{ "cells": [ { "cell_type": "markdown", "id": "aec0fde7", "metadata": {}, "source": [ "# T0. trainer 和 evaluator 的基本使用\n", "\n", "  1   trainer 和 evaluator 的基本关系\n", " \n", "    1.1   trainer 和 evaluater 的初始化\n", "\n", "    1.2   driver 的含义与使用要求\n", "\n", "    1.3   trainer 内部初始化 evaluater\n", "\n", "  2   使用 fastNLP 搭建 argmax 模型\n", "\n", "    2.1   trainer_step 和 evaluator_step\n", "\n", "    2.2   trainer 和 evaluator 的参数匹配\n", "\n", "    2.3   示例:argmax 模型的搭建\n", "\n", "  3   使用 fastNLP 训练 argmax 模型\n", " \n", "    3.1   trainer 外部初始化的 evaluator\n", "\n", "    3.2   trainer 内部初始化的 evaluator " ] }, { "cell_type": "markdown", "id": "09ea669a", "metadata": {}, "source": [ "## 1. trainer 和 evaluator 的基本关系\n", "\n", "### 1.1 trainer 和 evaluator 的初始化\n", "\n", "在`fastNLP 0.8`中,**`Trainer`模块和`Evaluator`模块分别表示“训练器”和“评测器”**\n", "\n", "  对应于之前的`fastNLP`版本中的`Trainer`模块和`Tester`模块,其定义方法如下所示\n", "\n", "在`fastNLP 0.8`中,需要注意,在同个`python`脚本中先使用`Trainer`训练,然后使用`Evaluator`评测\n", "\n", "  非常关键的问题在于**如何正确设置二者的`driver`**。这就引入了另一个问题:什么是 `driver`?\n", "\n", "\n", "```python\n", "trainer = Trainer(\n", " model=model, # 模型基于 torch.nn.Module\n", " train_dataloader=train_dataloader, # 加载模块基于 torch.utils.data.DataLoader \n", " optimizers=optimizer, # 优化模块基于 torch.optim.*\n", " ...\n", " driver=\"torch\", # 使用 pytorch 模块进行训练 \n", " device='cuda', # 使用 GPU:0 显卡执行训练\n", " ...\n", " )\n", "...\n", "evaluator = Evaluator(\n", " model=model, # 模型基于 torch.nn.Module\n", " dataloaders=evaluate_dataloader, # 加载模块基于 torch.utils.data.DataLoader\n", " metrics={'acc': Accuracy()}, # 测评方法使用 fastNLP.core.metrics.Accuracy \n", " ...\n", " driver=trainer.driver, # 保持同 trainer 的 driver 一致\n", " device=None,\n", " ...\n", " )\n", "```" ] }, { "cell_type": "markdown", "id": "3c11fe1a", "metadata": {}, "source": [ "### 1.2 driver 的含义与使用要求\n", "\n", "在`fastNLP 0.8`中,**`driver`**这一概念被用来表示**控制具体训练的各个步骤的最终执行部分**\n", "\n", "  例如神经网络前向、后向传播的具体执行、网络参数的优化和数据在设备间的迁移等\n", "\n", "在`fastNLP 0.8`中,**`Trainer`和`Evaluator`都依赖于具体的`driver`来完成整体的工作流程**\n", "\n", "  具体`driver`与`Trainer`以及`Evaluator`之间的关系之后`tutorial 4`中的详细介绍\n", "\n", "注:这里给出一条建议:**在同一脚本中**,**所有的`Trainer`和`Evaluator`使用的`driver`应当保持一致**\n", "\n", "  尽量不出现,之前使用单卡的`driver`,后面又使用多卡的`driver`,这是因为,当脚本执行至\n", "\n", "  多卡`driver`处时,会重启一个进程执行之前所有内容,如此一来可能会造成一些意想不到的麻烦" ] }, { "cell_type": "markdown", "id": "2cac4a1a", "metadata": {}, "source": [ "### 1.3 Trainer 内部初始化 Evaluator\n", "\n", "在`fastNLP 0.8`中,如果在**初始化`Trainer`时**,**传入参数`evaluator_dataloaders`和`metrics`**\n", "\n", "  则在`Trainer`内部,也会初始化单独的`Evaluator`来帮助训练过程中对验证集的评测\n", "\n", "```python\n", "trainer = Trainer(\n", " model=model,\n", " train_dataloader=train_dataloader,\n", " optimizers=optimizer,\n", " ...\n", " driver=\"torch\",\n", " device='cuda',\n", " ...\n", " evaluate_dataloaders=evaluate_dataloader, # 传入参数 evaluator_dataloaders\n", " metrics={'acc': Accuracy()}, # 传入参数 metrics\n", " ...\n", " )\n", "```" ] }, { "cell_type": "markdown", "id": "0c9c7dda", "metadata": {}, "source": [ "## 2. argmax 模型的搭建实例" ] }, { "cell_type": "markdown", "id": "524ac200", "metadata": {}, "source": [ "### 2.1 trainer_step 和 evaluator_step\n", "\n", "在`fastNLP 0.8`中,使用`pytorch.nn.Module`搭建需要训练的模型,在搭建模型过程中,除了\n", "\n", "  添加`pytorch`要求的`forward`方法外,还需要添加 **`train_step`** 和 **`evaluate_step`** 这两个方法\n", "\n", "```python\n", "class Model(torch.nn.Module):\n", " def __init__(self):\n", " super(Model, self).__init__()\n", " self.loss_fn = torch.nn.CrossEntropyLoss()\n", " pass\n", "\n", " def forward(self, x):\n", " pass\n", "\n", " def train_step(self, x, y):\n", " pred = self(x)\n", " return {\"loss\": self.loss_fn(pred, y)}\n", "\n", " def evaluate_step(self, x, y):\n", " pred = self(x)\n", " pred = torch.max(pred, dim=-1)[1]\n", " return {\"pred\": pred, \"target\": y}\n", "```\n", "***\n", "在`fastNLP 0.8`中,**函数`train_step`是`Trainer`中参数`train_fn`的默认值**\n", "\n", "  由于,在`Trainer`训练时,**`Trainer`通过参数`train_fn`对应的模型方法获得当前数据批次的损失值**\n", "\n", "  因此,在`Trainer`训练时,`Trainer`首先会寻找模型是否定义了`train_step`这一方法\n", "\n", "    如果没有找到,那么`Trainer`会默认使用模型的`forward`函数来进行训练的前向传播过程\n", "\n", "注:在`fastNLP 0.8`中,**`Trainer`要求模型通过`train_step`来返回一个字典**,**满足如`{\"loss\": loss}`的形式**\n", "\n", "  此外,这里也可以通过传入`Trainer`的参数`output_mapping`来实现输出的转换,详见(trainer的详细讲解,待补充)\n", "\n", "同样,在`fastNLP 0.8`中,**函数`evaluate_step`是`Evaluator`中参数`evaluate_fn`的默认值**\n", "\n", "  在`Evaluator`测试时,**`Evaluator`通过参数`evaluate_fn`对应的模型方法获得当前数据批次的评测结果**\n", "\n", "  从用户角度,模型通过`evaluate_step`方法来返回一个字典,内容与传入`Evaluator`的`metrics`一致\n", "\n", "  从模块角度,该字典的键值和`metric`中的`update`函数的签名一致,这样的机制在传参时被称为“**参数匹配**”\n", "\n", "" ] }, { "cell_type": "markdown", "id": "fb3272eb", "metadata": {}, "source": [ "### 2.2 trainer 和 evaluator 的参数匹配\n", "\n", "在`fastNLP 0.8`中,参数匹配涉及到两个方面,分别是在\n", "\n", "  一方面,**在模型的前向传播中**,**`dataloader`向`train_step`或`evaluate_step`函数传递`batch`**\n", "\n", "  另方面,**在模型的评测过程中**,**`evaluate_dataloader`向`metric`的`update`函数传递`batch`**\n", "\n", "对于前者,在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`False`时\n", "\n", "    **`fastNLP 0.8`要求`dataloader`生成的每个`batch`**,**满足如`{\"x\": x, \"y\": y}`的形式**\n", "\n", "  同时,`fastNLP 0.8`会查看模型的`train_step`和`evaluate_step`方法的参数签名,并为对应参数传入对应数值\n", "\n", "    **字典形式的定义**,**对应在`Dataset`定义的`__getitem__`方法中**,例如下方的`ArgMaxDatset`\n", "\n", "  而在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`True`时\n", "\n", "    `fastNLP 0.8`会将`batch`直接传给模型的`train_step`、`evaluate_step`或`forward`函数\n", "\n", "```python\n", "class Dataset(torch.utils.data.Dataset):\n", " def __init__(self, x, y):\n", " self.x = x\n", " self.y = y\n", "\n", " def __len__(self):\n", " return len(self.x)\n", "\n", " def __getitem__(self, item):\n", " return {\"x\": self.x[item], \"y\": self.y[item]}\n", "```" ] }, { "cell_type": "markdown", "id": "f5f1a6aa", "metadata": {}, "source": [ "对于后者,首先要明确,在`Trainer`和`Evaluator`中,`metrics`的计算分为`update`和`get_metric`两步\n", "\n", "    **`update`函数**,**针对一个`batch`的预测结果**,计算其累计的评价指标\n", "\n", "    **`get_metric`函数**,**统计`update`函数累计的评价指标**,来计算最终的评价结果\n", "\n", "  例如对于`Accuracy`来说,`update`函数会更新一个`batch`的正例数量`right_num`和负例数量`total_num`\n", "\n", "    而`get_metric`函数则会返回所有`batch`的评测值`right_num / total_num`\n", "\n", "  在此基础上,**`fastNLP 0.8`要求`evaluate_dataloader`生成的每个`batch`传递给对应的`metric`**\n", "\n", "    **以`{\"pred\": y_pred, \"target\": y_true}`的形式**,对应其`update`函数的函数签名\n", "\n", "" ] }, { "cell_type": "markdown", "id": "f62b7bb1", "metadata": {}, "source": [ "### 2.3 示例:argmax 模型的搭建\n", "\n", "下文将通过训练`argmax`模型,简单介绍如何`Trainer`模块的使用方式\n", "\n", "  首先,使用`pytorch.nn.Module`定义`argmax`模型,目标是输入一组固定维度的向量,输出其中数值最大的数的索引" ] }, { "cell_type": "code", "execution_count": 1, "id": "5314482b", "metadata": { "pycharm": { "is_executing": true } }, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "\n", "class ArgMaxModel(nn.Module):\n", " def __init__(self, num_labels, feature_dimension):\n", " nn.Module.__init__(self)\n", " self.num_labels = num_labels\n", "\n", " self.linear1 = nn.Linear(in_features=feature_dimension, out_features=10)\n", " self.ac1 = nn.ReLU()\n", " self.linear2 = nn.Linear(in_features=10, out_features=10)\n", " self.ac2 = nn.ReLU()\n", " self.output = nn.Linear(in_features=10, out_features=num_labels)\n", " self.loss_fn = nn.CrossEntropyLoss()\n", "\n", " def forward(self, x):\n", " pred = self.ac1(self.linear1(x))\n", " pred = self.ac2(self.linear2(pred))\n", " pred = self.output(pred)\n", " return pred\n", "\n", " def train_step(self, x, y):\n", " pred = self(x)\n", " return {\"loss\": self.loss_fn(pred, y)}\n", "\n", " def evaluate_step(self, x, y):\n", " pred = self(x)\n", " pred = torch.max(pred, dim=-1)[1]\n", " return {\"pred\": pred, \"target\": y}" ] }, { "cell_type": "markdown", "id": "71f3fa6b", "metadata": {}, "source": [ "  接着,使用`torch.utils.data.Dataset`定义`ArgMaxDataset`数据集\n", "\n", "    数据集包含三个参数:维度`feature_dimension`、数据量`data_num`和随机种子`seed`\n", "\n", "    数据及初始化是,自动生成指定维度的向量,并为每个向量标注出其中最大值的索引作为预测标签" ] }, { "cell_type": "code", "execution_count": 2, "id": "fe612e61", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from torch.utils.data import Dataset\n", "\n", "class ArgMaxDataset(Dataset):\n", " def __init__(self, feature_dimension, data_num=1000, seed=0):\n", " self.num_labels = feature_dimension\n", " self.feature_dimension = feature_dimension\n", " self.data_num = data_num\n", " self.seed = seed\n", "\n", " g = torch.Generator()\n", " g.manual_seed(1000)\n", " self.x = torch.randint(low=-100, high=100, size=[data_num, feature_dimension], generator=g).float()\n", " self.y = torch.max(self.x, dim=-1)[1]\n", "\n", " def __len__(self):\n", " return self.data_num\n", "\n", " def __getitem__(self, item):\n", " return {\"x\": self.x[item], \"y\": self.y[item]}" ] }, { "cell_type": "markdown", "id": "2cb96332", "metadata": {}, "source": [ "  然后,根据`ArgMaxModel`类初始化模型实例,保持输入维度`feature_dimension`和输出标签数量`num_labels`一致\n", "\n", "    再根据`ArgMaxDataset`类初始化两个数据集实例,分别用来模型测试和模型评测,数据量各1000笔" ] }, { "cell_type": "code", "execution_count": 3, "id": "76172ef8", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "model = ArgMaxModel(num_labels=10, feature_dimension=10)\n", "\n", "train_dataset = ArgMaxDataset(feature_dimension=10, data_num=1000)\n", "evaluate_dataset = ArgMaxDataset(feature_dimension=10, data_num=100)" ] }, { "cell_type": "markdown", "id": "4e7d25ee", "metadata": {}, "source": [ "  此外,使用`torch.utils.data.DataLoader`初始化两个数据加载模块,批量大小同为8,分别用于训练和测评" ] }, { "cell_type": "code", "execution_count": 4, "id": "363b5b09", "metadata": {}, "outputs": [], "source": [ "from torch.utils.data import DataLoader\n", "\n", "train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True)\n", "evaluate_dataloader = DataLoader(evaluate_dataset, batch_size=8)" ] }, { "cell_type": "markdown", "id": "c8d4443f", "metadata": {}, "source": [ "  最后,使用`torch.optim.SGD`初始化一个优化模块,基于随机梯度下降法" ] }, { "cell_type": "code", "execution_count": 5, "id": "dc28a2d9", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from torch.optim import SGD\n", "\n", "optimizer = SGD(model.parameters(), lr=0.001)" ] }, { "cell_type": "markdown", "id": "eb8ca6cf", "metadata": {}, "source": [ "## 3. 使用 fastNLP 0.8 训练 argmax 模型\n", "\n", "### 3.1 trainer 外部初始化的 evaluator" ] }, { "cell_type": "markdown", "id": "55145553", "metadata": {}, "source": [ "通过从`fastNLP`库中导入`Trainer`类,初始化`trainer`实例,对模型进行训练\n", "\n", "  需要导入预先定义好的模型`model`、对应的数据加载模块`train_dataloader`、优化模块`optimizer`\n", "\n", "  通过`progress_bar`设定进度条格式,默认为`\"auto\"`,此外还有`\"rich\"`、`\"raw\"`和`None`\n", "\n", "    但对于`\"auto\"`和`\"rich\"`格式,在`jupyter`中,进度条会在训练结束后会被丢弃\n", "\n", "  通过`n_epochs`设定优化迭代轮数,默认为20;全部`Trainer`的全部变量与函数可以通过`dir(trainer)`查询" ] }, { "cell_type": "code", "execution_count": 6, "id": "b51b7a2d", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import sys\n", "sys.path.append('..')\n", "\n", "from fastNLP import Trainer\n", "\n", "trainer = Trainer(\n", " model=model,\n", " driver=\"torch\",\n", " device='cuda',\n", " train_dataloader=train_dataloader,\n", " optimizers=optimizer,\n", " n_epochs=10, # 设定迭代轮数 \n", " progress_bar=\"auto\" # 设定进度条格式\n", ")" ] }, { "cell_type": "markdown", "id": "6e202d6e", "metadata": {}, "source": [ "通过使用`Trainer`类的`run`函数,进行训练\n", "\n", "  其中,可以通过参数`num_train_batch_per_epoch`决定每个`epoch`运行多少个`batch`后停止,默认全部\n", "\n", "  `run`函数完成后在`jupyter`中没有输出保留,此外,通过`help(trainer.run)`可以查询`run`函数的详细内容" ] }, { "cell_type": "code", "execution_count": 7, "id": "ba047ead", "metadata": { "pycharm": { "is_executing": true } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trainer.run()" ] }, { "cell_type": "markdown", "id": "c16c5fa4", "metadata": {}, "source": [ "通过从`fastNLP`库中导入`Evaluator`类,初始化`evaluator`实例,对模型进行评测\n", "\n", "  需要导入预先定义好的模型`model`、对应的数据加载模块`evaluate_dataloader`\n", "\n", "  需要注意的是评测方法`metrics`,设定为形如`{'acc': fastNLP.core.metrics.Accuracy()}`的字典\n", "\n", "  类似地,也可以通过`progress_bar`限定进度条格式,默认为`\"auto\"`" ] }, { "cell_type": "code", "execution_count": 8, "id": "1c6b6b36", "metadata": { "pycharm": { "is_executing": true } }, "outputs": [], "source": [ "from fastNLP import Evaluator\n", "from fastNLP import Accuracy\n", "\n", "evaluator = Evaluator(\n", " model=model,\n", " driver=trainer.driver, # 需要使用 trainer 已经启动的 driver\n", " device=None,\n", " dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()} # 需要严格使用此种形式的字典\n", ")" ] }, { "cell_type": "markdown", "id": "8157bb9b", "metadata": {}, "source": [ "通过使用`Evaluator`类的`run`函数,进行训练\n", "\n", "  其中,可以通过参数`num_eval_batch_per_dl`决定每个`evaluate_dataloader`运行多少个`batch`停止,默认全部\n", "\n", "  最终,输出形如`{'acc#acc': acc}`的字典,在`jupyter`中,进度条会在评测结束后会被丢弃" ] }, { "cell_type": "code", "execution_count": 9, "id": "f7cb0165", "metadata": { "pycharm": { "is_executing": true } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
{'acc#acc': 0.31, 'total#acc': 100.0, 'correct#acc': 31.0}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.31\u001b[0m, \u001b[32m'total#acc'\u001b[0m: \u001b[1;36m100.0\u001b[0m, \u001b[32m'correct#acc'\u001b[0m: \u001b[1;36m31.0\u001b[0m\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "{'acc#acc': 0.31, 'total#acc': 100.0, 'correct#acc': 31.0}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluator.run()" ] }, { "cell_type": "markdown", "id": "dd9f68fa", "metadata": {}, "source": [ "### 3.2 trainer 内部初始化的 evaluator \n", "\n", "通过在初始化`trainer`实例时加入`evaluate_dataloaders`和`metrics`,可以实现在训练过程中进行评测\n", "\n", "  通过`progress_bar`同时设定训练和评估进度条格式,在`jupyter`中,在进度条训练结束后会被丢弃\n", "\n", "  但是中间的评估结果仍会保留;**通过`evaluate_every`设定评估频率**,可以为负数、正数或者函数:\n", "\n", "    **为负数时**,**表示每隔几个`epoch`评估一次**;**为正数时**,**则表示每隔几个`batch`评估一次**" ] }, { "cell_type": "code", "execution_count": 10, "id": "183c7d19", "metadata": { "pycharm": { "is_executing": true } }, "outputs": [], "source": [ "trainer = Trainer(\n", " model=model,\n", " driver=trainer.driver, # 因为是在同个脚本中,这里的 driver 同样需要重用\n", " train_dataloader=train_dataloader,\n", " evaluate_dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()},\n", " optimizers=optimizer,\n", " n_epochs=10, \n", " evaluate_every=-1, # 表示每个 epoch 的结束进行评估\n", ")" ] }, { "cell_type": "markdown", "id": "714cc404", "metadata": {}, "source": [ "通过使用`Trainer`类的`run`函数,进行训练\n", "\n", "  还可以通过**参数`num_eval_sanity_batch`决定每次训练前运行多少个`evaluate_batch`进行评测**,**默认为`2`**\n", "\n", "  之所以“先评测后训练”,是为了保证训练很长时间的数据,不会在评测阶段出问题,故作此**试探性评测**" ] }, { "cell_type": "code", "execution_count": 11, "id": "2e4daa2c", "metadata": { "pycharm": { "is_executing": true } }, "outputs": [ { "data": { "text/html": [ "
[18:28:25] INFO     Running evaluator sanity check for 2 batches.              trainer.py:592\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[18:28:25]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=549287;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=645362;file://../fastNLP/core/controllers/trainer.py#592\u001b\\\u001b[2m592\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:1, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.31,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 31.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.31\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m31.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:2, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.33,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 33.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.33\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m33.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:3, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.34,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 34.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.34\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m34.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:4, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.36,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 36.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:5, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.36,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 36.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:6, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.36,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 36.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:7, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.36,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 36.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:8, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.36,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 36.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.36\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m36.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:9, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.37,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 37.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.37\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m37.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
---------------------------- Eval. results on Epoch:10, Batch:0 -----------------------------\n",
       "
\n" ], "text/plain": [ "---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n",
       "  \"acc#acc\": 0.4,\n",
       "  \"total#acc\": 100.0,\n",
       "  \"correct#acc\": 40.0\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.4\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m100.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m40.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trainer.run()" ] }, { "cell_type": "code", "execution_count": 12, "id": "c4e9c619", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "{'acc#acc': 0.4, 'total#acc': 100.0, 'correct#acc': 40.0}"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.evaluator.run()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1bc7cb4a",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": []
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}