}`'s attribute." | |||||
) | ) | ||||
# 这种错误针对的是传入的 dataloader 不是直接的 DataLoader,而是定制了 DataLoader,但是 __init__ 中没有 **kwargs; | # 这种错误针对的是传入的 dataloader 不是直接的 DataLoader,而是定制了 DataLoader,但是 __init__ 中没有 **kwargs; | ||||
if not has_variadic_kwargs: | if not has_variadic_kwargs: | ||||
# the dataloader signature does not allow keyword arguments that need to be passed | # the dataloader signature does not allow keyword arguments that need to be passed | ||||
missing_kwargs = reconstruct_args.keys() - init_params.keys() | missing_kwargs = reconstruct_args.keys() - init_params.keys() | ||||
if missing_kwargs: | if missing_kwargs: | ||||
missing_kwargs = sorted(missing_kwargs) | missing_kwargs = sorted(missing_kwargs) | ||||
dataloader_self_name = dataloader.__class__.__name__ | dataloader_self_name = dataloader.__class__.__name__ | ||||
raise Exception( | raise Exception( | ||||
f"Trying to inject `DistributedSampler` into the `{dataloader_self_name}` instance. " | |||||
"This would fail as it doesn't expose all its attributes in the `__init__` signature. " | |||||
f"The missing arguments are {missing_kwargs}. " | |||||
f"HINT: If you wrote the `{dataloader_self_name}` class, add the `__init__` arguments or " | |||||
"manually add the `DistributedSampler` as: " | |||||
f"`{dataloader_self_name}(dataset, sampler=DistributedSampler(dataset))`." | |||||
f"The parameter:{missing_kwargs} needed to reinitialize `{dataloader_self_name}` is not found." | |||||
) | ) | ||||
# 如果没有kwargs,则保证一下只传入需要的参数 | |||||
if not isinstance(dataloader, DataLoader): | |||||
reconstruct_args = {key:value for key,value in reconstruct_args.items() if key in init_params} | |||||
return type(dataloader)(**reconstruct_args) | return type(dataloader)(**reconstruct_args) | ||||
@@ -260,6 +255,13 @@ def replace_batch_sampler(dataloader, new_batch_sampler): | |||||
params_keys.remove(k) | params_keys.remove(k) | ||||
params = {k: getattr(dataloader, k) for k in params_keys} | params = {k: getattr(dataloader, k) for k in params_keys} | ||||
params["batch_sampler"] = new_batch_sampler | params["batch_sampler"] = new_batch_sampler | ||||
if not isinstance(dataloader, DataLoader): | |||||
init_params = dict(inspect.signature(dataloader.__init__).parameters) | |||||
has_variadic_kwargs = any(v.kind is v.VAR_KEYWORD for k, v in init_params.items()) | |||||
if not has_variadic_kwargs: | |||||
params = {key:value for key,value in params.items() if key in init_params} | |||||
return type(dataloader)(**params) | return type(dataloader)(**params) | ||||
@@ -98,7 +98,7 @@ class Metric: | |||||
return _wrap_get_metric | return _wrap_get_metric | ||||
def __setattr__(self, key, value): | def __setattr__(self, key, value): | ||||
if hasattr(self, '_cannot_change_element') and self._cannot_change_element is True: | |||||
if getattr(self, '_cannot_change_element', False): | |||||
if key in self.elements and isinstance(value, (float, int, bool)): | if key in self.elements and isinstance(value, (float, int, bool)): | ||||
self.elements[key].fill_value(value) | self.elements[key].fill_value(value) | ||||
return | return | ||||
@@ -109,6 +109,14 @@ class Metric: | |||||
raise RuntimeError("Please use register_element() function to add Element.") | raise RuntimeError("Please use register_element() function to add Element.") | ||||
object.__setattr__(self, key, value) | object.__setattr__(self, key, value) | ||||
# 当调用 __getattribute__ 没有找到时才会触发这个, 保留这个的目的只是为了防止 ide 的 warning | |||||
def __getattr__(self, name: str) -> Element: | |||||
if 'elements' in self.__dict__: | |||||
elements = self.__dict__['elements'] | |||||
if name in elements: | |||||
return elements[name] | |||||
raise AttributeError("`{}` object has no attribute `{}`.".format(type(self).__name__, name)) | |||||
def _wrap_update(self, update): | def _wrap_update(self, update): | ||||
@functools.wraps(update) | @functools.wraps(update) | ||||
def _wrap_update(*args, **kwargs): | def _wrap_update(*args, **kwargs): | ||||
@@ -286,6 +286,9 @@ def test_trainer_specific_params_1( | |||||
assert trainer.driver.non_blocking is False | assert trainer.driver.non_blocking is False | ||||
assert trainer.driver.wo_auto_param_call is True | assert trainer.driver.wo_auto_param_call is True | ||||
if dist.is_initialized(): | |||||
dist.destroy_process_group() | |||||
@pytest.mark.torch | @pytest.mark.torch | ||||
@pytest.mark.parametrize("driver,device", [("torch", [0, 1])]) # ("torch", [0, 1]),("torch", 1) | @pytest.mark.parametrize("driver,device", [("torch", [0, 1])]) # ("torch", [0, 1]),("torch", 1) | ||||
@@ -332,5 +335,47 @@ def test_trainer_specific_params_2( | |||||
assert _ddp_kwargs.get("broadcast_buffers") is True | assert _ddp_kwargs.get("broadcast_buffers") is True | ||||
assert _ddp_kwargs.get("find_unused_parameters") is True | assert _ddp_kwargs.get("find_unused_parameters") is True | ||||
if dist.is_initialized(): | |||||
dist.destroy_process_group() | |||||
@pytest.mark.torch | |||||
@pytest.mark.parametrize("driver,device", [("torch", 1), ("torch", [0, 1])]) # ("torch", [0, 1]),("torch", 1) | |||||
@pytest.mark.parametrize("overfit_batches,num_train_batch_per_epoch", [(-1, -1), (0, -1), (3, 10), (6, -1)]) | |||||
@magic_argv_env_context | |||||
def test_trainer_w_evaluator_overfit_torch( | |||||
model_and_optimizers: TrainerParameters, | |||||
driver, | |||||
device, | |||||
overfit_batches, | |||||
num_train_batch_per_epoch | |||||
): | |||||
""" | |||||
测试一些特殊的参数是否能够正确地传递; | |||||
""" | |||||
trainer = Trainer( | |||||
model=model_and_optimizers.model, | |||||
driver=driver, | |||||
device=device, | |||||
overfit_batches=overfit_batches, | |||||
optimizers=model_and_optimizers.optimizers, | |||||
train_dataloader=model_and_optimizers.train_dataloader, | |||||
evaluate_dataloaders={"dl": model_and_optimizers.evaluate_dataloaders}, | |||||
input_mapping=model_and_optimizers.input_mapping, | |||||
output_mapping=model_and_optimizers.output_mapping, | |||||
metrics=model_and_optimizers.metrics, | |||||
n_epochs=2, | |||||
output_from_new_proc="all", | |||||
evaluate_every=-1, | |||||
torch_kwargs={ | |||||
"non_blocking": False, | |||||
"set_grad_to_none": True | |||||
} | |||||
) | |||||
trainer.run(num_train_batch_per_epoch=num_train_batch_per_epoch) | |||||
if dist.is_initialized(): | |||||
dist.destroy_process_group() |
@@ -361,5 +361,35 @@ def test_torch_wo_auto_param_call( | |||||
dist.destroy_process_group() | dist.destroy_process_group() | ||||
# 测试 accumulation_steps; | |||||
@pytest.mark.torch | |||||
@pytest.mark.parametrize("driver,device", [("torch", 1), ("torch", [0, 1])]) | |||||
@pytest.mark.parametrize("overfit_batches,num_train_batch_per_epoch", [(-1, -1), (0, -1), (3, 10), (6, -1)]) | |||||
@magic_argv_env_context | |||||
def test_trainer_overfit_torch( | |||||
model_and_optimizers: TrainerParameters, | |||||
driver, | |||||
device, | |||||
overfit_batches, | |||||
num_train_batch_per_epoch | |||||
): | |||||
trainer = Trainer( | |||||
model=model_and_optimizers.model, | |||||
driver=driver, | |||||
device=device, | |||||
overfit_batches=overfit_batches, | |||||
optimizers=model_and_optimizers.optimizers, | |||||
train_dataloader=model_and_optimizers.train_dataloader, | |||||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||||
input_mapping=model_and_optimizers.input_mapping, | |||||
output_mapping=model_and_optimizers.output_mapping, | |||||
metrics=model_and_optimizers.metrics, | |||||
output_from_new_proc="all", | |||||
n_epochs=2, | |||||
) | |||||
trainer.run(num_train_batch_per_epoch=num_train_batch_per_epoch) | |||||
if dist.is_initialized(): | |||||
dist.destroy_process_group() | |||||