import random import unittest import numpy as np from fastNLP import Vocabulary, Instance from fastNLP.api.processor import FullSpaceToHalfSpaceProcessor, PreAppendProcessor, SliceProcessor, Num2TagProcessor, \ IndexerProcessor, VocabProcessor, SeqLenProcessor, ModelProcessor, Index2WordProcessor, SetTargetProcessor, \ SetInputProcessor, VocabIndexerProcessor from fastNLP.core.dataset import DataSet class TestProcessor(unittest.TestCase): def test_FullSpaceToHalfSpaceProcessor(self): ds = DataSet({"word": ["00, u1, u), (u2, u2"]}) proc = FullSpaceToHalfSpaceProcessor("word") ds = proc(ds) self.assertEqual(ds.field_arrays["word"].content, ["00, u1, u), (u2, u2"]) def test_PreAppendProcessor(self): ds = DataSet({"word": [["1234", "3456"], ["8789", "3464"]]}) proc = PreAppendProcessor(data="abc", field_name="word") ds = proc(ds) self.assertEqual(ds.field_arrays["word"].content, [["abc", "1234", "3456"], ["abc", "8789", "3464"]]) def test_SliceProcessor(self): ds = DataSet({"xx": [[random.randint(0, 10) for _ in range(30)]] * 40}) proc = SliceProcessor(10, 20, 2, "xx", new_added_field_name="yy") ds = proc(ds) self.assertEqual(len(ds.field_arrays["yy"].content[0]), 5) def test_Num2TagProcessor(self): ds = DataSet({"num": [["99.9982", "2134.0"], ["0.002", "234"]]}) proc = Num2TagProcessor("", "num") ds = proc(ds) for data in ds.field_arrays["num"].content: for d in data: self.assertEqual(d, "") def test_VocabProcessor_and_IndexerProcessor(self): ds = DataSet({"xx": [[str(random.randint(0, 10)) for _ in range(30)]] * 40}) vocab_proc = VocabProcessor("xx") vocab_proc(ds) vocab = vocab_proc.vocab self.assertTrue(isinstance(vocab, Vocabulary)) self.assertTrue(len(vocab) > 5) proc = IndexerProcessor(vocab, "xx", "yy") ds = proc(ds) for data in ds.field_arrays["yy"].content[0]: self.assertTrue(isinstance(data, int)) def test_SeqLenProcessor(self): ds = DataSet({"xx": [[str(random.randint(0, 10)) for _ in range(30)]] * 10}) proc = SeqLenProcessor("xx", "len") ds = proc(ds) for data in ds.field_arrays["len"].content: self.assertEqual(data, 30) def test_ModelProcessor(self): from fastNLP.models.cnn_text_classification import CNNText model = CNNText(100, 100, 5) ins_list = [] for _ in range(64): seq_len = np.random.randint(5, 30) ins_list.append(Instance(word_seq=[np.random.randint(0, 100) for _ in range(seq_len)], seq_lens=seq_len)) data_set = DataSet(ins_list) data_set.set_input("word_seq", "seq_lens") proc = ModelProcessor(model) data_set = proc(data_set) self.assertTrue("pred" in data_set) def test_Index2WordProcessor(self): vocab = Vocabulary() vocab.add_word_lst(["a", "b", "c", "d", "e"]) proc = Index2WordProcessor(vocab, "tag_id", "tag") data_set = DataSet([Instance(tag_id=[np.random.randint(0, 7) for _ in range(32)])]) data_set = proc(data_set) self.assertTrue("tag" in data_set) def test_SetTargetProcessor(self): proc = SetTargetProcessor("a", "b", "c") data_set = DataSet({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]}) data_set = proc(data_set) self.assertTrue(data_set["a"].is_target) self.assertTrue(data_set["b"].is_target) self.assertTrue(data_set["c"].is_target) def test_SetInputProcessor(self): proc = SetInputProcessor("a", "b", "c") data_set = DataSet({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]}) data_set = proc(data_set) self.assertTrue(data_set["a"].is_input) self.assertTrue(data_set["b"].is_input) self.assertTrue(data_set["c"].is_input) def test_VocabIndexerProcessor(self): proc = VocabIndexerProcessor("word_seq", "word_ids") data_set = DataSet([Instance(word_seq=["a", "b", "c", "d", "e"])]) data_set = proc(data_set) self.assertTrue("word_ids" in data_set)