Browse Source

调整部分文档格式

tags/v1.0.0alpha
x54-729 3 years ago
parent
commit
c6cf4da25b
7 changed files with 174 additions and 181 deletions
  1. +53
    -52
      fastNLP/core/dataloaders/jittor_dataloader/fdl.py
  2. +50
    -49
      fastNLP/core/dataloaders/paddle_dataloader/fdl.py
  3. +12
    -21
      fastNLP/core/dataloaders/prepare_dataloader.py
  4. +18
    -18
      fastNLP/core/dataloaders/torch_dataloader/fdl.py
  5. +25
    -25
      fastNLP/core/dataloaders/torch_dataloader/mix_dataloader.py
  6. +13
    -13
      fastNLP/core/dataset/dataset.py
  7. +3
    -3
      fastNLP/core/metrics/backend/auto_backend.py

+ 53
- 52
fastNLP/core/dataloaders/jittor_dataloader/fdl.py View File

@@ -23,7 +23,7 @@ from fastNLP.core.dataset import DataSet as FDataSet

class _JittorDataset(Dataset):
"""
对用户传的dataset进行封装,以便JittorDataLoader能够支持使用自定义的dataset
对用户传的 ``dataset`` 进行封装,以便 ``JittorDataLoader`` 能够支持使用自定义的 ``dataset`` 。
"""

def __init__(self, dataset) -> None:
@@ -41,16 +41,15 @@ class JittorDataLoader:
"""
提供给 ``jittor`` 框架使用的 ``DataLoader`` 函数,``JittorDataLoader`` 提供了 ``Collator`` 来自动检测 dataset 的每个 field 是否可 pad,
若是可 pad 的 field 则自动 pad 到相同长度,否则只会将相同 field 的数据收集组成一个 batch 返回。
具体详见 :class:`~fastNLP.core.collators.Collator`;用户通过 callte_fn 来控制是否使用该功能, collate_fn 只能为 ``['auto', None, Callable]``三种取值。
具体详见 :class:`~fastNLP.core.collators.Collator`;用户通过 callte_fn 来控制是否使用该功能, collate_fn 只能为 ``['auto', None, Callable]`` 三种取值。

* callate_fn 为 ``'auto'`` 时,``JittorDataLoader`` 使用 :class:`~fastNLP.core.collators.Collator` 作为 collate_fn 的取值。
此时可以配套使用 ``JittorDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
此时可以配套使用 ``JittorDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* callate_fn 为 ``None`` 时, ``JittorDataLoader`` 默认使用 Jittor DataLoader 自带的 collate_fn
* collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
dataset 的一条数据;该 Callable 函数还应当返回一个对象。

"""

def __init__(self, dataset, batch_size: int = 16, shuffle: bool = False,
drop_last: bool = False, num_workers: int = 0, buffer_size: int = 512 * 1024 * 1024,
stop_grad: bool = True, keep_numpy_array: bool = False, endless: bool = False,
@@ -61,22 +60,22 @@ class JittorDataLoader:
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。
:param shuffle: 是否打乱数据集, 默认为 ``False``。
:param drop_last: 当 ``drop_last=True`` 时,``JittorDataLoader`` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据;
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
:param num_workers: 当 ``num_workers > 0`` 时, ``JittorDataLoader`` 会开启 num_workers 个子进程来处理数据, 可以加快
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
:param buffer_size: 每个进程占用的内存空间,默认为512M。主要是配合num_workers使用,用户可以自定义每个进程的内存大小。
:param stop_grad: 是否不使用梯度, 默认 ``True`` 。
:param keep_numpy_array: 返回的数据是 ``np.array`` 类型而不是 ``jittor.Var`` 类型,默认为 ``False``
:param endless: 是否让 ``JittorDataLoader`` 无限返回数据,也就是将 dataset 循环使用使得返回数据是没有限制的。默认为 ``False``.
:param collate_fn: 用于从 dataset 取到的一个 batch 数据进行打包处理的 Callable 函数,其值应该为以下三个: ``[None, "auto", Callable]``.

* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
``JittorDataLoader`` 调用默认的 Jittor 框架的 ``DataLoader`` 自带的 ``collate_batch`` 作为 callate_fn 的默认值, 其无法处理
:class:`~fastNLP.core.dataset.DataSet` 的 dataset 对象。
* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
``JittorDataLoader`` 调用默认的 Jittor 框架的 ``DataLoader`` 自带的 ``collate_batch`` 作为 callate_fn 的默认值, 其无法处理
:class:`~fastNLP.core.dataset.DataSet` 的 dataset 对象。
* callate_fn 为 ``'auto'`` 时,``JittorDataLoader`` 使用 :class:`~fastNLP.core.collators.Collator` 作为 collate_fn 的默认值。
此时可以配套使用 ``JittorDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* `collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
此时可以配套使用 ``JittorDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
"""
# TODO 验证支持replacesampler (以后完成) 增加Sampler
@@ -136,16 +135,16 @@ class JittorDataLoader:
"""
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。

:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b');
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single"
:param field_name: 需要调整的 field 的名称。如果 :class:`~fastNLP.core.Dataset` 的 :class:`~fastNLP.core.Dataset.__getitem__`
方法返回的是 dict 类型的,则可以直接使用对应的 field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如
``{'a': {'b': 1}}`` 中的使用 ``('a', 'b')`` 如果 ``__getitem__`` 返回的是 Sequence 类型的,则可以使用 *_0*, *_1* 表示序列中
第 **0** 或 **1** 个元素。如果该 field 在数据中没有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 ``_single``
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值
无意义。
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。
:param backend: 可选['raw', 'numpy', 'Jittor', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray,
Jittor.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。
:param backend: 可选 ``['raw', 'numpy', 'Jittor', 'paddle', 'jittor', 'auto']`` ,分别代表,输出为 ``list`` , ``numpy.ndarray`` ,
``Jittor.Tensor`` , ``paddle.Tensor`` , ``jittor.Var`` 类型。若 ``pad_val````None`` ,该值无意义 。
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch
形式,输出将被直接作为结果输出。
@@ -178,9 +177,10 @@ class JittorDataLoader:

collator.set_ignore('field1', 'field2')

:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。
:param field_name: 需要调整的 field 的名称。如果 :class:`~fastNLP.core.Dataset` 的 :class:`~fastNLP.core.Dataset.__getitem__`
方法返回的是 dict 类型的,则可以直接使用对应的 field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如
``{'a': {'b': 1}}`` 中的使用 ``('a', 'b')`` 如果 ``__getitem__`` 返回的是 Sequence 类型的,则可以使用 *_0*, *_1* 表示序列中
第 **0** 或 **1** 个元素。
:return: 返回 Collator 自身
"""
collator = self._get_collator()
@@ -206,54 +206,55 @@ def prepare_jittor_dataloader(ds_or_db, batch_size: int = 16, shuffle: bool = Fa
non_train_batch_size: int = 16) \
-> Union[Sequence[JittorDataLoader], Dict[str, JittorDataLoader], JittorDataLoader]:
"""
``prepare_jittor_dataloader`` 的功能是将输入的单个或多个 dataset 同时转为 ``JittorDataloader``对象, 详见 :class: `~fastNLP.core.dataloaders.JittorDataLoader`。
``prepare_jittor_dataloader`` 的功能是将输入的单个或多个 dataset 同时转为 :class:`JittorDataLoader` 对象, 详见 :class:`~fastNLP.core.dataloaders.JittorDataLoader`。
根据 ds_or_db 的类型 ``[DataSet, DataBundle,Sequence[Dataset], Dict[name, Dataset]]`` 不同而有不同返回结果, 具体如下:

* 当 ds_or_db 为 ``DataSet``时,``prepare_jittor_dataloader`` 会将使用的除了 non_train_batch_size 和 non_train_sampler 以外的参数来
帮你实例化一个 ``JittorDataLoader`` 对象并返回该对象。 详见:class: `~fastNLP.core.dataloaders.JittorDataLoader`。
* 当 ds_or_db 为 ``DataSet`` 时,``prepare_jittor_dataloader`` 会将使用的除了 non_train_batch_size 和 non_train_sampler 以外的参数来
帮你实例化一个 :class:`JittorDataLoader` 对象并返回该对象。 详见 :class:`~fastNLP.core.dataloaders.JittorDataLoader`。
* 当 ds_or_db 为 :class:`~fastNLP.io.DataBundle` 时,``prepare_Jittor_dataloader`` 会遍历 ``DataBundle`` 的数据集的 key-value
来创建不同的 ``JittorDataLoader`` 对象;当 key 中包含'train'字符串时,``prepare_jittor_dataloader`` 默认该 value 为 train 数据集,
会将 batch_size 和 sampler 作为参数,其他 key 不包含 'train' 字符串的数据集则使用 non_train_size 和 non_train_sampler 作为参数。
最终根据 ``key: JittorDataLoader`` 组成 ``Dict[key, JittorDataLoader]`` 的字典返回。
来创建不同的 :class:`JittorDataLoader` 对象;当 key 中包含'train'字符串时,``prepare_jittor_dataloader`` 默认该 value 为 train 数据集,
会将 batch_size 和 sampler 作为参数,其他 key 不包含 'train' 字符串的数据集则使用 non_train_size 和 non_train_sampler 作为参数。
最终根据 ``key: JittorDataLoader`` 组成 ``Dict[key, JittorDataLoader]`` 的字典返回。
* 当 ds_or_db 为 ``Dict[str, DataSet]`` 字典类型时, ``prepare_jittor_dataloader`` 会遍历 该 dict 的的 key-value 来创建不同的
``JittorDataLoader`` 对象;当 key 中包含'train'字符串时,``prepare_Jittor_dataloader`` 默认该 value 为 train 数据集,会将 batch_size 和 sampler 作为参数,
其他 key 不包含 'train' 字符串的数据集则使用 non_train_size 和 non_train_sampler 作为参数。最终根据 ``key: JittorDataLoader`` 组成
:class:`JittorDataLoader` 对象;当 key 中包含'train'字符串时,``prepare_Jittor_dataloader`` 默认该 value 为 train 数据集,会将 batch_size 和 sampler 作为参数,
其他 key 不包含 'train' 字符串的数据集则使用 non_train_size 和 non_train_sampler 作为参数。最终根据 ``key: JittorDataLoader`` 组成
``Dict[key, JittorDataLoader]`` 的字典返回。
* 当 ds_or_db 为 ``Sequence[Dataset]`` 数据类型时, prepare_jittor_dataloader 会将 Sequence[0] 的数据集默认为 train 数据集对待,
会将 batch_size 和 sampler 作为参数, 而 Sequence[1:] 数据集均视为非 train 数据集对待,使用 non_train_size 和 non_train_sampler 作为参数。
最终将所有实例化好的 ``JittorDataLoader`` 组成 ``Sequence[JittorDataLoader]`` 返回。
会将 batch_size 和 sampler 作为参数, 而 Sequence[1:] 数据集均视为非 train 数据集对待,使用 non_train_size 和 non_train_sampler 作为参数。
最终将所有实例化好的 :class:`JittorDataLoader` 组成 ``Sequence[JittorDataLoader]`` 返回。

:param ds_or_db: 实现 __getitem__() 和 __len__() 的对象;或这种对象的序列;或字典。其取值只能为 ``[DataSet, DataBundle,
Sequence[DataSet], Dict[str, DataSet]]``.
Sequence[DataSet], Dict[str, DataSet]]``.

* ds_or_db 为 :class: `~fastNLP.core.dataset.DataSet`,返回值为:class: `~fastNLP.core.dataloaders.JittorDataLoader`
* ds_or_db 为 :class: `~fastNLP.io.DataBundle`, 返回值为 ``Dict[str, JittorDataLoader]`` 的字典
* ds_or_db 为 ``Sequence[DataSet]`` 序列, 返回值为 ``Sequence[JittorDataLoader]`` 的序列
* ds_or_db 为 ``Dict[str, DataSet]`` 字典, 返回值也为 ``Dict[str, JittorDataLoader]`` 的字典
* ds_or_db 为 :class:`~fastNLP.core.dataset.DataSet`,返回值为 :class:`~fastNLP.core.dataloaders.JittorDataLoader`
* ds_or_db 为 :class:`~fastNLP.io.DataBundle`, 返回值为 :class:`Dict[str, JittorDataLoader]` 的字典
* ds_or_db 为 :class:`Sequence[DataSet]` 序列, 返回值为 :class:`Sequence[JittorDataLoader]` 的序列
* ds_or_db 为 :class:`Dict[str, DataSet]` 字典, 返回值也为 :class:`Dict[str, JittorDataLoader]` 的字典
:param non_train_batch_size: 如果传入的 ``ds_or_db`` 为 ``Dict``, ``Sequence`` 或 :class:`~fastNLP.io.DataBundle` 对象,可以通过改参数
设置名称不为 `train` 的其他 ``dataset`` 的 ``batch_size``。 默认为 ``16``。
:param non_train_batch_size: 如果传入的 ``ds_or_db`` 为 :class:`Dict`, :class:`Sequence` 或 :class:`~fastNLP.io.DataBundle` 对象,可以通过改参数
设置名称不为 `train` 的其他 ``dataset`` 的 ``batch_size``。 默认为 ``16``。
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。
:param shuffle: 是否打乱数据集, 默认为 ``False``。
:param drop_last: 当 ``drop_last=True`` 时,``JittorDataLoader`` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据;
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
:param num_workers: 当 ``num_workers > 0`` 时, ``JittorDataLoader`` 会开启 num_workers 个子进程来处理数据, 可以加快
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
:param drop_last: 当 ``drop_last=True`` 时,:class:`JittorDataLoader` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据;
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
:param num_workers: 当 ``num_workers > 0`` 时, :class:`JittorDataLoader` 会开启 num_workers 个子进程来处理数据, 可以加快
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
:param buffer_size: 每个进程占用的内存空间,默认为512M。主要是配合num_workers使用,用户可以自定义每个进程的内存大小。
:param stop_grad: 是否不使用梯度, 默认 ``True`` 。
:param keep_numpy_array: 返回的数据是 ``np.array`` 类型而不是 ``jittor.Var`` 类型,默认为 ``False``
:param endless: 是否让 ``JittorDataLoader`` 无限返回数据,也就是将 dataset 循环使用使得返回数据是没有限制的。默认为 ``False``.
:param endless: 是否让 :class:`JittorDataLoader` 无限返回数据,也就是将 dataset 循环使用使得返回数据是没有限制的。默认为 ``False``.
:param collate_fn: 用于从 dataset 取到的一个 batch 数据进行打包处理的 Callable 函数,其值应该为以下三个: ``[None, "auto", Callable]``.

* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
``JittorDataLoader`` 调用默认的 Jittor 框架的 ``DataLoader`` 自带的 ``collate_batch`` 作为 callate_fn 的默认值, 其无法处理
:class:`~fastNLP.core.dataset.DataSet` 的 dataset 对象。
* callate_fn 为 ``'auto'`` 时,``JittorDataLoader`` 使用 :class:`~fastNLP.core.collators.Collator` 作为 collate_fn 的默认值。
此时可以配套使用 ``JittorDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* `collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
:class:`JittorDataLoader` 调用默认的 Jittor 框架的 ``DataLoader`` 自带的 ``collate_batch`` 作为 callate_fn 的默认值, 其无法处理
:class:`~fastNLP.core.dataset.DataSet` 的 dataset 对象。
* callate_fn 为 ``'auto'`` 时,:class:`JittorDataLoader` 使用 :class:`~fastNLP.core.collators.Collator` 作为 collate_fn 的默认值。
此时可以配套使用 :class:`JittorDataLoader` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
:return: 返回数据类型为Sequence[JittorDataLoader], Dict[str, JittorDataLoader], JittorDataLoader其中之一,根据输入ds_or_db变化而变化。
:return: 返回数据类型为 :class:`Sequence[JittorDataLoader]` , :class:`Dict[str, JittorDataLoader]`, :class:`JittorDataLoader` 其中之一,根据输入
``ds_or_db`` 变化而变化。
"""
from fastNLP.io.data_bundle import DataBundle
if isinstance(ds_or_db, Dataset):


+ 50
- 49
fastNLP/core/dataloaders/paddle_dataloader/fdl.py View File

@@ -48,34 +48,36 @@ class PaddleDataLoader(DataLoader):
"""
``PaddleDataLoader`` 是专门提供给 ``paddle`` 框架的 ``DataLoader`` ,其集成了 ``fastNLP`` 的 ``Collator`` ,
具体详见 :class:`~fastNLP.core.collators.Collator`, 并对 ``paddle`` 的 ``DataLoader`` 进行了
封装,使得其具备以下功能:1. ``PaddleDataLoader`` 支持输入的 dataset 是无框架的,只要实现了 __getitem__() 和 __len__() 的对象即可,
当不使用 :class: `~fastNLP.core.dataset.DataSet` 时也不需要传入 collate_fn, 只要只需要将 ``collate_fn='auto'`` 就能够自动
探测数据的类型并判断能否 pad .此时可以调用 ``set_pad`` 和 ``set_ignore`` 方法来设置 field 的 pad_val 或者忽略某个 field 的 pad 操作。
Example::

from fastNLP import PaddleDataLoader
class MyDataset:
def __init(self, data_lens=100):
self.data_lens = 100
def __getitem__(self, item):
if item % 2 == 0:
return {'x':[101, 256, 453], 'y': 0}
else:
return {'x': [101, 200], 'y': 1}
def __len__(self):
return self.data_lens
dataset = MyDataset()
paddle_dl = PaddleDataLoader(dataset, collate_fn='auto')
for batch in paddle_dl:
...
封装,使得其具备以下功能:
1. ``PaddleDataLoader`` 支持输入的 dataset 是无框架的,只要实现了 __getitem__() 和 __len__() 的对象即可,
当不使用 :class:`~fastNLP.core.dataset.DataSet` 时也不需要传入 collate_fn, 只要只需要将 ``collate_fn='auto'`` 就能够自动
探测数据的类型并判断能否 pad 。此时可以调用 ``set_pad`` 和 ``set_ignore`` 方法来设置 field 的 pad_val 或者忽略某个 field 的 pad 操作。
Example::

from fastNLP import PaddleDataLoader
class MyDataset:
def __init(self, data_lens=100):
self.data_lens = 100
def __getitem__(self, item):
if item % 2 == 0:
return {'x':[101, 256, 453], 'y': 0}
else:
return {'x': [101, 200], 'y': 1}
def __len__(self):
return self.data_lens
dataset = MyDataset()
paddle_dl = PaddleDataLoader(dataset, collate_fn='auto')
for batch in paddle_dl:
...

2.当 collate_fn 为 ``None`` 时,``PaddleDataLoader`` 默认使用 ``paddle`` 自带的 ``default_collate_fn`` 作为 collate_fn 的值

.. note::
当传入的dataset为fastNLP的DataSet时,collate_fn不能为None。默认可以是"auto"或者自定义callable函数。
.. note::
当传入的dataset为fastNLP的DataSet时,collate_fn不能为None。默认可以是"auto"或者自定义callable函数。

3. 当 collate_fn 为 ``Callable`` 时,该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
"""

@@ -89,36 +91,35 @@ class PaddleDataLoader(DataLoader):
"""

:param dataset: 实现了 __getitem__() 和 __len__() 的对象。
:param feed_list: (list(Tensor)|tuple(Tensor)): feed Tensor list.
这个张量能被 :code:`paddle.static.data()` 创建。 如果:attr:`return_list` 是 ``False``, 那么 :attr:`feed_list`
应该被设置。 默认为 ``None ``
:param places: (list(Place)|tuple(Place)|list(str)|optional): 将数据放进的一个 list 的 place。 :attr:`places` 能为 None.
如果 :attr:`places` 为 None, 默认放在 CPUPlace 或者 CUDAPlace(0) 设备上。 如果 ``places`` 是一个 list 类型的 字符串, 那么字符串
可以是 ``cpu`` , ``gpu:x`` 或者 ``gpu_pinned`` , 其中 ``x`` 是 gpu 的下标。
:param return_list: 每个设备上的返回值是否为以列表形式显示。 如果 :attr:`return_list=False`,
每个设备上的返回值值为 str -> Tensor 的 dict, 其中 dict 的 key 为每个 fed Tensors 的名字。
如果 :attr:`return_list=True`, 每个设备上的返回值值为 list(Tensor)。 :attr:`return_list` 只能在动态图情况下设置为 ``True`` .
默认值为 ``True`` 。
:param feed_list: feed Tensor list。
这个张量能被 :code:`paddle.static.data()` 创建。 如果 :attr:`return_list` 是 ``False``, 那么 :attr:`feed_list`
应该被设置。 默认为 ``None``
:param places: 将数据放进的一个 list 的 place。 :attr:`places` 能为 None。
如果 :attr:`places` 为 None, 默认放在 CPUPlace 或者 CUDAPlace(0) 设备上。 如果 ``places`` 是一个 list 类型的 字符串, 那么字符串
可以是 ``cpu`` , ``gpu:x`` 或者 ``gpu_pinned`` , 其中 ``x`` 是 gpu 的下标。
:param return_list: 每个设备上的返回值是否为以列表形式显示。 如果 :attr:`return_list=False`, 每个设备上的返回值值为 str -> Tensor 的 dict,
其中 dict 的 key 为每个 fed Tensors 的名字。如果 :attr:`return_list` 为 ``True`` , 每个设备上的返回值值为 list(Tensor)。 :attr:`return_list`
只能在动态图情况下设置为 ``True`` 。默认值为 ``True`` 。
:param batch_sampler: 实现了 __len__() 和 __iter__() 的实例化对象,,其__iter__() 方法每次都会返回一个 List 对象, List中的值为
dataset 的下标 index ;默认为 None,当其不为 None 时,bacth_size, shuffle 参数均失效。
dataset 的下标 index ;默认为 None,当其不为 None 时,bacth_size, shuffle 参数均失效。
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。
:param shuffle: 是否将数据打乱,若``shuffle=True``则会将dataset打乱;若否则什么也不做。
:param shuffle: 是否将数据打乱,若``shuffle=True`` 则会将dataset打乱;若否则什么也不做。
:param drop_last: 当 ``drop_last=True`` 时,``PaddleDataLoader`` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据;
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
:param collate_fn: 用于从 dataset 取到的一个 batch 数据进行打包处理的 Callable 函数,其值应该为以下三个: ``[None, "auto", Callable]``.

* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
``PaddleDataLoader`` 调用默认的 Paddle 框架的 ``DataLoader`` 自带的 ``default_collate_fn`` 作为 callate_fn 的默认值, 其无法处理
:class:`~fastNLP.core.dataset.DataSet` 的dataset对象。
* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
``PaddleDataLoader`` 调用默认的 Paddle 框架的 ``DataLoader`` 自带的 ``default_collate_fn`` 作为 callate_fn 的默认值, 其无法处理
:class:`~fastNLP.core.dataset.DataSet` 的dataset对象。
* callate_fn 为 ``'auto'`` 时,``PaddleDataLoader`` 使用 :class:`~fastNLP.core.collators.Collator` 作为 collate_fn 的默认值。
此时可以配套使用 ``PaddleDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* `collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
此时可以配套使用 ``PaddleDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。

:param num_workers: 当 ``num_workers > 0`` 时, ``PaddleDataLoader`` 会开启 num_workers 个子进程来处理数据, 可以加快
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
:param use_buffer_reader: 是否开启 buffer_reader 。如果 `use_buffer_reader=True`` ,那么 ``PaddleDataLoader` `会异步的预取下一个 batch 的
数据,因此它将会加快数据传输的速度,但是将会占用更多的内存或者显存。默认值是 ``True``。
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
:param use_buffer_reader: 是否开启 buffer_reader 。如果 ``use_buffer_reader=True`` ,那么 ``PaddleDataLoader`` 会异步地预取下一个 batch 的
数据,因此它将会加快数据传输的速度,但是将会占用更多的内存或者显存。默认值是 ``True``。
:param use_shared_memory: 是否使用共享内存。当 ``use_shared_memory=True`` 时,将采用共享内存来加快将数据放进进程队列。建议仅当计算机上的
共享空间足够大时。(例如 Linux 上的 /dev/shm/ 空间足够大)共享内存仅在多进程模式( num_workers>0 )下生效。
:param timeout: 从子进程的输出队列获取数据的超时值
@@ -257,11 +258,11 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None,
non_train_batch_size: int = 16) \
-> Union[Sequence[PaddleDataLoader], Dict[str, PaddleDataLoader], PaddleDataLoader]:
"""
``prepare_paddle_dataloader`` 的功能是将输入的单个或多个 dataset 同时转为 ``PaddleDataloader``对象, 详见 :class: `~fastNLP.core.dataloaders.PaddleDataLoader`。
``prepare_paddle_dataloader`` 的功能是将输入的单个或多个 dataset 同时转为 ``PaddleDataloader``对象, 详见 :class:`~fastNLP.core.dataloaders.PaddleDataLoader`。
根据 ds_or_db 的类型 ``[DataSet, DataBundle,Sequence[Dataset], Dict[name, Dataset]]`` 不同而有不同返回结果, 具体如下:

* 当 ds_or_db 为 ``DataSet``时,``prepare_paddle_dataloader`` 会将使用的除了 non_train_batch_size 和 non_train_sampler 以外的参数来
帮你实例化一个 ``PaddleDataLoader`` 对象并返回该对象。 详见:class: `~fastNLP.core.dataloaders.PaddleDataLoader`。
帮你实例化一个 ``PaddleDataLoader`` 对象并返回该对象。 详见:class:`~fastNLP.core.dataloaders.PaddleDataLoader`。
* 当 ds_or_db 为 :class:`~fastNLP.io.DataBundle` 时,``prepare_paddle_dataloader`` 会遍历 ``DataBundle`` 的数据集的 key-value
来创建不同的 ``PaddleDataLoader`` 对象;当 key 中包含'train'字符串时,``prepare_Paddle_dataloader`` 默认该 value 为 train 数据集,
会将 batch_size 和 sampler 作为参数,其他 key 不包含 'train' 字符串的数据集则使用 non_train_size 和 non_train_sampler 作为参数。
@@ -277,8 +278,8 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None,
::param ds_or_db: 实现 __getitem__() 和 __len__() 的对象;或这种对象的序列;或字典。其取值只能为 ``[DataSet, DataBundle,
Sequence[DataSet], Dict[str, DataSet]]``.

* ds_or_db 为 :class: `~fastNLP.core.dataset.DataSet`,返回值为:class: `~fastNLP.core.dataloaders.PaddleDataLoader`
* ds_or_db 为 :class: `~fastNLP.io.DataBundle`, 返回值为 ``Dict[str, PaddleDataLoader]`` 的字典
* ds_or_db 为 :class:`~fastNLP.core.dataset.DataSet`,返回值为:class:`~fastNLP.core.dataloaders.PaddleDataLoader`
* ds_or_db 为 :class:`~fastNLP.io.DataBundle`, 返回值为 ``Dict[str, PaddleDataLoader]`` 的字典
* ds_or_db 为 ``Sequence[DataSet]`` 序列, 返回值为 ``Sequence[PaddleDataLoader]`` 的序列
* ds_or_db 为 ``Dict[str, DataSet]`` 字典, 返回值也为 ``Dict[str, PaddleDataLoader]`` 的字典



+ 12
- 21
fastNLP/core/dataloaders/prepare_dataloader.py View File

@@ -20,41 +20,32 @@ def prepare_dataloader(dataset, batch_size: int = 16, shuffle: bool = False, dro
"""
自动创建合适的 ``DataLoader`` 对象。例如,检测当当前环境是 ``torch`` 的,则返回 ``TorchDataLoader`` , 是 ``paddle`` 的则
返回 ``PaddleDataLoader`` 。如果有更多需要定制的参数,请直接使用对应的 ``prepare`` 函数,例如
:func:`~fastNLP.prepare_torch_dataloader` 或 :func:`~fastNLP.prepare_paddle_dataloader` 等。
:func:`~fastNLP.prepare_torch_dataloader` 或 :func:`~fastNLP.prepare_paddle_dataloader` 等。

:param dataset: 实现 __getitem__() 和 __len__() 的对象;或这种对象的序列;或字典。

* 为单个数据集对象时
返回一个 DataLoader 。
* 为数据集对象序列时
返回一个序列的 DataLoader 。
* 为单个数据集对象时,返回一个 DataLoader 。
* 为数据集对象序列时,返回一个序列的 DataLoader 。
* 为字典型 或 :class:`~fastNLP.io.DataBundle` 数据时,返回 `Dict` 类型的数据。
返回一个字典 。

:param batch_size: 批次大小。
:param shuffle: 是否打乱数据集。
:param drop_last: 当最后一个 batch 不足 batch_size 数量的是否,是否丢弃。
:param collate_fn: 用于处理一个 batch 的函数,一般包括 padding 和转为 tensor。有以下三种取值:

* 为 ``auto`` 时
使用 :class:`~fastNLP.Collator` 进行 padding 和 转tensor 。
* 为 ``Callable`` 时
应当接受一个 ``batch`` 的数据作为参数,同时输出一个对象 。
* 为 ``None`` 时
使用各个框架的 DataLoader 的默认 ``collate_fn`` 。
* 为 ``auto`` 时,使用 :class:`~fastNLP.Collator` 进行 padding 和 转tensor 。
* 为 ``Callable`` 时,应当接受一个 ``batch`` 的数据作为参数,同时输出一个对象 。
* 为 ``None`` 时,使用各个框架的 DataLoader 的默认 ``collate_fn`` 。
:param num_workers: 使用多少进程进行数据的 fetch 。
:param seed: 使用的随机数种子。
:param backend: 当前支持 ``["auto", "torch", "paddle", "jittor"]`` 四种类型。

* 为 ``auto`` 时
首先(1) 根据环境变量 "FASTNLP_BACKEND" 进行判断;如果没有设置则,(2)通过当前 ``sys.modules`` 中已经 import 的
``backend`` 进行判定。如果以上均无法判定,则报错。如果找到了 ``backend`` ,则按照下述的方式处理。
* 为 ``torch`` 时
使用 :func:`~fastNLP.prepare_torch_dataloader` 。
* 为 ``paddle`` 时
使用 :func:`~fastNLP.prepare_paddle_dataloader` 。
* 为 ``jittor`` 时
使用 :func:`~fastNLP.prepare_jittor_dataloader` 。
* 为 ``auto`` 时,首先(1) 根据环境变量 "FASTNLP_BACKEND" 进行判断;如果没有设置则,(2)通过当前
``sys.modules`` 中已经 import 的 ``backend`` 进行判定。如果以上均无法判定,则报错。如果找到了
``backend`` ,则按照下述的方式处理。
* 为 ``torch`` 时,使用 :func:`~fastNLP.prepare_torch_dataloader` 。
* 为 ``paddle`` 时,使用 :func:`~fastNLP.prepare_paddle_dataloader` 。
* 为 ``jittor`` 时,使用 :func:`~fastNLP.prepare_jittor_dataloader` 。

:return
"""


+ 18
- 18
fastNLP/core/dataloaders/torch_dataloader/fdl.py View File

@@ -50,19 +50,19 @@ class TorchDataLoader(DataLoader):
"""
提供给 ``torch`` 框架使用的 ``DataLoader`` 函数,``TorchDataLoader`` 提供了 ``Collator`` 来自动检测 dataset 的每个 field 是否可 pad,
若是可 pad 的 field 则自动 pad 到相同长度,否则只会将相同 field 的数据收集组成一个 batch 返回。
具体详见 :class:`~fastNLP.core.collators.Collator`;用户通过 callte_fn 来控制是否使用该功能, collate_fn 只能为 ``['auto', None, Callable]``三种取值。
具体详见 :class:`~fastNLP.core.collators.Collator`;用户通过 callte_fn 来控制是否使用该功能, collate_fn 只能为 ``['auto', None, Callable]``
三种取值。

* callate_fn 为 ``'auto'`` 时,``TorchDataLoader`` 使用 :class:`~fastNLP.core.collators.Collator` 作为 collate_fn 的取值。
此时可以配套使用 ``TorchDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
此时可以配套使用 ``TorchDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* callate_fn 为 ``None`` 时, ``TorchDataLoadr`` 默认使用 torch DataLoader 自带的 collate_fn
* collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
dataset 的一条数据;该 Callable 函数还应当返回一个对象。

"""

def __init__(self, dataset, batch_size: int = 16,
shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None,
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None,
shuffle: bool = False, sampler = None, batch_sampler = None,
num_workers: int = 0, collate_fn: Union[Callable, str, None] = 'auto',
pin_memory: bool = False, drop_last: bool = False,
timeout: float = 0, worker_init_fn: Optional[Callable] = None,
@@ -74,28 +74,28 @@ class TorchDataLoader(DataLoader):
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。
:param shuffle: 是否打乱数据集, 默认为 ``False``。
:param sampler: 实现了 __len__() 和 __iter__() 的实例化对象,其 __iter__() 方法每次都会返回 dataset 的一个下标 index ,
默认为None, 当其不为 None 时, shuffle 参数无效。
默认为None, 当其不为 None 时, shuffle 参数无效。
:param batch_sampler: 实现了 __len__() 和 __iter__() 的实例化对象,,其__iter__() 方法每次都会返回一个 List 对象, List中的值为
dataset 的下标 index ;默认为 None,当其不为 None 时,bacth_size, sampler, shuffle 参数均失效。
dataset 的下标 index ;默认为 None,当其不为 None 时,bacth_size, sampler, shuffle 参数均失效。
:param num_workers: 当 ``num_workers > 0`` 时, ``TorchDataLoader`` 会开启 num_workers 个子进程来处理数据, 可以加快
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
数据处理速度,但同时也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
:param collate_fn: 用于从 dataset 取到的一个 batch 数据进行打包处理的 Callable 函数,其值应该为以下三个: ``[None, "auto", Callable]``.

* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
* callate_fn 为 ``None`` 时,需要注意的是此时传进来的 datset 类型不能为 :class:`~fastNLP.core.dataset.DataSet` , 当 collate_fn 为 ``None`` 时,
``TorchDataLoader`` 调用默认的 torch 框架的 ``DataLoader`` 自带的 ``default_collate_fn`` 作为 callate_fn 的默认值, 其无法处理
:class:`~fastNLP.core.dataset.DataSet` 的dataset对象。
* callate_fn 为 ``'auto'`` 时,``TorchDataLoader`` 使用 :class:`~fastNLP.core.collators.Collator` 作为 collate_fn 的默认值。
此时可以配套使用 ``TorchDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* `collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。
此时可以配套使用 ``TorchDataLoader`` 的 ``set_pad`` 和 ``set_ignore`` 方法来设置 pad_val 或 忽略某个 field 的检测。
* collate_fn 为 ``Callable`` 时, 该 Callable 函数应当接受一个 batch 参数作为输入, batch 是一个 List 对象且 List 中的每一条数据都是
dataset 的一条数据;该 Callable 函数还应当返回一个对象。

:param pin_memory: 如果其为 ``True``, 那么 ``TorchDataLoader`` 会在返回数据张量之前将其 copy 到 cud a的 pin memory 中。
:param drop_last: 当 ``drop_last=True`` 时,``TorchDataLoader`` 会扔掉最后一个长度小于 ``batch_size`` 的 batch 数据;
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
:param timeout: 子进程的输出队列获取数据的超时值
:param worker_init_fn: init 函数,如果不设置为 None ,则将会在每个子进程初始化时调用该函数。
:param multiprocessing_context: 多进程的上下文环境
:param generator: 如果其不为 ``None``, 将会使用 RandomSampler 去生成随机的 index 且会为每个子进程生成一个``base_seed``
:param generator: 如果其不为 ``None``, 将会使用 RandomSampler 去生成随机的 index 且会为每个子进程生成一个 ``base_seed``
:param prefetch_factor: 每个 worker 提前装载的 samples 数量。``2``意味着在所有的进程中会有 2*num_workers 的数据被预取。默认值为 ``2`` .
:param persistent_workers: 如果其为 ``True``, ``TorchDataLoader`` 在迭代完一次 dataset 后不会关闭所有进程。默认为 ``False``

@@ -225,11 +225,11 @@ def prepare_torch_dataloader(ds_or_db,
non_train_batch_size: int = 16) \
-> Union[TorchDataLoader, Dict[str, TorchDataLoader], Sequence[TorchDataLoader]]:
"""
``prepare_torch_dataloader`` 的功能是将输入的单个或多个 dataset 同时转为 ``TorchDataloader``对象, 详见 :class: `~fastNLP.core.dataloaders.TorchDataLoader`。
``prepare_torch_dataloader`` 的功能是将输入的单个或多个 dataset 同时转为 ``TorchDataloader``对象, 详见 :class:`~fastNLP.core.dataloaders.TorchDataLoader`。
根据 ds_or_db 的类型 ``[DataSet, DataBundle,Sequence[Dataset], Dict[name, Dataset]]`` 不同而有不同返回结果, 具体如下:

* 当 ds_or_db 为 ``DataSet``时,``prepare_torch_dataloader`` 会将使用的除了 non_train_batch_size 和 non_train_sampler 以外的参数来
帮你实例化一个 ``TorchDataLoader`` 对象并返回该对象。 详见:class: `~fastNLP.core.dataloaders.TorchDataLoader`。
帮你实例化一个 ``TorchDataLoader`` 对象并返回该对象。 详见:class:`~fastNLP.core.dataloaders.TorchDataLoader`。
* 当 ds_or_db 为 :class:`~fastNLP.io.DataBundle` 时,``prepare_torch_dataloader`` 会遍历 ``DataBundle`` 的数据集的 key-value
来创建不同的 ``TorchDataLoader`` 对象;当 key 中包含'train'字符串时,``prepare_torch_dataloader`` 默认该 value 为 train 数据集,
会将 batch_size 和 sampler 作为参数,其他 key 不包含 'train' 字符串的数据集则使用 non_train_size 和 non_train_sampler 作为参数。
@@ -245,8 +245,8 @@ def prepare_torch_dataloader(ds_or_db,
:param ds_or_db: 实现 __getitem__() 和 __len__() 的对象;或这种对象的序列;或字典。其取值只能为 ``[DataSet, DataBundle,
Sequence[DataSet], Dict[str, DataSet]]``.

* ds_or_db 为 :class: `~fastNLP.core.dataset.DataSet`,返回值为:class: `~fastNLP.core.dataloaders.TorchDataLoader`
* ds_or_db 为 :class: `~fastNLP.io.DataBundle`, 返回值为 ``Dict[str, TorchDataLoader]`` 的字典
* ds_or_db 为 :class:`~fastNLP.core.dataset.DataSet`,返回值为:class:`~fastNLP.core.dataloaders.TorchDataLoader`
* ds_or_db 为 :class:`~fastNLP.io.DataBundle`, 返回值为 ``Dict[str, TorchDataLoader]`` 的字典
* ds_or_db 为 ``Sequence[DataSet]`` 序列, 返回值为 ``Sequence[TorchDataLoader]`` 的序列
* ds_or_db 为 ``Dict[str, DataSet]`` 字典, 返回值也为 ``Dict[str, TorchDataLoader]`` 的字典



+ 25
- 25
fastNLP/core/dataloaders/torch_dataloader/mix_dataloader.py View File

@@ -99,23 +99,23 @@ class _MixCollateFn:

class MixDataLoader(DataLoader):
"""
针对下四种情况提供的 ``MixDataLoader``, 目前只支持 ``torch`` 框架的版本, 其中 mode 的取值范围为 ``['sequential', 'mix', 'polling', "Sampler"]``:
针对下四种情况提供的 ``MixDataLoader``, 目前只支持 ``torch`` 框架的版本, 其中 mode 的取值范围为 ``['sequential', 'mix', 'polling', "Sampler"]``:

* 当 mode 为 ``'sequential'`` 时,``MixDataLoader`` 将 datasets 的序列或者字典视为一个混合大数据集, 按照 datasets 数据集序列或者字典的顺序一个
接一个的 sample 完所有数据。
接一个的 sample 完所有数据。
* 当 mode 为 ``'mix'`` 时, ``MixDataLoader`` 将 datasets 的序列或者字典视为一个混合大数据集, 然后根据用户输入的 idx 序列随机sample
混合数据集 datasets 的数据组成一个 batch 序列返回。
混合数据集 datasets 的数据组成一个 batch 序列返回。
* 当 mode 为 ``'polling'`` 时, ``MixDataLoader`` 按照 datasets 数据集的顺序, 先从第一个数据集采样一个 batch 的数据返回,
再从第二数据集采样一个 batch 数据返回, 直至最后一个数据集采样一个 batch 数据返回后再从第一个数据采样第二个 batch 数据返回,直至所有的数据集都被轮询的采样完。
再从第二数据集采样一个 batch 数据返回, 直至最后一个数据集采样一个 batch 数据返回后再从第一个数据采样第二个 batch 数据返回,直至所有的数据集都被轮询的采样完。
* 当 mode 为 ``"Sampler"`` 时, 该 Sampler 是实现 __iter__() 的实例化对象, 其功能是每次 iter 时返回一个 batch 序列, 其类型为 List[int];
且 Sampler 必须将输入的 datasets 视为一个混合大数据集, 其 index 范围为 ``0<idx<len(datasets[0])+...+len(datasets[x])``, 然后参数
sampler, drop_last, ds_ratio 均无效。
且 Sampler 必须将输入的 datasets 视为一个混合大数据集, 其 index 范围为 ``0<idx<len(datasets[0])+...+len(datasets[x])``, 然后参数
sampler, drop_last, ds_ratio 均无效。

"""

def __init__(self, datasets: Dict = None, mode: Union[str, "Sampler"] = 'sequential',
def __init__(self, datasets: Dict = None, mode: str = 'sequential',
collate_fn: Union[str, Callable, Dict[str, Callable]] = 'auto',
sampler: Union[Dict[str, "Sampler"], str, None] = None,
sampler: Union[str, None] = None,
num_workers: int = 0, batch_size: int = 16, drop_last=False,
ds_ratio: Union[None, str, Dict[str, float]] = None,
pin_memory: bool = False) -> None:
@@ -125,48 +125,48 @@ class MixDataLoader(DataLoader):
:param mode: mode 控制 ``MixDataLoader`` 运行模式。 mode 的取值范围为 ``['sequential', 'mix', 'polling', "Sampler"]``:

* 当 mode 为 ``'sequential'`` 时,``MixDataLoader`` 将 datasets 的序列或者字典视为一个混合大数据集, 按照 datasets 数据集序列或者字典的顺序一个
接一个的 sample 完所有数据。
接一个的 sample 完所有数据。
* 当 mode 为 ``'mix'`` 时, ``MixDataLoader`` 将 datasets 的序列或者字典视为一个混合大数据集, 然后根据用户输入的 idx 序列随机sample
混合数据集 datasets 的数据组成一个 batch 序列返回。
混合数据集 datasets 的数据组成一个 batch 序列返回。
* 当 mode 为 ``'polling'`` 时, ``MixDataLoader`` 按照 datasets 数据集的顺序, 先从第一个数据集采样一个 batch 的数据返回,
再从第二数据集采样一个 batch 数据返回, 直至最后一个数据集采样一个 batch 数据返回后再从第一个数据采样第二个 batch 数据返回,直至所有的数据集都被轮询的采样完。
再从第二数据集采样一个 batch 数据返回, 直至最后一个数据集采样一个 batch 数据返回后再从第一个数据采样第二个 batch 数据返回,直至所有的数据集都被轮询的采样完。
* 当 mode 为 ``"Sampler"`` 时, 该 Sampler 是实现 __iter__() 的实例化对象, 其功能是每次 iter 时返回一个 batch 序列, 其类型为 List[int];
且 Sampler 必须将输入的 datasets 视为一个混合大数据集, 其 index 范围为 ``0<idx<len(datasets[0])+...+len(datasets[x])``, 然后参数
sampler, drop_last, ds_ratio 均无效。
且 Sampler 必须将输入的 datasets 视为一个混合大数据集, 其 index 范围为 ``0<idx<len(datasets[0])+...+len(datasets[x])``, 然后参数
sampler, drop_last, ds_ratio 均无效。

:param collate_fn: 用于从 dataset 取到的一个 batch 数据进行打包处理的 Callable 函数。 其取值可以为 ``['auto', Callable, List[Callable], Dict[str, Callable]]``:

* collate_fn 为 ``'auto'`` 时, ``MixDataLoader`` datasets 序列或者dict 初始化一个 :class: `~fastNLP.core.collators.Collator` 作为其默认值,
需要注意的是只有当 datasets 包含的所以 dataset 的数据都为 ``List`` 或者 ``Dict`` 类型时才能使用。否则只能用户自己定义 collate_fn .
* collate_fn 为 ``'auto'`` 时, ``MixDataLoader`` datasets 序列或者dict 初始化一个 :class:`~fastNLP.core.collators.Collator` 作为其默认值,
需要注意的是只有当 datasets 包含的所以 dataset 的数据都为 ``List`` 或者 ``Dict`` 类型时才能使用。否则只能用户自己定义 collate_fn .
* collate_fn 为 ``Callable`` 时, 该 collate_fn 会被 datasets 序列或者dict 的所有数据所共享。该 Callable 函数应当接受一个 batch 参数作为输入,
batch 是一个 List 对象且 List 中的每一条数据都是 dataset 的一条数据;该 Callable 函数还应当返回一个对象。
batch 是一个 List 对象且 List 中的每一条数据都是 dataset 的一条数据;该 Callable 函数还应当返回一个对象。
* collate_fn 为 ``Dict[str, Callable]`` 时, datasets 的 key 必须和 callable_fn 的 key 一致。 ``MixDataLoader`` 会将 ``collate_fn[key]``
用到 ``datasets[key]`` 的数据集上。 ``collate_fn[key]`` 是一个 Callable 对象。
用到 ``datasets[key]`` 的数据集上。 ``collate_fn[key]`` 是一个 Callable 对象。


:param sampler: 实现了 __len__() 和 __iter__() 的实例化对象,其 __iter__() 方法每次都会返回 dataset 的一个下标 index ,其取值范围为
``[None, str, Dict[str, "Sampler"]]``:
``[None, str, Dict[str, "Sampler"]]``:

* sampler 为 ``None`` 时, ``MixDataLoader`` 默认初始化 ``torch`` 的 ``SequentialSampler`` 作为默认值。其功能时顺序返回 dataset 的下标。
* sampler 为 ``str`` 时, sampler 选择范围为 ``[rand, seq]``。当 sampler 为 ``rand`` 时,``MixDataLoader`` 默认初始化 ``torch`` 的 ``RandomSampler``
作为默认值, 其功能时随机采样 dataset 的下标并返回。 当 sampler 为 ``seq`` 时, ``MixDataLoader`` 默认初始化 ``torch`` 的 ``SequentialSampler`` 作为默认值。其功能时顺序返回 dataset 的下标。
作为默认值, 其功能时随机采样 dataset 的下标并返回。 当 sampler 为 ``seq`` 时, ``MixDataLoader`` 默认初始化 ``torch`` 的 ``SequentialSampler`` 作为默认值。其功能时顺序返回 dataset 的下标。
* sampler 为 ``Dict[str, "Sampler"]`` 时, ``Sampler`` 为用户定义的实现了 __len__() 和 __iter__() 的实例化对象。 其每次 iter 必须返回一个 int 下标。
Dict 的 str 必须和 datasets 的 key 一致。 也即是 ``Dict[str, Sampler] `` 为 datasets 字典的每个 dataset 初始化勒一个 Sampler。
Dict 的 str 必须和 datasets 的 key 一致。 也即是 ``Dict[str, Sampler]`` 为 datasets 字典的每个 dataset 初始化勒一个 Sampler。

:param num_workers: 当 ``num_workers > 0`` 时, ``MixDataLoader`` 会开启 num_workers 个子进程来处理数据, 可以加快数据处理速度,但同时
也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
也消耗大量内存。 当 ``num_workers=0`` 时, 不开启子进程。 默认为 ``0``。
:param batch_size: 批次大小,默认为 ``16`` 且当 batch_sampler 为 None 有效。 且 datasets 上所有 dataset 的 batch_size 一致。
:param drop_last: 当 ``drop_last=True`` 时,``MixDataLoader`` 会扔掉 datasets 中 每个 dataset 最后一个长度小于 ``batch_size`` 的 batch 数据;
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
若 ``drop_last=False`` , 则会返回该 batch 数据。 默认为 ``False`` 。
:param ds_ratio: ``ds_ratio`` 是控制 datasets 怎么组成一个混合大数据集的重要参数, 其取值为 ``[None, 'truncate_to_least', 'pad_to_most', List[float], Dict[str, float]]``:

* ds_ratio 为 ``None``, datasets 数据集序列或字典不进行数据扩充处理。
* ds_ratio 为 ``'truncate_to_least'``, datasets 数据集序列或字典会计算得到 datasets序列中 dataset 最断长度 ``mix_len``, 其他数据集会被切断
到最短长度``mix_len``。这种切断不是物理上切断,``MixDataLoader`` 会根据 sampler 不同来采样数据集到指定的最短长度``mix_len``。
到最短长度 ``mix_len``。这种切断不是物理上切断,``MixDataLoader`` 会根据 sampler 不同来采样数据集到指定的最短长度 ``mix_len``。
* ds_ratio 为 ``'pad_to_most'``, datasets 数据集序列或字典会计算得到 datasets序列中 dataset 最大长度 ``max_len``, 其他其他数据集会扩充
到最大长度``mix_len``。这种扩充不是物理上扩充, ``MixDataLoader`` 会根据 sampler 不同来重采样 dataset 到指定的最大长度``max_len``。
到最大长度 ``mix_len``。这种扩充不是物理上扩充, ``MixDataLoader`` 会根据 sampler 不同来重采样 dataset 到指定的最大长度``max_len``。
* ds_ratio 为 ``Dict[str, float]`` 时, datasets 类型也必须为 ``Dict[str, DataSet]``, 其 key 一一对应。 ds_ratio 的 value 是任意大于 0 的浮点数,
代表着 datasets 的 value 数据进行扩充或者缩减的倍数。
代表着 datasets 的 value 数据进行扩充或者缩减的倍数。
"""
# sampler 为 dict,则判断是否与 datasets 的 key 相同
if isinstance(sampler, Dict):


+ 13
- 13
fastNLP/core/dataset/dataset.py View File

@@ -95,7 +95,7 @@ r"""
data = {'sentence':["This is the first instance .", "Second instance .", "Third instance ."]}
dataset = DataSet(data)
# 将句子分成单词形式, 详见DataSet.apply()方法, 可以开启多进程来加快处理, 也可以更改展示的bar,目前支持 ``['rich', 'tqdm', None]``,
# 详细内容可以见 :class: `~fastNLP.core.dataset.DataSet`, 需要注意的时匿名函数不支持多进程
# 详细内容可以见 :class:`~fastNLP.core.dataset.DataSet`, 需要注意的时匿名函数不支持多进程
dataset.apply(lambda ins: ins['sentence'].split(), new_field_name='words',
progress_des='Main',progress_bar='rich')
# 或使用DataSet.apply_field()
@@ -260,18 +260,18 @@ class DataSet:

def __init__(self, data: Union[List[Instance], Dict[str, List[Any]], None] = None):
r"""
初始化 ``DataSet``, fastNLP的 DataSet 是 key-value 存储形式, 目前支持两种初始化方式,输入 data 分别为 ``List[:class: `~fastNLP.core.dataset.Instance`]`` 和
初始化 ``DataSet``, fastNLP的 DataSet 是 key-value 存储形式, 目前支持两种初始化方式,输入 data 分别为 ``List[:class:`~fastNLP.core.dataset.Instance`]`` 和
``Dict[str, List[Any]]``。

* 当 data 为 ``List[:class: `~fastNLP.core.dataset.Instance`]`` 时, 每个 ``Instance`` 的 field_name 需要保持一致。
Instance 详见 :class: `~fastNLP.core.dataset.Instance` 。
* 当 data 为 ``List[:class:`~fastNLP.core.dataset.Instance`]`` 时, 每个 ``Instance`` 的 field_name 需要保持一致。
Instance 详见 :class:`~fastNLP.core.dataset.Instance` 。
* 当 data 为 ``Dict[str, List[Any]] 时, 则每个 key 的 value 应该为等长的 list, 否则不同 field 的长度不一致。

:param data: 初始化的内容, 其只能为两种类型,分别为 ``List[:class: `~fastNLP.core.dataset.Instance`]`` 和
:param data: 初始化的内容, 其只能为两种类型,分别为 ``List[:class:`~fastNLP.core.dataset.Instance`]`` 和
``Dict[str, List[Any]]``。

* 当 data 为 ``List[:class: `~fastNLP.core.dataset.Instance`]`` 时, 每个 ``Instance`` 的 field_name 需要保持一致。
Instance 详见 :class: `~fastNLP.core.dataset.Instance` 。
* 当 data 为 ``List[:class:`~fastNLP.core.dataset.Instance`]`` 时, 每个 ``Instance`` 的 field_name 需要保持一致。
Instance 详见 :class:`~fastNLP.core.dataset.Instance` 。
* 当 data 为 ``Dict[str, List[Any]] 时, 则每个 key 的 value 应该为等长的 list, 否则不同 field 的长度不一致。

Example::
@@ -340,7 +340,7 @@ class DataSet:
去 DataSet 的内容, 根据 idx 类型不同有不同的返回值。 包括四种类型 ``[int, slice, str, list]``

* 当 idx 为 ``int`` 时, idx 的值不能超过 ``DataSet`` 的长度, 会返回一个 ``Instance``, 详见
:class: `~fastNLP.core.dataset.Instance`
:class:`~fastNLP.core.dataset.Instance`
* 当 idx 为 ``slice`` 时, 会根据 slice 的内容创建一个新的 DataSet,其包含 slice 所有内容并返回。
* 当 idx 为 ``str`` 时, 该 idx 为 DataSet 的 field_name, 其会返回该 field_name 的所有内容, 为 list 类型。
* 当 idx 为 ``list`` 时, 该 idx 的 list 内全为 int 数字, 其会取出所有内容组成一个新的 DataSet 返回。
@@ -429,7 +429,7 @@ class DataSet:

def append(self, instance: Instance) -> None:
r"""
将一个 instance 对象 append 到 DataSet 后面。详见 :class: `~fastNLP.Instance`
将一个 instance 对象 append 到 DataSet 后面。详见 :class:`~fastNLP.Instance`

:param instance: 若 DataSet 不为空,则 instance 应该拥有和 DataSet 完全一样的 field。

@@ -457,7 +457,7 @@ class DataSet:
将 fieldarray 添加到 DataSet 中.

:param field_name: 新加入的 field 的名称
:param fieldarray: 需要加入 DataSet 的 field 的内容, 详见 :class: `~fastNLP.core.dataset.FieldArray`
:param fieldarray: 需要加入 DataSet 的 field 的内容, 详见 :class:`~fastNLP.core.dataset.FieldArray`
:return:
"""
if not isinstance(fieldarray, FieldArray):
@@ -936,7 +936,7 @@ class DataSet:
:param field_mapping: 当传入的 dataset 中的 field 名称和当前 dataset 不一致时,需要通过 field_mapping 把输入的 dataset 中的
field 名称映射到当前 field. field_mapping 为 dict 类型,key 为 dataset 中的 field 名称,value 是需要映射成的名称

:return: :class: `~fastNLP.core.dataset.DataSet``
:return: :class:`~fastNLP.core.dataset.DataSet``
"""
assert isinstance(dataset, DataSet), "Can only concat two datasets."

@@ -1002,7 +1002,7 @@ class DataSet:
def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None,
pad_fn: Callable = None) -> Collator:
"""
``DataSet`` 中想要对绑定的 collator 进行调整可以调用此函数。 ``collator`` 为 :class: `~fastNLP.core.collators.Collator`
``DataSet`` 中想要对绑定的 collator 进行调整可以调用此函数。 ``collator`` 为 :class:`~fastNLP.core.collators.Collator`
时该函数才有效。调用该函数可以对 field 内容的 pad_val, dtype, backend 等进行调整。

:param field_name: 需要调整的 field 的名称。如果 DataSet 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的
@@ -1028,7 +1028,7 @@ class DataSet:

def set_ignore(self, *field_names) -> Collator:
"""
``DataSet`` 中想要对绑定的 collator 进行调整可以调用此函数。 ``collator`` 为 :class: `~fastNLP.core.collators.Collator`
``DataSet`` 中想要对绑定的 collator 进行调整可以调用此函数。 ``collator`` 为 :class:`~fastNLP.core.collators.Collator`
时该函数才有效。调用该函数可以设置忽略输出某些 field 的内容,被设置的 field 将在 batch 的输出中被忽略。

Example::


+ 3
- 3
fastNLP/core/metrics/backend/auto_backend.py View File

@@ -37,9 +37,9 @@ class AutoBackend(Backend):

:param backend: 传入的 backend 值。

* 当 backend 为 `torch` 时, 选择 :class: `~fastNLP.core.metric.TorchBackend`
* 当 backend 为 `paddle` 时, 选择 :class: `~fastNLP.core.metric.PaddleBackend`
* 当 backend 为 `jittor` 时, 选择 :class: `~fastNLP.core.metric.JittorBackend`
* 当 backend 为 `torch` 时, 选择 :class:`~fastNLP.core.metric.TorchBackend`
* 当 backend 为 `paddle` 时, 选择 :class:`~fastNLP.core.metric.PaddleBackend`
* 当 backend 为 `jittor` 时, 选择 :class:`~fastNLP.core.metric.JittorBackend`
* 当 backend 为 ``None`` 时, 直接初始化

"""


Loading…
Cancel
Save