{ "cells": [ { "cell_type": "markdown", "id": "fdd7ff16", "metadata": {}, "source": [ "# T4. trainer 和 evaluator 的深入介绍\n", "\n", " 1 fastNLP 中的更多 metric 类型\n", "\n", " 1.1 预定义的 metric 类型\n", "\n", " 1.2 自定义的 metric 类型\n", "\n", " 2 fastNLP 中 trainer 的补充介绍\n", " \n", " 2.1 trainer 的提出构想 \n", "\n", " 2.2 trainer 的内部结构\n", "\n", " 2.3 实例:\n", "\n", " 3 fastNLP 中的 driver 与 device\n", "\n", " 3.1 driver 的提出构想\n", "\n", " 3.2 device 与多卡训练" ] }, { "cell_type": "markdown", "id": "8d19220c", "metadata": {}, "source": [ "## 1. fastNLP 中的更多 metric 类型\n", "\n", "### 1.1 预定义的 metric 类型\n", "\n", "在`fastNLP 0.8`中,除了前几篇`tutorial`中经常见到的**正确率`Accuracy`**,还有其他**预定义的评价标准`metric`**\n", "\n", " 包括**所有`metric`的基类`Metric`**、适配`Transformers`中相关模型的正确率`TransformersAccuracy`\n", "\n", " **适用于分类语境下的`F1`值`ClassifyFPreRecMetric`**(其中也包括**召回率`Pre`**、**精确率`Rec`**\n", "\n", " **适用于抽取语境下的`F1`值`SpanFPreRecMetric`**;相关基本信息内容见下表,之后是详细分析\n", "\n", "|