From d4b4ffa28bbf3a76cdf05330bc37bdf683a1d0e5 Mon Sep 17 00:00:00 2001 From: xuyige Date: Wed, 23 Jan 2019 14:56:25 +0800 Subject: [PATCH] add testing tutorial --- tutorials/fastnlp_test_tutorial.ipynb | 97 +++++++++++++++++++++++++++++++++++ 1 file changed, 97 insertions(+) create mode 100644 tutorials/fastnlp_test_tutorial.ipynb diff --git a/tutorials/fastnlp_test_tutorial.ipynb b/tutorials/fastnlp_test_tutorial.ipynb new file mode 100644 index 00000000..9b0c1b2e --- /dev/null +++ b/tutorials/fastnlp_test_tutorial.ipynb @@ -0,0 +1,97 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## fastNLP测试说明\n", + "### 测试环境\n", + "fastNLP使用pytest对代码进行单元测试,测试代码在test文件夹下,测试所需数据在test/data_for_tests文件夹下\n", + "测试的步骤主要分为准备数据,执行测试,比对结果,清除环境四步\n", + "测试代码以test_xxx.py命名,以DataSet的测试代码为例,测试代码文件名为test_dataset.py" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import unittest # 单元测试需要用到unittest\n", + "\n", + "from fastNLP.core.dataset import DataSet\n", + "from fastNLP.core.fieldarray import FieldArray\n", + "from fastNLP.core.instance import Instance\n", + "# 在这个单元测试文件中,需要测试DataSet、FieldArray、以及Instance" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class TestDataSet(unittest.TestCase): # 类名字以Test打头,继承unittest.TestCase\n", + "\n", + " def test_init_v1(self): # 测试样例1, 函数名称以test_打头\n", + " # 该测试样例测试的是DataSet的初始化\n", + " ins = Instance(x=[1, 2, 3, 4], y=[5, 6]) # 准备数据\n", + " ds = DataSet([ins] * 40) # 执行测试(调用DataSet的初始化函数)\n", + " self.assertTrue(\"x\" in ds.field_arrays and \"y\" in ds.field_arrays) # 比对结果:'x'跟'y'都是ds的field\n", + " self.assertEqual(ds.field_arrays[\"x\"].content, [[1, 2, 3, 4], ] * 40) # 比对结果: field 'x'的内容正确\n", + " self.assertEqual(ds.field_arrays[\"y\"].content, [[5, 6], ] * 40) # 比对结果: field 'y'的内容正确\n", + " \n", + " def test_init_v2(self): # 测试样例2,该样例测试DataSet的另一种初始化方式\n", + " ds = DataSet({\"x\": [[1, 2, 3, 4]] * 40, \"y\": [[5, 6]] * 40})\n", + " self.assertTrue(\"x\" in ds.field_arrays and \"y\" in ds.field_arrays)\n", + " self.assertEqual(ds.field_arrays[\"x\"].content, [[1, 2, 3, 4], ] * 40)\n", + " self.assertEqual(ds.field_arrays[\"y\"].content, [[5, 6], ] * 40)\n", + " \n", + " def test_init_assert(self): # 测试样例3,该样例测试不规范初始化DataSet时是否会报正确错误\n", + " with self.assertRaises(AssertionError):\n", + " _ = DataSet({\"x\": [[1, 2, 3, 4]] * 40, \"y\": [[5, 6]] * 100})\n", + " with self.assertRaises(AssertionError):\n", + " _ = DataSet([[1, 2, 3, 4]] * 10)\n", + " with self.assertRaises(ValueError):\n", + " _ = DataSet(0.00001)\n", + " \n", + " def test_contains(self): # 测试样例4,该样例测试DataSet的contains函数,是功能测试\n", + " ds = DataSet({\"x\": [[1, 2, 3, 4]] * 40, \"y\": [[5, 6]] * 40})\n", + " self.assertTrue(\"x\" in ds)\n", + " self.assertTrue(\"y\" in ds)\n", + " self.assertFalse(\"z\" in ds)\n", + " \n", + " # 更多测试样例见test/core/test_dataset.py" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}