Browse Source

* update version number in doc

* update fastNLP.core.rst
* refine all docstrings in core/
tags/v0.4.10
FengZiYjun 6 years ago
parent
commit
bc7fc71faa
13 changed files with 196 additions and 167 deletions
  1. +1
    -3
      docs/source/conf.py
  2. +4
    -10
      docs/source/fastNLP.core.rst
  3. +8
    -10
      fastNLP/core/batch.py
  4. +11
    -10
      fastNLP/core/dataset.py
  5. +8
    -10
      fastNLP/core/fieldarray.py
  6. +7
    -8
      fastNLP/core/instance.py
  7. +25
    -37
      fastNLP/core/losses.py
  8. +41
    -20
      fastNLP/core/metrics.py
  9. +15
    -8
      fastNLP/core/optimizer.py
  10. +18
    -4
      fastNLP/core/sampler.py
  11. +17
    -5
      fastNLP/core/tester.py
  12. +31
    -33
      fastNLP/core/trainer.py
  13. +10
    -9
      fastNLP/core/vocabulary.py

+ 1
- 3
docs/source/conf.py View File

@@ -16,8 +16,6 @@ import os
import sys
sys.path.insert(0, os.path.abspath('../../'))

import sphinx_rtd_theme

# -- Project information -----------------------------------------------------

project = 'fastNLP'
@@ -27,7 +25,7 @@ author = 'xpqiu'
# The short X.Y version
version = ''
# The full version, including alpha/beta/rc tags
release = '1.0'
release = '2.0'


# -- General configuration ---------------------------------------------------


+ 4
- 10
docs/source/fastNLP.core.rst View File

@@ -13,10 +13,10 @@ fastNLP.core.dataset
.. automodule:: fastNLP.core.dataset
:members:

fastNLP.core.field
fastNLP.core.fieldarray
-------------------

.. automodule:: fastNLP.core.field
.. automodule:: fastNLP.core.fieldarray
:members:

fastNLP.core.instance
@@ -25,10 +25,10 @@ fastNLP.core.instance
.. automodule:: fastNLP.core.instance
:members:

fastNLP.core.loss
fastNLP.core.losses
------------------

.. automodule:: fastNLP.core.loss
.. automodule:: fastNLP.core.losses
:members:

fastNLP.core.metrics
@@ -49,12 +49,6 @@ fastNLP.core.predictor
.. automodule:: fastNLP.core.predictor
:members:

fastNLP.core.preprocess
------------------------

.. automodule:: fastNLP.core.preprocess
:members:

fastNLP.core.sampler
---------------------



+ 8
- 10
fastNLP/core/batch.py View File

@@ -5,21 +5,19 @@ import torch
class Batch(object):
"""Batch is an iterable object which iterates over mini-batches.

::
for batch_x, batch_y in Batch(data_set, batch_size=16, sampler=SequentialSampler()):
Example::

for batch_x, batch_y in Batch(data_set, batch_size=16, sampler=SequentialSampler()):
# ...

:param dataset: a DataSet object
:param batch_size: int, the size of the batch
:param sampler: a Sampler object
:param as_numpy: bool. If True, return Numpy array. Otherwise, return torch tensors.

"""

def __init__(self, dataset, batch_size, sampler, as_numpy=False):
"""

:param dataset: a DataSet object
:param batch_size: int, the size of the batch
:param sampler: a Sampler object
:param as_numpy: bool. If True, return Numpy array. Otherwise, return torch tensors.

"""
self.dataset = dataset
self.batch_size = batch_size
self.sampler = sampler


+ 11
- 10
fastNLP/core/dataset.py View File

@@ -118,7 +118,7 @@ class DataSet(object):
def __len__(self):
"""Fetch the length of the dataset.

:return int length:
:return length:
"""
if len(self.field_arrays) == 0:
return 0
@@ -170,7 +170,7 @@ class DataSet(object):
def delete_field(self, name):
"""Delete a field based on the field name.

:param str name: the name of the field to be deleted.
:param name: the name of the field to be deleted.
"""
self.field_arrays.pop(name)

@@ -182,14 +182,14 @@ class DataSet(object):
def get_all_fields(self):
"""Return all the fields with their names.

:return dict field_arrays: the internal data structure of DataSet.
:return field_arrays: the internal data structure of DataSet.
"""
return self.field_arrays

def get_length(self):
"""Fetch the length of the dataset.

:return int length:
:return length:
"""
return len(self)

@@ -232,14 +232,14 @@ class DataSet(object):
def get_input_name(self):
"""Get all field names with `is_input` as True.

:return list field_names: a list of str
:return field_names: a list of str
"""
return [name for name, field in self.field_arrays.items() if field.is_input]

def get_target_name(self):
"""Get all field names with `is_target` as True.

:return list field_names: a list of str
:return field_names: a list of str
"""
return [name for name, field in self.field_arrays.items() if field.is_target]

@@ -294,8 +294,9 @@ class DataSet(object):
"""Split the dataset into training and development(validation) set.

:param float dev_ratio: the ratio of test set in all data.
:return DataSet train_set: the training set
DataSet dev_set: the development set
:return (train_set, dev_set):
train_set: the training set
dev_set: the development set
"""
assert isinstance(dev_ratio, float)
assert 0 < dev_ratio < 1
@@ -326,7 +327,7 @@ class DataSet(object):
:param List[str] or Tuple[str] headers: headers of the CSV file
:param str sep: delimiter in CSV file. Default: ","
:param bool dropna: If True, drop rows that have less entries than headers.
:return DataSet dataset:
:return dataset: the read data set

"""
with open(csv_path, "r") as f:
@@ -370,7 +371,7 @@ class DataSet(object):
"""Load a DataSet object from pickle.

:param str path: the path to the pickle
:return DataSet data_set:
:return data_set:
"""
with open(path, 'rb') as f:
return pickle.load(f)


+ 8
- 10
fastNLP/core/fieldarray.py View File

@@ -2,20 +2,18 @@ import numpy as np


class FieldArray(object):
"""FieldArray is the collection of Instances of the same Field.
It is the basic element of DataSet class.
"""``FieldArray`` is the collection of ``Instance``s of the same field.
It is the basic element of ``DataSet`` class.

:param str name: the name of the FieldArray
:param list content: a list of int, float, str or np.ndarray, or a list of list of one, or a np.ndarray.
:param int padding_val: the integer for padding. Default: 0.
:param bool is_target: If True, this FieldArray is used to compute loss.
:param bool is_input: If True, this FieldArray is used to the model input.

"""

def __init__(self, name, content, padding_val=0, is_target=None, is_input=None):
"""

:param str name: the name of the FieldArray
:param list content: a list of int, float, str or np.ndarray, or a list of list of one, or a np.ndarray.
:param int padding_val: the integer for padding. Default: 0.
:param bool is_target: If True, this FieldArray is used to compute loss.
:param bool is_input: If True, this FieldArray is used to the model input.
"""
self.name = name
if isinstance(content, list):
content = content


+ 7
- 8
fastNLP/core/instance.py View File

@@ -1,23 +1,22 @@
class Instance(object):
"""An Instance is an example of data. It is the collection of Fields.
"""An Instance is an example of data.
Example::
ins = Instance(field_1=[1, 1, 1], field_2=[2, 2, 2])
ins["field_1"]
>>[1, 1, 1]
ins.add_field("field_3", [3, 3, 3])

::
Instance(field_1=[1, 1, 1], field_2=[2, 2, 2])
:param fields: a dict of (str: list).

"""

def __init__(self, **fields):
"""

:param fields: a dict of (str: list).
"""
self.fields = fields

def add_field(self, field_name, field):
"""Add a new field to the instance.

:param field_name: str, the name of the field.
:param field:
"""
self.fields[field_name] = field



+ 25
- 37
fastNLP/core/losses.py View File

@@ -13,6 +13,9 @@ from fastNLP.core.utils import get_func_signature


class LossBase(object):
"""Base class for all losses.

"""
def __init__(self):
self.param_map = {}
self._checked = False
@@ -68,10 +71,9 @@ class LossBase(object):
# f"positional argument.).")

def _fast_param_map(self, pred_dict, target_dict):
"""

Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
"""Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
such as pred_dict has one element, target_dict has one element

:param pred_dict:
:param target_dict:
:return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping.
@@ -265,27 +267,22 @@ def _prepare_losser(losser):


def squash(predict, truth, **kwargs):
"""To reshape tensors in order to fit loss functions in pytorch

:param predict : Tensor, model output
:param truth : Tensor, truth from dataset
:param **kwargs : extra arguments
"""To reshape tensors in order to fit loss functions in PyTorch.

:param predict: Tensor, model output
:param truth: Tensor, truth from dataset
:param **kwargs: extra arguments
:return predict , truth: predict & truth after processing
"""
return predict.view(-1, predict.size()[-1]), truth.view(-1, )


def unpad(predict, truth, **kwargs):
"""To process padded sequence output to get true loss
Using pack_padded_sequence() method
This method contains squash()
"""To process padded sequence output to get true loss.

:param predict : Tensor, [batch_size , max_len , tag_size]
:param truth : Tensor, [batch_size , max_len]
:param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist
kwargs["lens"] : list or LongTensor, [batch_size]
the i-th element is true lengths of i-th sequence
:param predict: Tensor, [batch_size , max_len , tag_size]
:param truth: Tensor, [batch_size , max_len]
:param kwargs: kwargs["lens"] is a list or LongTensor, with size [batch_size]. The i-th element is true lengths of i-th sequence.

:return predict , truth: predict & truth after processing
"""
@@ -299,15 +296,11 @@ def unpad(predict, truth, **kwargs):


def unpad_mask(predict, truth, **kwargs):
"""To process padded sequence output to get true loss
Using mask() method
This method contains squash()
"""To process padded sequence output to get true loss.

:param predict : Tensor, [batch_size , max_len , tag_size]
:param truth : Tensor, [batch_size , max_len]
:param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist
kwargs["lens"] : list or LongTensor, [batch_size]
the i-th element is true lengths of i-th sequence
:param predict: Tensor, [batch_size , max_len , tag_size]
:param truth: Tensor, [batch_size , max_len]
:param kwargs: kwargs["lens"] is a list or LongTensor, with size [batch_size]. The i-th element is true lengths of i-th sequence.

:return predict , truth: predict & truth after processing
"""
@@ -318,14 +311,11 @@ def unpad_mask(predict, truth, **kwargs):


def mask(predict, truth, **kwargs):
"""To select specific elements from Tensor
This method contains squash()
"""To select specific elements from Tensor. This method calls ``squash()``.

:param predict : Tensor, [batch_size , max_len , tag_size]
:param truth : Tensor, [batch_size , max_len]
:param **kwargs : extra arguments, kwargs["mask"] is expected to be exsist
kwargs["mask"] : ByteTensor, [batch_size , max_len]
the mask Tensor , the position that is 1 will be selected
:param predict: Tensor, [batch_size , max_len , tag_size]
:param truth: Tensor, [batch_size , max_len]
:param **kwargs: extra arguments, kwargs["mask"]: ByteTensor, [batch_size , max_len], the mask Tensor. The position that is 1 will be selected.

:return predict , truth: predict & truth after processing
"""
@@ -343,13 +333,11 @@ def mask(predict, truth, **kwargs):


def make_mask(lens, tar_len):
"""to generate a mask that select [:lens[i]] for i-th element
embezzle from fastNLP.models.sequence_modeling.seq_mask

:param lens : list or LongTensor, [batch_size]
:param tar_len : int
"""To generate a mask over a sequence.

:return mask : ByteTensor
:param lens: list or LongTensor, [batch_size]
:param tar_len: int
:return mask: ByteTensor
"""
lens = torch.LongTensor(lens)
mask = [torch.ge(lens, i + 1) for i in range(tar_len)]


+ 41
- 20
fastNLP/core/metrics.py View File

@@ -13,6 +13,24 @@ from fastNLP.core.utils import seq_lens_to_masks


class MetricBase(object):
"""Base class for all metrics.

``MetricBase`` handles validity check of its input dictionaries - ``pred_dict`` and ``target_dict``.
``pred_dict`` is the output of ``forward()`` or prediction function of a model.
``target_dict`` is the ground truth from DataSet where ``is_target`` is set ``True``.
``MetricBase`` will do the following type checks:

1. whether self.evaluate has varargs, which is not supported.
2. whether params needed by self.evaluate is not included in ``pred_dict``, ``target_dict``.
3. whether params needed by self.evaluate duplicate in ``pred_dict``, ``target_dict``.
4. whether params in ``pred_dict``, ``target_dict`` are not used by evaluate.(Might cause warning)

Besides, before passing params into self.evaluate, this function will filter out params from output_dict and
target_dict which are not used in self.evaluate. (but if **kwargs presented in self.evaluate, no filtering
will be conducted.)
However, in some cases where type check is not necessary, ``_fast_param_map`` will be used.

"""
def __init__(self):
self.param_map = {} # key is param in function, value is input param.
self._checked = False
@@ -71,10 +89,9 @@ class MetricBase(object):
raise NotImplemented

def _fast_param_map(self, pred_dict, target_dict):
"""

Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
"""Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
such as pred_dict has one element, target_dict has one element

:param pred_dict:
:param target_dict:
:return: dict, if dict is not {}, pass it to self.evaluate. Otherwise do mapping.
@@ -177,6 +194,9 @@ class MetricBase(object):


class AccuracyMetric(MetricBase):
"""Accuracy Metric

"""
def __init__(self, pred=None, target=None, seq_lens=None):
super().__init__()

@@ -186,10 +206,9 @@ class AccuracyMetric(MetricBase):
self.acc_count = 0

def _fast_param_map(self, pred_dict, target_dict):
"""

Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
"""Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
such as pred_dict has one element, target_dict has one element

:param pred_dict:
:param target_dict:
:return: dict, if dict is not None, pass it to self.evaluate. Otherwise do mapping.
@@ -230,7 +249,7 @@ class AccuracyMetric(MetricBase):
torch.Size([B,]), torch.Size([B,]), torch.Size([B, max_len]), torch.Size([B, max_len])
:param seq_lens: List of (torch.Tensor, or numpy.ndarray). Element's can be:
None, None, torch.Size([B], torch.Size([B]). ignored if masks are provided.
:return: dict({'acc': float})
"""
# TODO 这里报错需要更改,因为pred是啥用户并不知道。需要告知用户真实的value
if not isinstance(pred, torch.Tensor):
@@ -269,6 +288,11 @@ class AccuracyMetric(MetricBase):
self.total += np.prod(list(pred.size()))

def get_metric(self, reset=True):
"""Returns computed metric.

:param bool reset: whether to recount next time.
:return evaluate_result: {"acc": float}
"""
evaluate_result = {'acc': round(self.acc_count / self.total, 6)}
if reset:
self.acc_count = 0
@@ -308,34 +332,31 @@ def _prepare_metrics(metrics):


def accuracy_topk(y_true, y_prob, k=1):
"""Compute accuracy of y_true matching top-k probable
labels in y_prob.
"""Compute accuracy of y_true matching top-k probable labels in y_prob.

:param y_true: ndarray, true label, [n_samples]
:param y_prob: ndarray, label probabilities, [n_samples, n_classes]
:param k: int, k in top-k
:return :accuracy of top-k
"""
:param y_true: ndarray, true label, [n_samples]
:param y_prob: ndarray, label probabilities, [n_samples, n_classes]
:param k: int, k in top-k
:returns acc: accuracy of top-k

"""
y_pred_topk = np.argsort(y_prob, axis=-1)[:, -1:-k - 1:-1]
y_true_tile = np.tile(np.expand_dims(y_true, axis=1), (1, k))
y_match = np.any(y_pred_topk == y_true_tile, axis=-1)
acc = np.sum(y_match) / y_match.shape[0]

return acc


def pred_topk(y_prob, k=1):
"""Return top-k predicted labels and corresponding probabilities.


:param y_prob: ndarray, size [n_samples, n_classes], probabilities on labels
:param k: int, k of top-k
:returns
:param y_prob: ndarray, size [n_samples, n_classes], probabilities on labels
:param k: int, k of top-k
:returns (y_pred_topk, y_prob_topk):
y_pred_topk: ndarray, size [n_samples, k], predicted top-k labels
y_prob_topk: ndarray, size [n_samples, k], probabilities for top-k labels
"""

"""
y_pred_topk = np.argsort(y_prob, axis=-1)[:, -1:-k - 1:-1]
x_axis_index = np.tile(
np.arange(len(y_prob))[:, np.newaxis],


+ 15
- 8
fastNLP/core/optimizer.py View File

@@ -2,6 +2,11 @@ import torch


class Optimizer(object):
"""

:param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
:param kwargs: additional parameters.
"""
def __init__(self, model_params, **kwargs):
if model_params is not None and not hasattr(model_params, "__next__"):
raise RuntimeError("model parameters should be a generator, rather than {}.".format(type(model_params)))
@@ -10,13 +15,14 @@ class Optimizer(object):


class SGD(Optimizer):
def __init__(self, lr=0.001, momentum=0, model_params=None):
"""
"""

:param float lr: learning rate. Default: 0.01
:param float momentum: momentum. Default: 0
:param model_params: a generator. E.g. model.parameters() for PyTorch models.
"""
:param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
"""

def __init__(self, lr=0.001, momentum=0, model_params=None):
if not isinstance(lr, float):
raise TypeError("learning rate has to be float.")
super(SGD, self).__init__(model_params, lr=lr, momentum=momentum)
@@ -30,13 +36,14 @@ class SGD(Optimizer):


class Adam(Optimizer):
def __init__(self, lr=0.001, weight_decay=0, betas=(0.9, 0.999), eps=1e-8, amsgrad=False, model_params=None):
"""
"""

:param float lr: learning rate
:param float weight_decay:
:param model_params: a generator. E.g. model.parameters() for PyTorch models.
"""
:param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
"""

def __init__(self, lr=0.001, weight_decay=0, betas=(0.9, 0.999), eps=1e-8, amsgrad=False, model_params=None):
if not isinstance(lr, float):
raise TypeError("learning rate has to be float.")
super(Adam, self).__init__(model_params, lr=lr, betas=betas, eps=eps, amsgrad=amsgrad,


+ 18
- 4
fastNLP/core/sampler.py View File

@@ -20,8 +20,8 @@ def convert_to_torch_tensor(data_list, use_cuda):
class BaseSampler(object):
"""The base class of all samplers.

Sub-classes must implement the __call__ method.
__call__ takes a DataSet object and returns a list of int - the sampling indices.
Sub-classes must implement the ``__call__`` method.
``__call__`` takes a DataSet object and returns a list of int - the sampling indices.
"""

def __call__(self, *args, **kwargs):
@@ -32,8 +32,12 @@ class SequentialSampler(BaseSampler):
"""Sample data in the original order.

"""

def __call__(self, data_set):
"""

:param DataSet data_set:
:return result: a list of integers.
"""
return list(range(len(data_set)))


@@ -41,13 +45,23 @@ class RandomSampler(BaseSampler):
"""Sample data in random permutation order.

"""

def __call__(self, data_set):
"""

:param DataSet data_set:
:return result: a list of integers.
"""
return list(np.random.permutation(len(data_set)))


class BucketSampler(BaseSampler):
"""

:param int num_buckets: the number of buckets to use.
:param int batch_size: batch size per epoch.
:param str seq_lens_field_name: the field name indicating the field about sequence length.

"""
def __init__(self, num_buckets=10, batch_size=32, seq_lens_field_name='seq_lens'):
self.num_buckets = num_buckets
self.batch_size = batch_size


+ 17
- 5
fastNLP/core/tester.py View File

@@ -1,5 +1,3 @@
from collections import defaultdict

import torch
from torch import nn

@@ -15,7 +13,16 @@ from fastNLP.core.utils import get_func_signature


class Tester(object):
"""An collection of model inference and evaluation of performance, used over validation/dev set and test set. """
"""An collection of model inference and evaluation of performance, used over validation/dev set and test set.

:param DataSet data: a validation/development set
:param torch.nn.modules.module model: a PyTorch model
:param MetricBase metrics: a metric object or a list of metrics (List[MetricBase])
:param int batch_size: batch size for validation
:param bool use_cuda: whether to use CUDA in validation.
:param int verbose: the number of steps after which an information is printed.

"""

def __init__(self, data, model, metrics, batch_size=16, use_cuda=False, verbose=1):
super(Tester, self).__init__()
@@ -49,6 +56,11 @@ class Tester(object):
self._predict_func = self._model.forward

def test(self):
"""Start test or validation.

:return eval_results: a dictionary whose keys are the class name of metrics to use, values are the evaluation results of these metrics.

"""
# turn on the testing mode; clean up the history
network = self._model
self._mode(network, is_test=True)
@@ -60,8 +72,8 @@ class Tester(object):
_move_dict_value_to_device(batch_x, batch_y, device=self._model_device)
pred_dict = self._data_forward(self._predict_func, batch_x)
if not isinstance(pred_dict, dict):
raise TypeError(f"The return value of {get_func_signature(self._predict_func)} "
f"must be `dict`, got {type(pred_dict)}.")
raise TypeError(f"The return value of {get_func_signature(self._predict_func)} "
f"must be `dict`, got {type(pred_dict)}.")
for metric in self.metrics:
metric(pred_dict, batch_y)
for metric in self.metrics:


+ 31
- 33
fastNLP/core/trainer.py View File

@@ -27,39 +27,37 @@ from fastNLP.core.utils import get_func_signature


class Trainer(object):
"""Main Training Loop

"""
def __init__(self, train_data, model, loss=None, metrics=None, n_epochs=3, batch_size=32, print_every=50,
validate_every=-1, dev_data=None, use_cuda=False, save_path=None,
optimizer=Adam(lr=0.01, weight_decay=0), check_code_level=0,
metric_key=None, sampler=RandomSampler(), use_tqdm=True):
"""

:param DataSet train_data: the training data
:param torch.nn.modules.module model: a PyTorch model
:param LossBase loss: a loss object
:param MetricBase or List[MetricBase] metrics: a metric object or a list of metrics
:param MetricBase metrics: a metric object or a list of metrics (List[MetricBase])
:param int n_epochs: the number of training epochs
:param int batch_size: batch size for training and validation
:param int print_every: step interval to print next training information. Default: -1(no print).
:param int validate_every: step interval to do next validation. Default: -1(validate every epoch).
:param DataSet dev_data: the validation data
:param use_cuda:
:param save_path: file path to save models
:param bool use_cuda: whether to use CUDA in training.
:param str save_path: file path to save models
:param Optimizer optimizer: an optimizer object
:param int check_code_level: level of FastNLP code checker. -1: don't check, 0: ignore. 1: warning. 2: strict.
:param int check_code_level: level of FastNLP code checker. -1: don't check, 0: ignore. 1: warning. 2: strict.\\
`ignore` will not check unused field; `warning` when warn if some field are not used; `strict` means
it will raise error if some field are not used.
:param str metric_key: a single indicator used to decide the best model based on metric results. It must be one
of the keys returned by the FIRST metric in `metrics`. If the overall result gets better if the indicator gets
smaller, add a `-` character in front of the string. For example
::
smaller, add "-" in front of the string. For example::
metric_key="-PPL" # language model gets better as perplexity gets smaller
:param sampler: method used to generate batch data.
:param use_tqdm: boolean, use tqdm to show train progress.

"""
:param BaseSampler sampler: method used to generate batch data.
:param bool use_tqdm: whether to use tqdm to show train progress.

"""

def __init__(self, train_data, model, loss=None, metrics=None, n_epochs=3, batch_size=32, print_every=50,
validate_every=-1, dev_data=None, use_cuda=False, save_path=None,
optimizer=Adam(lr=0.01, weight_decay=0), check_code_level=0,
metric_key=None, sampler=RandomSampler(), use_tqdm=True):
super(Trainer, self).__init__()

if not isinstance(train_data, DataSet):
@@ -141,30 +139,30 @@ class Trainer(object):
def train(self, load_best_model=True):
"""

开始训练过程。主要有以下几个步骤
for epoch in range(num_epochs):
(1) 使用Batch从DataSet中按批取出数据,并自动对DataSet中dtype为float, int的fields进行padding。并转换为Tensor。非
float,int类型的参数将不会被转换为Tensor,且不进行padding
for batch_x, batch_y in Batch(DataSet):
# batch_x中为设置为input的field
# batch_y中为设置为target的field
(2) 将batch_x的数据送入到model.forward函数中,并获取结果
(3) 将batch_y与model.forward的结果一并送入loss中计算loss
(4) 获取到loss之后,进行反向求导并更新梯度
if dev_data is not None:
根据metrics进行evaluation,并根据是否提供了save_path判断是否存储模型

:param load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现最好的
开始训练过程。主要有以下几个步骤::

对于每次循环
1. 使用Batch从DataSet中按批取出数据,并自动对DataSet中dtype为float, int的fields进行padding。并转换为Tensor。
非float,int类型的参数将不会被转换为Tensor,且不进行padding。
for batch_x, batch_y in Batch(DataSet)
# batch_x中为设置为input的field
# batch_y中为设置为target的field
2. 将batch_x的数据送入到model.forward函数中,并获取结果
3. 将batch_y与model.forward的结果一并送入loss中计算loss
4. 获取到loss之后,进行反向求导并更新梯度
如果测试集不为空
根据metrics进行evaluation,并根据是否提供了save_path判断是否存储模型

:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现最好的
模型参数。
:return results: 返回一个字典类型的数据, 内含以下内容::

将会返回一个字典类型的数据, 内含以下内容:
seconds: float, 表示训练时长
以下三个内容只有在提供了dev_data的情况下会有。
best_eval: Dict of Dict, 表示evaluation的结果
best_epoch: int,在第几个epoch取得的最佳值
best_step: int, 在第几个step(batch)更新取得的最佳值

return dict:
"""
results = {}
try:


+ 10
- 9
fastNLP/core/vocabulary.py View File

@@ -41,13 +41,13 @@ class Vocabulary(object):
vocab.update(word_list)
vocab["word"]
vocab.to_word(5)

:param int max_size: set the max number of words in Vocabulary. Default: None
:param int min_freq: set the min occur frequency of words in Vocabulary. Default: None

"""

def __init__(self, max_size=None, min_freq=None, unknown='<unk>', padding='<pad>'):
"""
:param int max_size: set the max number of words in Vocabulary. Default: None
:param int min_freq: set the min occur frequency of words in Vocabulary. Default: None
"""
self.max_size = max_size
self.min_freq = min_freq
self.word_count = Counter()
@@ -78,6 +78,7 @@ class Vocabulary(object):
"""Add a single word into the vocabulary.

:param str word: a word or token.

"""
self.add(word)

@@ -86,11 +87,12 @@ class Vocabulary(object):
"""Add a list of words into the vocabulary.

:param list word_lst: a list of strings

"""
self.update(word_lst)

def build_vocab(self):
"""Build 'word to index' dict, and filter the word using `max_size` and `min_freq`.
"""Build a mapping from word to index, and filter the word using ``max_size`` and ``min_freq``.

"""
self.word2idx = {}
@@ -111,7 +113,7 @@ class Vocabulary(object):
self.rebuild = False

def build_reverse_vocab(self):
"""Build 'index to word' dict based on 'word to index' dict.
"""Build "index to word" dict based on "word to index" dict.

"""
self.idx2word = {i: w for w, i in self.word2idx.items()}
@@ -146,10 +148,9 @@ class Vocabulary(object):
raise ValueError("word {} not in vocabulary".format(w))

def to_index(self, w):
""" Turn a word to an index.
If w is not in Vocabulary, return the unknown label.
""" Turn a word to an index. If w is not in Vocabulary, return the unknown label.

:param str w:
:param str w: a word
"""
return self.__getitem__(w)



Loading…
Cancel
Save