|
|
@@ -0,0 +1,475 @@ |
|
|
|
import os |
|
|
|
|
|
|
|
import pytest |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
from fastNLP.core.drivers.torch_driver.deepspeed import DeepSpeedDriver |
|
|
|
from fastNLP.core.samplers import ( |
|
|
|
RandomSampler, |
|
|
|
UnrepeatedSampler, |
|
|
|
BucketedBatchSampler, |
|
|
|
UnrepeatedRandomSampler, |
|
|
|
UnrepeatedSequentialSampler, |
|
|
|
) |
|
|
|
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 |
|
|
|
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchNormalXYDataset |
|
|
|
from tests.helpers.utils import magic_argv_env_context |
|
|
|
from fastNLP.envs.distributed import rank_zero_rm |
|
|
|
from fastNLP import logger |
|
|
|
|
|
|
|
from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _NEED_IMPORT_DEEPSPEED |
|
|
|
|
|
|
|
if _NEED_IMPORT_TORCH: |
|
|
|
import torch |
|
|
|
import torch.distributed as dist |
|
|
|
from torch.utils.data import DataLoader, BatchSampler |
|
|
|
|
|
|
|
if _NEED_IMPORT_DEEPSPEED: |
|
|
|
import deepspeed |
|
|
|
|
|
|
|
def generate_driver(labels, features, device=[0,1], fp16=False, output_from_new_proc="all"): |
|
|
|
torch_model = TorchNormalModel_Classification_1(labels, features) |
|
|
|
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01) |
|
|
|
device = [torch.device(i) for i in device] |
|
|
|
driver = DeepSpeedDriver( |
|
|
|
model=torch_model, |
|
|
|
parallel_device=device, |
|
|
|
fp16=fp16, |
|
|
|
output_from_new_proc=output_from_new_proc |
|
|
|
) |
|
|
|
driver.set_optimizers(torch_opt) |
|
|
|
driver.setup() |
|
|
|
|
|
|
|
return driver |
|
|
|
|
|
|
|
def dataloader_with_bucketedbatchsampler(dataset, length, batch_size, shuffle, drop_last): |
|
|
|
""" |
|
|
|
建立一个 batch_sampler 为 BucketedBatchSampler 的 dataloader |
|
|
|
""" |
|
|
|
dataloader = DataLoader( |
|
|
|
dataset=dataset, |
|
|
|
batch_sampler=BucketedBatchSampler( |
|
|
|
dataset, |
|
|
|
length, |
|
|
|
batch_size, |
|
|
|
shuffle=shuffle, |
|
|
|
drop_last=drop_last, |
|
|
|
), |
|
|
|
) |
|
|
|
|
|
|
|
return dataloader |
|
|
|
|
|
|
|
def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed=0, unrepeated=False): |
|
|
|
""" |
|
|
|
建立一个 sampler 为 RandomSampler 的 dataloader |
|
|
|
""" |
|
|
|
if unrepeated: |
|
|
|
sampler = UnrepeatedRandomSampler(dataset, shuffle, seed) |
|
|
|
else: |
|
|
|
sampler = RandomSampler(dataset, shuffle, seed=seed) |
|
|
|
dataloader = DataLoader( |
|
|
|
dataset, |
|
|
|
sampler=sampler, |
|
|
|
drop_last=drop_last, |
|
|
|
batch_size=batch_size |
|
|
|
) |
|
|
|
return dataloader |
|
|
|
|
|
|
|
############################################################################ |
|
|
|
# |
|
|
|
# 测试 TorchDDPDriver 的一些函数 |
|
|
|
# |
|
|
|
############################################################################ |
|
|
|
|
|
|
|
@pytest.mark.torch |
|
|
|
@magic_argv_env_context |
|
|
|
def test_multi_drivers(): |
|
|
|
""" |
|
|
|
测试使用了多个 TorchDDPDriver 的情况。 |
|
|
|
""" |
|
|
|
generate_driver(10, 10) |
|
|
|
generate_driver(20, 10) |
|
|
|
|
|
|
|
with pytest.raises(RuntimeError): |
|
|
|
# 设备设置不同,应该报错 |
|
|
|
generate_driver(20, 3, device=[0,1,2]) |
|
|
|
assert False |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
if dist.is_initialized(): |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
@magic_argv_env_context |
|
|
|
def test_multi_optimizers(): |
|
|
|
torch_model = TorchNormalModel_Classification_1(10, 10) |
|
|
|
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01) |
|
|
|
device = [torch.device(i) for i in device] |
|
|
|
driver = DeepSpeedDriver( |
|
|
|
model=torch_model, |
|
|
|
parallel_device=device, |
|
|
|
) |
|
|
|
driver.set_optimizers([torch_opt, torch_opt]) |
|
|
|
with pytest.raises(ValueError): |
|
|
|
driver.setup() |
|
|
|
|
|
|
|
if dist.is_initialized(): |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
@pytest.mark.torch |
|
|
|
class TestDeepSpeedDriverFunction: |
|
|
|
""" |
|
|
|
测试 TorchDeepSpeedDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题 |
|
|
|
""" |
|
|
|
|
|
|
|
@magic_argv_env_context |
|
|
|
def test_simple_functions(self): |
|
|
|
""" |
|
|
|
简单测试多个函数 |
|
|
|
""" |
|
|
|
driver = generate_driver(10, 10) |
|
|
|
|
|
|
|
""" |
|
|
|
测试 move_data_to_device 函数。这个函数仅调用了 torch_move_data_to_device ,测试例在 |
|
|
|
tests/core/utils/test_torch_utils.py中,就不重复测试了 |
|
|
|
""" |
|
|
|
driver.move_data_to_device(torch.rand((32, 64))) |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
""" |
|
|
|
测试 is_distributed 函数 |
|
|
|
""" |
|
|
|
assert driver.is_distributed() == True |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
""" |
|
|
|
测试 get_no_sync_context 函数 |
|
|
|
""" |
|
|
|
res = driver.get_model_no_sync_context() |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
""" |
|
|
|
测试 is_global_zero 函数 |
|
|
|
""" |
|
|
|
driver.is_global_zero() |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
""" |
|
|
|
测试 unwrap_model 函数 |
|
|
|
""" |
|
|
|
driver.unwrap_model() |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
""" |
|
|
|
测试 get_local_rank 函数 |
|
|
|
""" |
|
|
|
driver.get_local_rank() |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
""" |
|
|
|
测试 all_gather 函数 |
|
|
|
详细的测试在 test_dist_utils.py 中完成 |
|
|
|
""" |
|
|
|
obj = { |
|
|
|
"rank": driver.global_rank |
|
|
|
} |
|
|
|
obj_list = driver.all_gather(obj, group=None) |
|
|
|
for i, res in enumerate(obj_list): |
|
|
|
assert res["rank"] == i |
|
|
|
|
|
|
|
""" |
|
|
|
测试 broadcast_object 函数 |
|
|
|
详细的函数在 test_dist_utils.py 中完成 |
|
|
|
""" |
|
|
|
if driver.global_rank == 0: |
|
|
|
obj = { |
|
|
|
"rank": driver.global_rank |
|
|
|
} |
|
|
|
else: |
|
|
|
obj = None |
|
|
|
res = driver.broadcast_object(obj, src=0) |
|
|
|
assert res["rank"] == 0 |
|
|
|
|
|
|
|
if dist.is_initialized(): |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
############################################################################ |
|
|
|
# |
|
|
|
# 测试 save 和 load 相关的功能 |
|
|
|
# |
|
|
|
############################################################################ |
|
|
|
@pytest.mark.torch |
|
|
|
class TestSaveLoad: |
|
|
|
""" |
|
|
|
测试多卡情况下 save 和 load 相关函数的表现 |
|
|
|
""" |
|
|
|
|
|
|
|
def setup_method(self): |
|
|
|
self.dataset = TorchNormalXYDataset(100) |
|
|
|
|
|
|
|
@magic_argv_env_context |
|
|
|
@pytest.mark.parametrize("only_state_dict", ([True, False])) |
|
|
|
def test_save_and_load_model(self, only_state_dict): |
|
|
|
""" |
|
|
|
测试 save_model 和 load_model 函数 |
|
|
|
""" |
|
|
|
try: |
|
|
|
path = "model" |
|
|
|
|
|
|
|
dataloader = DataLoader(self.dataset, batch_size=2) |
|
|
|
driver1, driver2 = generate_driver(20, 1), generate_driver(20, 1) |
|
|
|
|
|
|
|
driver1.save_model(path, only_state_dict) |
|
|
|
|
|
|
|
# 同步 |
|
|
|
dist.barrier() |
|
|
|
driver2.load_model(path, only_state_dict) |
|
|
|
|
|
|
|
for idx, batch in enumerate(dataloader): |
|
|
|
batch = driver1.move_data_to_device(batch) |
|
|
|
res1 = driver1.model( |
|
|
|
batch, |
|
|
|
fastnlp_fn=driver1.model.module.model.evaluate_step, |
|
|
|
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model |
|
|
|
fastnlp_signature_fn=None, |
|
|
|
wo_auto_param_call=False, |
|
|
|
) |
|
|
|
res2 = driver2.model( |
|
|
|
batch, |
|
|
|
fastnlp_fn=driver2.model.module.model.evaluate_step, |
|
|
|
fastnlp_signature_fn=None, |
|
|
|
wo_auto_param_call=False, |
|
|
|
) |
|
|
|
|
|
|
|
assert torch.equal(res1["preds"], res2["preds"]) |
|
|
|
finally: |
|
|
|
rank_zero_rm(path) |
|
|
|
|
|
|
|
if dist.is_initialized(): |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
@magic_argv_env_context |
|
|
|
@pytest.mark.parametrize("only_state_dict", ([True, False])) |
|
|
|
@pytest.mark.parametrize("fp16", ([True, False])) |
|
|
|
@pytest.mark.parametrize("device", ([[0,1]])) |
|
|
|
def test_save_and_load_with_bucketedbatchsampler(self, device, only_state_dict, fp16): |
|
|
|
""" |
|
|
|
测试save和load函数,主要测试 dataloader 被替换了 sampler 之后的情况 |
|
|
|
""" |
|
|
|
|
|
|
|
try: |
|
|
|
path = "model.ckp" |
|
|
|
num_replicas = len(device) |
|
|
|
|
|
|
|
driver1, driver2 = generate_driver(20, 1, device=device, fp16=fp16), \ |
|
|
|
generate_driver(20, 1, device=device, fp16=False) |
|
|
|
dataloader = dataloader_with_bucketedbatchsampler( |
|
|
|
self.dataset, |
|
|
|
length=[10 for i in range(len(self.dataset))], |
|
|
|
batch_size=4, |
|
|
|
shuffle=True, |
|
|
|
drop_last=False |
|
|
|
) |
|
|
|
dataloader.batch_sampler.set_distributed( |
|
|
|
num_replicas=driver1.world_size, |
|
|
|
rank=driver1.global_rank, |
|
|
|
pad=True |
|
|
|
) |
|
|
|
num_consumed_batches = 4 |
|
|
|
|
|
|
|
already_seen_x_set = set() |
|
|
|
already_seen_y_set = set() |
|
|
|
driver1.set_sampler_epoch(dataloader, 4) |
|
|
|
for idx, batch in enumerate(dataloader): |
|
|
|
if idx >= num_consumed_batches: |
|
|
|
break |
|
|
|
already_seen_x_set.update(batch["x"].reshape(-1, ).tolist()) |
|
|
|
already_seen_y_set.update(batch["y"].reshape(-1, ).tolist()) |
|
|
|
|
|
|
|
# 同步 |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
# 保存状态 |
|
|
|
sampler_states = dataloader.batch_sampler.state_dict() |
|
|
|
save_states = {"num_consumed_batches": num_consumed_batches} |
|
|
|
driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) |
|
|
|
dist.barrier() |
|
|
|
# 加载 |
|
|
|
# 更改 batch_size |
|
|
|
dataloader = dataloader_with_bucketedbatchsampler( |
|
|
|
self.dataset, |
|
|
|
length=[10 for i in range(len(self.dataset))], |
|
|
|
batch_size=2, |
|
|
|
shuffle=True, |
|
|
|
drop_last=False |
|
|
|
) |
|
|
|
dataloader.batch_sampler.set_distributed( |
|
|
|
num_replicas=driver2.world_size, |
|
|
|
rank=driver2.global_rank, |
|
|
|
pad=True |
|
|
|
) |
|
|
|
dist.barrier() |
|
|
|
load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) |
|
|
|
dist.barrier() |
|
|
|
replaced_loader = load_states.pop("dataloader") |
|
|
|
|
|
|
|
# 1. 检查 optimizer 的状态 |
|
|
|
# TODO optimizer 的 state_dict 总是为空 |
|
|
|
|
|
|
|
# 2. 检查 batch_sampler 是否被正确地加载和替换 |
|
|
|
assert not (replaced_loader is dataloader) |
|
|
|
assert replaced_loader.batch_sampler is dataloader.batch_sampler |
|
|
|
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) |
|
|
|
if os.environ['FASTNLP_GLOBAL_RANK'] == '0': |
|
|
|
assert replaced_loader.batch_sampler.seed == sampler_states["seed"] |
|
|
|
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 * num_replicas |
|
|
|
|
|
|
|
# 3. 检查 fp16 是否被加载 |
|
|
|
if fp16: |
|
|
|
assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) |
|
|
|
|
|
|
|
# 4. 检查 model 的参数是否正确 |
|
|
|
# 5. 检查 batch_idx |
|
|
|
start_batch = load_states.pop('batch_idx_in_epoch') |
|
|
|
assert start_batch == 2 * num_consumed_batches |
|
|
|
left_x_batches = set() |
|
|
|
left_y_batches = set() |
|
|
|
driver2.set_sampler_epoch(replaced_loader, 4) |
|
|
|
for idx, batch in enumerate(replaced_loader): |
|
|
|
|
|
|
|
left_x_batches.update(batch["x"].reshape(-1, ).tolist()) |
|
|
|
left_y_batches.update(batch["y"].reshape(-1, ).tolist()) |
|
|
|
res1 = driver1.model( |
|
|
|
batch, |
|
|
|
fastnlp_fn=driver1.model.module.model.evaluate_step, |
|
|
|
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model |
|
|
|
fastnlp_signature_fn=None, |
|
|
|
wo_auto_param_call=False, |
|
|
|
) |
|
|
|
res2 = driver2.model( |
|
|
|
batch, |
|
|
|
fastnlp_fn=driver2.model.module.model.evaluate_step, |
|
|
|
fastnlp_signature_fn=None, |
|
|
|
wo_auto_param_call=False, |
|
|
|
) |
|
|
|
assert torch.equal(res1["preds"], res2["preds"]) |
|
|
|
|
|
|
|
assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas |
|
|
|
assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas |
|
|
|
assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas |
|
|
|
assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas |
|
|
|
dist.barrier() |
|
|
|
finally: |
|
|
|
rank_zero_rm(path) |
|
|
|
|
|
|
|
if dist.is_initialized(): |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
@magic_argv_env_context |
|
|
|
@pytest.mark.parametrize("only_state_dict", ([True, False])) |
|
|
|
@pytest.mark.parametrize("fp16", ([True, False])) |
|
|
|
@pytest.mark.parametrize("device", ([[0,1]])) |
|
|
|
def test_save_and_load_with_randomsampler(self, device, only_state_dict, fp16): |
|
|
|
""" |
|
|
|
测试save和load函数,主要测试 dataloader 被替换了 batch_sampler 的情况 |
|
|
|
""" |
|
|
|
|
|
|
|
try: |
|
|
|
path = "checkpoints/" |
|
|
|
|
|
|
|
num_replicas = len(device) |
|
|
|
|
|
|
|
driver1 = generate_driver(20, 1, device=device, fp16=fp16) |
|
|
|
driver2 = generate_driver(20, 1, device=device, fp16=False) |
|
|
|
|
|
|
|
dataloader = dataloader_with_randomsampler(self.dataset, 4, True, False, unrepeated=False) |
|
|
|
dataloader.batch_sampler.sampler.set_distributed( |
|
|
|
num_replicas=driver1.world_size, |
|
|
|
rank=driver1.global_rank, |
|
|
|
pad=True |
|
|
|
) |
|
|
|
num_consumed_batches = 4 |
|
|
|
|
|
|
|
already_seen_x_set = set() |
|
|
|
already_seen_y_set = set() |
|
|
|
driver1.set_sampler_epoch(dataloader, 4) |
|
|
|
for idx, batch in enumerate(dataloader): |
|
|
|
if idx >= num_consumed_batches: |
|
|
|
break |
|
|
|
already_seen_x_set.update(batch["x"].reshape(-1, ).tolist()) |
|
|
|
already_seen_y_set.update(batch["y"].reshape(-1, ).tolist()) |
|
|
|
|
|
|
|
# 同步 |
|
|
|
dist.barrier() |
|
|
|
|
|
|
|
# 保存状态 |
|
|
|
sampler_states = dataloader.batch_sampler.sampler.state_dict() |
|
|
|
save_states = {"num_consumed_batches": num_consumed_batches} |
|
|
|
if only_state_dict: |
|
|
|
driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) |
|
|
|
else: |
|
|
|
driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) |
|
|
|
dist.barrier() # 等待save成功 |
|
|
|
# 加载 |
|
|
|
# 更改 batch_size |
|
|
|
dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False) |
|
|
|
dataloader.batch_sampler.sampler.set_distributed( |
|
|
|
num_replicas=driver2.world_size, |
|
|
|
rank=driver2.global_rank, |
|
|
|
pad=True |
|
|
|
) |
|
|
|
load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) |
|
|
|
replaced_loader = load_states.pop("dataloader") |
|
|
|
|
|
|
|
# 1. 检查 optimizer 的状态 |
|
|
|
# TODO optimizer 的 state_dict 总是为空 |
|
|
|
|
|
|
|
# 2. 检查 sampler 是否被正确地加载和替换 |
|
|
|
assert not (replaced_loader is dataloader) |
|
|
|
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) |
|
|
|
if os.environ['FASTNLP_GLOBAL_RANK'] == '0': |
|
|
|
assert replaced_loader.batch_sampler.sampler.seed == sampler_states["seed"] |
|
|
|
assert replaced_loader.batch_sampler.sampler.epoch == sampler_states["epoch"] |
|
|
|
assert len(replaced_loader.batch_sampler.sampler.dataset) == sampler_states["length"] |
|
|
|
assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"] |
|
|
|
assert replaced_loader.batch_sampler.sampler.num_consumed_samples == 4 * num_consumed_batches * num_replicas |
|
|
|
|
|
|
|
# 3. 检查 fp16 是否被加载 |
|
|
|
if fp16: |
|
|
|
assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) |
|
|
|
|
|
|
|
# 4. 检查 model 的参数是否正确 |
|
|
|
# 5. 检查 batch_idx |
|
|
|
start_batch = load_states.pop('batch_idx_in_epoch') |
|
|
|
assert start_batch == 2 * num_consumed_batches |
|
|
|
left_x_batches = set() |
|
|
|
left_y_batches = set() |
|
|
|
driver2.set_sampler_epoch(replaced_loader, 4) |
|
|
|
for idx, batch in enumerate(replaced_loader): |
|
|
|
|
|
|
|
left_x_batches.update(batch["x"].reshape(-1, ).tolist()) |
|
|
|
left_y_batches.update(batch["y"].reshape(-1, ).tolist()) |
|
|
|
res1 = driver1.model( |
|
|
|
batch, |
|
|
|
fastnlp_fn=driver1.model.module.model.evaluate_step, |
|
|
|
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model |
|
|
|
fastnlp_signature_fn=None, |
|
|
|
wo_auto_param_call=False, |
|
|
|
) |
|
|
|
res2 = driver2.model( |
|
|
|
batch, |
|
|
|
fastnlp_fn=driver2.model.module.model.evaluate_step, |
|
|
|
fastnlp_signature_fn=None, |
|
|
|
wo_auto_param_call=False, |
|
|
|
) |
|
|
|
assert torch.equal(res1["preds"], res2["preds"]) |
|
|
|
|
|
|
|
assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas |
|
|
|
assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas |
|
|
|
assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas |
|
|
|
assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas |
|
|
|
|
|
|
|
finally: |
|
|
|
rank_zero_rm(path) |
|
|
|
|
|
|
|
if dist.is_initialized(): |
|
|
|
dist.destroy_process_group() |