{ "cells": [ { "cell_type": "markdown", "id": "fdd7ff16", "metadata": {}, "source": [ "# T6. fastNLP 与 paddle 或 jittor 的结合\n", "\n", " 1 fastNLP 结合 paddle 训练模型\n", " \n", " 1.1 关于 paddle 的简单介绍\n", "\n", " 1.2 使用 paddle 搭建并训练模型\n", "\n", " 2 fastNLP 结合 jittor 训练模型\n", "\n", " 2.1 关于 jittor 的简单介绍\n", "\n", " 2.2 使用 jittor 搭建并训练模型\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 1, "id": "08752c5a", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Reusing dataset glue (/remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6b13d42c39ba455eb370bf2caaa3a264", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/3 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from datasets import load_dataset\n", "\n", "sst2data = load_dataset('glue', 'sst2')" ] }, { "cell_type": "code", "execution_count": 2, "id": "7e8cc210", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[38;5;2m[i 0604 21:01:38.510813 72 log.cc:351] Load log_sync: 1\u001b[m\n" ] }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Processing: 0%| | 0/6000 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "
[21:03:08] INFO Running evaluator sanity check for 2 batches. trainer.py:596\n", "\n" ], "text/plain": [ "\u001b[2;36m[21:03:08]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=894986;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567751;file://../fastNLP/core/controllers/trainer.py#596\u001b\\\u001b[2m596\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:111: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " if ip and hasattr(ip, 'kernel') and hasattr(ip.kernel, '_parent_header'):\n", "\n" ], "text/plain": [ "/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:111: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " if ip and hasattr(ip, 'kernel') and hasattr(ip.kernel, '_parent_header'):\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:112: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " self.msg_id = ip.kernel._parent_header['header']['msg_id']\n", "\n" ], "text/plain": [ "/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:112: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " self.msg_id = ip.kernel._parent_header['header']['msg_id']\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/paddle/tensor/creation.py:\n", "125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To \n", "silence this warning, use `object` by itself. Doing this will not modify any behavior and is \n", "safe. \n", "Deprecated in NumPy 1.20; for more details and guidance: \n", "https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n", " if data.dtype == np.object:\n", "\n" ], "text/plain": [ "/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/paddle/tensor/creation.py:\n", "125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To \n", "silence this warning, use `object` by itself. Doing this will not modify any behavior and is \n", "safe. \n", "Deprecated in NumPy 1.20; for more details and guidance: \n", "https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n", " if data.dtype == np.object:\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:1, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.78125,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 125.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.78125\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m125.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:2, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.7875,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 126.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.7875\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m126.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:3, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.8,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 128.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.8\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m128.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:4, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.79375,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 127.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.79375\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m127.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:5, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.81875,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 131.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.81875\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m131.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:6, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.8,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 128.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.8\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m128.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:7, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.80625,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 129.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.80625\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m129.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:8, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.79375,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 127.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.79375\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m127.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:9, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.7875,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 126.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.7875\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m126.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
---------------------------- Eval. results on Epoch:10, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.8,\n", " \"total#acc\": 160.0,\n", " \"correct#acc\": 128.0\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.8\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160.0\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m128.0\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trainer.run(num_eval_batch_per_dl=10) " ] }, { "cell_type": "markdown", "id": "cb9a0b3c", "metadata": {}, "source": [ "## 2. fastNLP 结合 jittor 训练模型" ] }, { "cell_type": "code", "execution_count": 11, "id": "c600191d", "metadata": {}, "outputs": [], "source": [ "import jittor\n", "import jittor.nn as nn\n", "\n", "from jittor import Module\n", "\n", "\n", "class ClsByJittor(Module):\n", " def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n", " Module.__init__(self)\n", " self.hidden_dim = hidden_dim\n", "\n", " self.embedding = nn.Embedding(num=vocab_size, dim=embedding_dim)\n", " self.lstm = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_dim, batch_first=True, # 默认 batch_first=False\n", " num_layers=num_layers, bidirectional=True, dropout=dropout)\n", " self.mlp = nn.Sequential([nn.Dropout(p=dropout),\n", " nn.Linear(hidden_dim * 2, hidden_dim * 2),\n", " nn.ReLU(),\n", " nn.Linear(hidden_dim * 2, output_dim),\n", " nn.Sigmoid(),])\n", "\n", " self.loss_fn = nn.MSELoss()\n", "\n", " def execute(self, words):\n", " output = self.embedding(words)\n", " output, (hidden, cell) = self.lstm(output)\n", " output = self.mlp(jittor.concat((hidden[-1], hidden[-2]), dim=1))\n", " return output\n", " \n", " def train_step(self, words, target):\n", " pred = self(words)\n", " target = jittor.stack((1 - target, target), dim=1)\n", " return {'loss': self.loss_fn(pred, target)}\n", "\n", " def evaluate_step(self, words, target):\n", " pred = self(words)\n", " pred = jittor.argmax(pred, dim=-1)[0]\n", " return {'pred': pred, 'target': target}" ] }, { "cell_type": "code", "execution_count": 12, "id": "a94ed8c4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ClsByJittor(\n", " embedding: Embedding(8458, 100)\n", " lstm: LSTM(100, 64, 2, bias=True, batch_first=True, dropout=0.5, bidirectional=True, proj_size=0)\n", " mlp: Sequential(\n", " 0: Dropout(0.5, is_train=False)\n", " 1: Linear(128, 128, float32[128,], None)\n", " 2: relu()\n", " 3: Linear(128, 2, float32[2,], None)\n", " 4: Sigmoid()\n", " )\n", " loss_fn: MSELoss(mean)\n", ")" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = ClsByJittor(vocab_size=len(vocab), embedding_dim=100, output_dim=2)\n", "\n", "model" ] }, { "cell_type": "code", "execution_count": 13, "id": "6d15ebc1", "metadata": {}, "outputs": [], "source": [ "from jittor.optim import AdamW\n", "\n", "optimizers = AdamW(params=model.parameters(), lr=5e-3)" ] }, { "cell_type": "code", "execution_count": 14, "id": "95d8d09e", "metadata": {}, "outputs": [], "source": [ "from fastNLP import prepare_jittor_dataloader\n", "\n", "train_dataloader = prepare_jittor_dataloader(train_dataset, batch_size=16, shuffle=True)\n", "evaluate_dataloader = prepare_jittor_dataloader(evaluate_dataset, batch_size=16)\n", "\n", "# dl_bundle = prepare_jittor_dataloader(data_bundle, batch_size=16, shuffle=True)" ] }, { "cell_type": "code", "execution_count": 15, "id": "917eab81", "metadata": {}, "outputs": [], "source": [ "from fastNLP import Trainer, Accuracy\n", "\n", "trainer = Trainer(\n", " model=model,\n", " driver='jittor',\n", " device='gpu', # 'cpu', 'gpu', 'cuda'\n", " n_epochs=10,\n", " optimizers=optimizers,\n", " train_dataloader=train_dataloader, # dl_bundle['train'],\n", " evaluate_dataloaders=evaluate_dataloader, # dl_bundle['dev'],\n", " metrics={'acc': Accuracy()}\n", ")" ] }, { "cell_type": "code", "execution_count": 16, "id": "f7c4ac5a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[21:05:51] INFO Running evaluator sanity check for 2 batches. trainer.py:596\n", "\n" ], "text/plain": [ "\u001b[2;36m[21:05:51]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=69759;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=202322;file://../fastNLP/core/controllers/trainer.py#596\u001b\\\u001b[2m596\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "Compiling Operators(5/6) used: 8.31s eta: 1.66s 6/6) used: 9.33s eta: 0s \n", "\n", "Compiling Operators(31/31) used: 7.31s eta: 0s \n" ] }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:1, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.61875,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 99\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.61875\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m99\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:2, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.7,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 112\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.7\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m112\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:3, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.725,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 116\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.725\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m116\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:4, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.74375,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 119\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.74375\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m119\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:5, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.75625,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 121\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.75625\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m121\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:6, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.75625,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 121\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.75625\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m121\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:7, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.73125,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 117\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.73125\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m117\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:8, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.7625,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 122\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.7625\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m122\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:9, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.74375,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 119\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.74375\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m119\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
---------------------------- Eval. results on Epoch:10, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"acc#acc\": 0.7625,\n", " \"total#acc\": 160,\n", " \"correct#acc\": 122\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.7625\u001b[0m,\n", " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m160\u001b[0m,\n", " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m122\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trainer.run(num_eval_batch_per_dl=10)" ] }, { "cell_type": "code", "execution_count": null, "id": "3df5f425", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }