{ "cells": [ { "cell_type": "markdown", "id": "fdd7ff16", "metadata": {}, "source": [ "# T5. trainer 和 evaluator 的深入介绍\n", "\n", " 1 fastNLP 中 driver 的补充介绍\n", " \n", " 1.1 trainer 和 driver 的构想 \n", "\n", " 1.2 device 与 多卡训练\n", "\n", " 2 fastNLP 中的更多 metric 类型\n", "\n", " 2.1 预定义的 metric 类型\n", "\n", " 2.2 自定义的 metric 类型\n", "\n", " 3 fastNLP 中 trainer 的补充介绍\n", "\n", " 3.1 trainer 的内部结构" ] }, { "cell_type": "markdown", "id": "08752c5a", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 1. fastNLP 中 driver 的补充介绍\n", "\n", "### 1.1 trainer 和 driver 的构想\n", "\n", "在`fastNLP 1.0`中,模型训练最关键的模块便是**训练模块 trainer 、评测模块 evaluator 、驱动模块 driver**,\n", "\n", " 在`tutorial 0`中,已经简单介绍过上述三个模块:**driver 用来控制训练评测中的 model 的最终运行**\n", "\n", " **evaluator 封装评测的 metric**,**trainer 封装训练的 optimizer**,**也可以包括 evaluator**\n", "\n", "之所以做出上述的划分,其根本目的在于要**达成对于多个 python 学习框架**,**例如 pytorch 、 paddle 、 jittor 的兼容**\n", "\n", " 对于训练环节,其伪代码如下方左边紫色一栏所示,由于**不同框架对模型、损失、张量的定义各有不同**,所以将训练环节\n", "\n", " 划分为**框架无关的循环控制、批量分发部分**,**由 trainer 模块负责**实现,对应的伪代码如下方中间一栏所示\n", "\n", " 以及**随框架不同的模型调用、数值优化部分**,**由 driver 模块负责**实现,对应的伪代码如下方右边一栏所示\n", "\n", "|训练过程|框架无关 对应`Trainer`|框架相关 对应`Driver`\n", "|----|----|----|\n", "| try: | try: | |\n", "| for epoch in 1:n_eoochs: | for epoch in 1:n_eoochs: | |\n", "| for step in 1:total_steps: | for step in 1:total_steps: | |\n", "| batch = fetch_batch() | batch = fetch_batch() | |\n", "| loss = model.forward(batch) | | loss = model.forward(batch) |\n", "| loss.backward() | | loss.backward() |\n", "| model.clear_grad() | | model.clear_grad() |\n", "| model.update() | | model.update() |\n", "| if need_save: | if need_save: | |\n", "| model.save() | | model.save() |\n", "| except: | except: | |\n", "| process_exception() | process_exception() | |" ] }, { "cell_type": "markdown", "id": "3e55f07b", "metadata": {}, "source": [ " 对于评测环节,其伪代码如下方左边紫色一栏所示,同样由于不同框架对模型、损失、张量的定义各有不同,所以将评测环节\n", "\n", " 划分为**框架无关的循环控制、分发汇总部分**,**由 evaluator 模块负责**实现,对应的伪代码如下方中间一栏所示\n", "\n", " 以及**随框架不同的模型调用、评测计算部分**,同样**由 driver 模块负责**实现,对应的伪代码如下方右边一栏所示\n", "\n", "|评测过程|框架无关 对应`Evaluator`|框架相关 对应`Driver`\n", "|----|----|----|\n", "| try: | try: | |\n", "| model.set_eval() | model.set_eval() | |\n", "| for step in 1:total_steps: | for step in 1:total_steps: | |\n", "| batch = fetch_batch() | batch = fetch_batch() | |\n", "| outputs = model.evaluate(batch) | | outputs = model.evaluate(batch) |\n", "| metric.compute(batch, outputs) | | metric.compute(batch, outputs) |\n", "| results = metric.get_metric() | results = metric.get_metric() | |\n", "| except: | except: | |\n", "| process_exception() | process_exception() | |" ] }, { "cell_type": "markdown", "id": "94ba11c6", "metadata": { "pycharm": { "name": "#%%\n" } }, "source": [ "由此,从程序员的角度,`fastNLP v1.0` **通过一个 driver 让基于 pytorch 、 paddle 、 jittor 、 oneflow 框架的模型**\n", "\n", " **都能在相同的 trainer 和 evaluator 上运行**,这也**是 fastNLP v1.0 相比于之前版本的一大亮点**\n", "\n", " 而从`driver`的角度,`fastNLP v1.0`通过定义一个`driver`基类,**将所有张量转化为 numpy.tensor**\n", "\n", " 并由此泛化出`torch_driver`、`paddle_driver`、`jittor_driver`三个子类,从而实现了\n", "\n", " 对`pytorch`、`paddle`、`jittor`的兼容,有关后两者的实践请参考接下来的`tutorial-6`" ] }, { "cell_type": "markdown", "id": "ab1cea7d", "metadata": {}, "source": [ "### 1.2 device 与 多卡训练\n", "\n", "**fastNLP v1.0 支持多卡训练**,实现方法则是**通过将 trainer 中的 device 设置为对应显卡的序号列表**\n", "\n", " 由单卡切换成多卡,无论是数据、模型还是评测都会面临一定的调整,`fastNLP v1.0`保证:\n", "\n", " 数据拆分时,不同卡之间相互协调,所有数据都可以被训练,且不会使用到相同的数据\n", "\n", " 模型训练时,模型之间需要交换梯度;评测计算时,每张卡先各自计算,再汇总结果\n", "\n", " 例如,在评测计算运行`get_metric`函数时,`fastNLP v1.0`将自动按照`self.right`和`self.total`\n", "\n", " 指定的 **aggregate_method 方法**,默认为`sum`,将每张卡上结果汇总起来,因此最终\n", "\n", " 在调用`get_metric`方法时,`Accuracy`类能够返回全部的统计结果,代码如下\n", " \n", "```python\n", "trainer = Trainer(\n", " model=model, # model 基于 pytorch 实现 \n", " train_dataloader=train_dataloader,\n", " optimizers=optimizer,\n", " ...\n", " driver='torch', # driver 使用 torch_driver \n", " device=[0, 1], # gpu 选择 cuda:0 + cuda:1\n", " ...\n", " evaluate_dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()},\n", " ...\n", " )\n", "\n", "class Accuracy(Metric):\n", " def __init__(self):\n", " super().__init__()\n", " self.register_element(name='total', value=0, aggregate_method='sum')\n", " self.register_element(name='right', value=0, aggregate_method='sum')\n", "```\n" ] }, { "cell_type": "markdown", "id": "e2e0a210", "metadata": { "pycharm": { "name": "#%%\n" } }, "source": [ "注:`fastNLP v1.0`中要求`jupyter`不能多卡,仅能单卡,故在所有`tutorial`中均不作相关演示" ] }, { "cell_type": "markdown", "id": "8d19220c", "metadata": {}, "source": [ "## 2. fastNLP 中的更多 metric 类型\n", "\n", "### 2.1 预定义的 metric 类型\n", "\n", "在`fastNLP 1.0`中,除了前几篇`tutorial`中经常见到的**正确率 Accuracy**,还有其他**预定义的评测标准 metric**\n", "\n", " 包括**所有 metric 的基类 Metric**、适配`Transformers`中相关模型的正确率`TransformersAccuracy`\n", "\n", " **适用于分类语境下的 F1 值 ClassifyFPreRecMetric**(其中也包括召回率`Pre`、精确率`Rec`\n", "\n", " **适用于抽取语境下的 F1 值 SpanFPreRecMetric**;相关基本信息内容见下表,之后是详细分析\n", "\n", "代码名称|简要介绍|代码路径\n", "----|----|----|\n", " `Metric` | 定义`metrics`时继承的基类 | `/core/metrics/metric.py` |\n", " `Accuracy` | 正确率,最为常用 | `/core/metrics/accuracy.py` |\n", " `TransformersAccuracy` | 正确率,为了兼容`Transformers`中相关模型 | `/core/metrics/accuracy.py` |\n", " `ClassifyFPreRecMetric` | 召回率、精确率、F1值,适用于**分类问题** | `/core/metrics/classify_f1_pre_rec_metric.py` |\n", " `SpanFPreRecMetric` | 召回率、精确率、F1值,适用于**抽取问题** | `/core/metrics/span_f1_pre_rec_metric.py` |" ] }, { "cell_type": "markdown", "id": "fdc083a3", "metadata": { "pycharm": { "name": "#%%\n" } }, "source": [ " 如`tutorial-0`中所述,所有的`metric`都包含`get_metric`和`update`函数,其中\n", "\n", " **update 函数更新单个 batch 的统计量**,**get_metric 函数返回最终结果**,并打印显示\n", "\n", "\n", "### 2.1.1 Accuracy 与 TransformersAccuracy\n", "\n", "`Accuracy`,正确率,预测正确的数据`right_num`在总数据`total_num`,中的占比(公式就不用列了\n", "\n", " `get_metric`函数打印格式为 **{\"acc#xx\": float, 'total#xx': float, 'correct#xx': float}**\n", "\n", " 一般在初始化时不需要传参,`fastNLP`会根据`update`函数的传入参数确定对应后台框架`backend`\n", "\n", " **update 函数的参数包括 pred 、 target 、 seq_len**,**后者用来标记批次中每笔数据的长度**\n", "\n", "`TransformersAccuracy`,继承自`Accuracy`,只是为了兼容`Transformers`框架中相关模型\n", "\n", " 在`update`函数中,将`Transformers`框架输出的`attention_mask`参数转化为`seq_len`参数\n", "\n", "\n", "### 2.1.2 ClassifyFPreRecMetric 与 SpanFPreRecMetric\n", "\n", "`ClassifyFPreRecMetric`,分类评价,`SpanFPreRecMetric`,抽取评价,后者在`tutorial-4`中已出现\n", "\n", " 两者的相同之处在于:**第一**,**都包括召回率/查全率 ec**、**精确率/查准率 Pre**、**F1 值**这三个指标\n", "\n", " `get_metric`函数打印格式为 **{\"f#xx\": float, 'pre#xx': float, 'rec#xx': float}**\n", "\n", " 三者的计算公式如下,其中`beta`默认为`1`,即`F1`值是召回率`Rec`和精确率`Pre`的调和平均数\n", "\n", "$$\\text{召回率}\\ Rec=\\dfrac{\\text{正确预测为正例的数量}}{\\text{所有本来是正例的数量}}\\qquad \\text{精确率}\\ Pre=\\dfrac{\\text{正确预测为正例的数量}}{\\text{所有预测为正例的数量}}$$\n", "\n", "$$F_{beta} = \\frac{(1 + {beta}^{2})*(Pre*Rec)}{({beta}^{2}*Pre + Rec)}$$\n", "\n", " **第二**,可以通过参数`only_gross`为`False`,要求返回所有类别的`Rec-Pre-F1`,同时`F1`值又根据参数`f_type`又分为\n", "\n", " **micro F1**(**直接统计所有类别的 Rec-Pre-F1**)、**macro F1**(**统计各类别的 Rec-Pre-F1 再算术平均**)\n", "\n", " **第三**,两者在初始化时还可以**传入基于 fastNLP.Vocabulary 的 tag_vocab 参数记录数据集中的标签序号**\n", "\n", " **与标签名称之间的映射**,通过字符串列表`ignore_labels`参数,指定若干标签不用于`Rec-Pre-F1`的计算\n", "\n", "两者的不同之处在于:`ClassifyFPreRecMetric`针对简单的分类问题,每个分类标签之间彼此独立,不构成标签对\n", "\n", " **SpanFPreRecMetric 针对更复杂的抽取问题**,**规定标签 B-xx 和 I-xx 或 B-xx 和 E-xx 构成标签对**\n", "\n", " 在计算`Rec-Pre-F1`时,`ClassifyFPreRecMetric`只需要考虑标签本身是否正确这就足够了,但是\n", "\n", " 对于`SpanFPreRecMetric`,需要保证**标签符合规则且覆盖的区间与正确结果重合才算正确**\n", "\n", " 因此回到`tutorial-4`中`CoNLL-2003`的`NER`任务,如果评测方法选择`ClassifyFPreRecMetric`\n", "\n", " 或者`Accuracy`,会发现虽然评测结果显示很高,这是因为选择的评测方法要求太低\n", "\n", " 最后通过`CoNLL-2003`的词性标注`POS`任务简单演示下`ClassifyFPreRecMetric`相关的使用\n", "\n", "```python\n", "from fastNLP import Vocabulary\n", "from fastNLP import ClassifyFPreRecMetric\n", "\n", "tag_vocab = Vocabulary(padding=None, unknown=None) # 记录序号与标签之间的映射\n", "tag_vocab.add_word_lst(['\"', \"''\", '#', '$', '(', ')', ',', '.', ':', '``', \n", " 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', \n", " 'MD', 'NN', 'NNP', 'NNPS', 'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', \n", " 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', 'VBG', \n", " 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP+', 'WRB', ]) # CoNLL-2003 中的 pos_tags\n", "ignore_labels = ['\"', \"''\", '#', '$', '(', ')', ',', '.', ':', '``', ]\n", "\n", "FPreRec = ClassifyFPreRecMetric(tag_vocab=tag_vocab, \n", " ignore_labels=ignore_labels, # 表示评测/优化中不考虑上述标签的正误/损失\n", " only_gross=True, # 默认为 True 表示输出所有类别的综合统计结果\n", " f_type='micro') # 默认为 'micro' 表示统计所有类别的 Rec-Pre-F1\n", "metrics = {'F1': FPreRec}\n", "```" ] }, { "cell_type": "markdown", "id": "8a22f522", "metadata": {}, "source": [ "### 2.2 自定义的 metric 类型\n", "\n", "如上文所述,`Metric`作为所有`metric`的基类,`Accuracy`等都是其子类,同样地,对于**自定义的 metric 类型**\n", "\n", " 也**需要继承自 Metric 类**,同时**内部自定义好 __init__ 、 update 和 get_metric 函数**\n", "\n", " 在`__init__`函数中,根据需求定义评测时需要用到的变量,此处沿用`Accuracy`中的`total_num`和`right_num`\n", "\n", " 在`update`函数中,根据需求定义评测变量的更新方式,需要注意的是如`tutorial-0`中所述,**update`的参数名**\n", "\n", " **需要待评估模型在 evaluate_step 中的输出名称一致**,由此**和数据集中对应字段名称一致**,即**参数匹配**\n", "\n", " 在`fastNLP v1.0`中,`update`函数的默认输入参数:`pred`,对应预测值;`target`,对应真实值\n", "\n", " 此处仍然沿用,因为接下来会需要使用`fastNLP`函数的与定义模型,其输入参数格式即使如此\n", "\n", " 在`get_metric`函数中,根据需求定义评测指标最终的计算,此处直接计算准确率,该函数必须返回一个字典\n", "\n", " 其中,字串`'prefix'`表示该`metric`的名称,会对应显示到`trainer`的`progress bar`中\n", "\n", "根据上述要求,这里简单定义了一个名为`MyMetric`的评测模块,用于分类问题的评测,以此展开一个实例展示" ] }, { "cell_type": "code", "execution_count": 1, "id": "08a872e9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import sys\n", "sys.path.append('..')\n", "\n", "from fastNLP import Metric\n", "\n", "class MyMetric(Metric):\n", "\n", " def __init__(self):\n", " Metric.__init__(self)\n", " self.total_num = 0\n", " self.right_num = 0\n", "\n", " def update(self, pred, target):\n", " self.total_num += target.size(0)\n", " self.right_num += target.eq(pred).sum().item()\n", "\n", " def get_metric(self, reset=True):\n", " acc = self.right_num / self.total_num\n", " if reset:\n", " self.total_num = 0\n", " self.right_num = 0\n", " return {'prefix': acc}" ] }, { "cell_type": "markdown", "id": "0155f447", "metadata": {}, "source": [ " 数据使用方面,此处仍然使用`datasets`模块中的`load_dataset`函数,加载`SST-2`二分类数据集" ] }, { "cell_type": "code", "execution_count": 2, "id": "5ad81ac7", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Reusing dataset glue (/remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ef923b90b19847f4916cccda5d33fc36", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/3 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from datasets import load_dataset\n", "\n", "sst2data = load_dataset('glue', 'sst2')" ] }, { "cell_type": "markdown", "id": "e9d81760", "metadata": {}, "source": [ " 在数据预处理中,需要注意的是,这里原本应该根据`metric`和`model`的输入参数格式,调整\n", "\n", " 数据集中表示预测目标的字段,调整为`target`,在后文中会揭晓为什么,以及如何补救" ] }, { "cell_type": "code", "execution_count": 3, "id": "cfb28b1b", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Processing: 0%| | 0/6000 [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from fastNLP import DataSet\n", "\n", "dataset = DataSet.from_pandas(sst2data['train'].to_pandas())[:6000]\n", "\n", "dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split()}, progress_bar=\"tqdm\")\n", "dataset.delete_field('sentence')\n", "dataset.delete_field('idx')\n", "\n", "from fastNLP import Vocabulary\n", "\n", "vocab = Vocabulary()\n", "vocab.from_dataset(dataset, field_name='words')\n", "vocab.index_dataset(dataset, field_name='words')\n", "\n", "train_dataset, evaluate_dataset = dataset.split(ratio=0.85)\n", "\n", "from fastNLP import prepare_torch_dataloader\n", "\n", "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n", "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)" ] }, { "cell_type": "markdown", "id": "af3f8c63", "metadata": {}, "source": [ " 模型使用方面,此处仍然使用`tutorial-4`中介绍过的预定义`CNNText`模型,实现`SST-2`二分类" ] }, { "cell_type": "code", "execution_count": 4, "id": "2fd210c5", "metadata": {}, "outputs": [], "source": [ "from fastNLP.models.torch import CNNText\n", "\n", "model = CNNText(embed=(len(vocab), 100), num_classes=2, dropout=0.1)\n", "\n", "from torch.optim import AdamW\n", "\n", "optimizers = AdamW(params=model.parameters(), lr=5e-4)" ] }, { "cell_type": "markdown", "id": "6e723b87", "metadata": {}, "source": [ "## 3. fastNLP 中 trainer 的补充介绍\n", "\n", "### 3.1 trainer 的内部结构\n", "\n", "在`tutorial-0`中,我们已经介绍了`trainer`的基本使用,从`tutorial-1`到`tutorial-4`,我们也已经展示了\n", "\n", " 很多`trainer`的使用案例,这里通过表格,相对完整地介绍`trainer`模块的属性和初始化参数(标粗为必选参数\n", "\n", "\n", "名称|参数|属性|功能|内容\n", "----|----|----|----|----|\n", "| **model** | √ | √ | 指定`trainer`控制的模型 | 视框架而定,如`torch.nn.Module` |\n", "| `device` | √ | | 指定`trainer`运行的卡位 | 例如`'cpu'`、`'cuda'`、`0`、`[0, 1]`等 |\n", "| | | √ | 记录`trainer`运行的卡位 | `Device`类型,在初始化阶段生成 |\n", "| **driver** | √ | | 指定`trainer`驱动的框架 | 包括`'torch'`、`'paddle'`、`'jittor'` |\n", "| | | √ | 记录`trainer`驱动的框架 | `Driver`类型,在初始化阶段生成 |\n", "| `n_epochs` | √ | - | 指定`trainer`迭代的轮数 | 默认`20`,记录在`driver.n_epochs`中 |\n", "| **optimizers** | √ | √ | 指定`trainer`优化的方法 | 视框架而定,如`torch.optim.Adam` |\n", "| `metrics` | √ | √ | 指定`trainer`评测的方法 | 字典类型,如`{'acc': Metric()}` |\n", "| `evaluator` | | √ | 内置的`trainer`评测模块 | `Evaluator`类型,在初始化阶段生成 |\n", "| `input_mapping` | √ | √ | 调整`dataloader`的参数不匹配 | 函数类型,输出字典匹配`forward`输入参数 |\n", "| `output_mapping` | √ | √ | 调整`forward`输出的参数不匹配 | 函数类型,输出字典匹配`xx_step`输入参数 |\n", "| **train_dataloader** | √ | √ | 指定`trainer`训练的数据 | `DataLoader`类型,生成视框架而定 |\n", "| `evaluate_dataloaders` | √ | √ | 指定`trainer`评测的数据 | `DataLoader`类型,生成视框架而定 |\n", "| `train_fn` | √ | √ | 指定`trainer`获取某个批次的损失值 | 函数类型,默认为`model.train_step` |\n", "| `evaluate_fn` | √ | √ | 指定`trainer`获取某个批次的评估量 | 函数类型,默认为`model.evaluate_step` |\n", "| `batch_step_fn` | √ | √ | 指定`trainer`训练时前向传输一个批次的方式 | 函数类型,默认为`TrainBatchLoop.batch_step_fn` |\n", "| `evaluate_batch_step_fn` | √ | √ | 指定`trainer`评测时前向传输一个批次的方式 | 函数类型,默认为`EvaluateBatchLoop.batch_step_fn` |\n", "| `accumulation_steps` | √ | √ | 指定`trainer`训练时反向传播的频率 | 默认为`1`,即每个批次都反向传播 |\n", "| `evaluate_every` | √ | √ | 指定`evaluator`评测时计算的频率 | 默认`-1`表示每个循环一次,相反`1`表示每个批次一次 |\n", "| `progress_bar` | √ | √ | 指定`trainer`训练和评测时的进度条样式 | 包括`'auto'`、`'tqdm'`、`'raw'`、`'rich'` |\n", "| `callbacks` | √ | | 指定`trainer`训练时需要触发的函数 | `Callback`列表类型,详见`tutorial-7` |\n", "| `callback_manager` | | √ | 记录与管理`callbacks`相关内容 | `CallbackManager`类型,详见`tutorial-7` |\n", "| `monitor` | √ | √ | 辅助部分的`callbacks`相关内容 | 字符串/函数类型,详见`tutorial-7` |\n", "| `marker` | √ | √ | 标记`trainer`实例,辅助`callbacks`相关内容 | 字符串型,详见`tutorial-7` |\n", "| `trainer_state` | | √ | 记录`trainer`状态,辅助`callbacks`相关内容 | `TrainerState`类型,详见`tutorial-7` |\n", "| `state` | | √ | 记录`trainer`状态,辅助`callbacks`相关内容 | `State`类型,详见`tutorial-7` |\n", "| `fp16` | √ | √ | 指定`trainer`是否进行混合精度训练 | 布尔类型,默认`False` |\n", "\n", "其中,**input_mapping 和 output_mapping** 定义形式如下:输入字典形式的数据,根据参数匹配要求调整数据格式,这里就回应了前文未在数据集预处理时调整格式的问题,**总之参数匹配一定要求**" ] }, { "cell_type": "code", "execution_count": 5, "id": "de96c1d1", "metadata": {}, "outputs": [], "source": [ "def input_mapping(data):\n", " data['target'] = data['label']\n", " return data" ] }, { "cell_type": "markdown", "id": "2fc8b9f3", "metadata": {}, "source": [ " 而`trainer`模块的基础方法列表如下,相关进阶操作,如`on`系列函数、`callback`控制,请参考后续的`tutorial-7`\n", "\n", "|名称|功能|主要参数|\n", "|----|----|----|\n", "| `run` | 控制`trainer`中模型的训练和评测 | 详见后文 |\n", "| `train_step` | 实现`trainer`训练中一个批数据的前向传播过程 | 输入`batch` |\n", "| `backward` | 实现`trainer`训练中一次损失的反向传播过程 | 输入`output` |\n", "| `zero_grad` | 实现`trainer`训练中`optimizers`的梯度置零 | 无输入 |\n", "| `step` | 实现`trainer`训练中`optimizers`的参数更新 | 无输入 |\n", "| `epoch_evaluate` | 实现`trainer`训练中每个循环的评测,实际是否执行取决于评测频率 | 无输入 |\n", "| `step_evaluate` | 实现`trainer`训练中每个批次的评测,实际是否执行取决于评测频率 | 无输入 |\n", "| `save_model` | 保存`trainer`中的模型参数/状态字典至`fastnlp_model.pkl.tar` | `folder`指明路径,`only_state_dict`指明是否只保存状态字典,默认`False` |\n", "| `load_model` | 加载`trainer`中的模型参数/状态字典自`fastnlp_model.pkl.tar` | `folder`指明路径,`only_state_dict`指明是否只加载状态字典,默认`True` |\n", "| `save_checkpoint` | 保存`trainer`中模型参数/状态字典 以及 `callback`、`sampler` 和`optimizer`的状态至`fastnlp_model/checkpoint.pkl.tar` | `folder`指明路径,`only_state_dict`指明是否只保存状态字典,默认`True` |\n", "| `load_checkpoint` | 加载`trainer`中模型参数/状态字典 以及 `callback`、`sampler` 和`optimizer`的状态自`fastnlp_model/checkpoint.pkl.tar` | `folder`指明路径,`only_state_dict`指明是否只保存状态字典,默认`True` `resume_training`指明是否只精确到上次训练的批量,默认`True` |\n", "| `add_callback_fn` | 在`trainer`初始化后添加`callback`函数 | 输入`event`指明回调时机,`fn`指明回调函数 |\n", "| `on` | 函数修饰器,将一个函数转变为`callback`函数 | 详见`tutorial-7` |\n", "\n", "" ] }, { "cell_type": "markdown", "id": "1e21df35", "metadata": {}, "source": [ "紧接着,初始化`trainer`实例,继续完成`SST-2`分类,其中`metrics`输入的键值对,字串`'suffix'`和之前定义的\n", "\n", " 字串`'prefix'`将拼接在一起显示到`progress bar`中,故完整的输出形式为`{'prefix#suffix': float}`" ] }, { "cell_type": "code", "execution_count": 6, "id": "926a9c50", "metadata": {}, "outputs": [], "source": [ "from fastNLP import Trainer\n", "\n", "trainer = Trainer(\n", " model=model,\n", " driver='torch',\n", " device=0, # 'cuda'\n", " n_epochs=10,\n", " optimizers=optimizers,\n", " input_mapping=input_mapping,\n", " train_dataloader=train_dataloader,\n", " evaluate_dataloaders=evaluate_dataloader,\n", " metrics={'suffix': MyMetric()}\n", ")" ] }, { "cell_type": "markdown", "id": "b1b2e8b7", "metadata": { "pycharm": { "name": "#%%\n" } }, "source": [ "最后就是`run`函数的使用,关于其参数,这里也以表格形式列出,由此就解答了`num_eval_batch_per_dl=10`的含义\n", "\n", "|名称|功能|默认值|\n", "|----|----|----|\n", "| `num_train_batch_per_epoch` | 指定`trainer`训练时,每个循环计算批量数目 | 整数类型,默认`-1`,表示训练时,每个循环计算所有批量 |\n", "| `num_eval_batch_per_dl` | 指定`trainer`评测时,每个循环计算批量数目 | 整数类型,默认`-1`,表示评测时,每个循环计算所有批量 |\n", "| `num_eval_sanity_batch` | 指定`trainer`训练开始前,试探性评测批量数目 | 整数类型,默认`2`,表示训练开始前评估两个批量 |\n", "| `resume_from` | 指定`trainer`恢复状态的路径,需要是文件夹 | 字符串型,默认`None`,使用可参考`CheckpointCallback` |\n", "| `resume_training` | 指定`trainer`恢复状态的程度 | 布尔类型,默认`True`恢复所有状态,`False`仅恢复`model`和`optimizers`状态 |" ] }, { "cell_type": "code", "execution_count": 7, "id": "43be274f", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "text/html": [ "
[09:30:35] INFO Running evaluator sanity check for 2 batches. trainer.py:596\n", "\n" ], "text/plain": [ "\u001b[2;36m[09:30:35]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=954293;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=366534;file://../fastNLP/core/controllers/trainer.py#596\u001b\\\u001b[2m596\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:111: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " if ip and hasattr(ip, 'kernel') and hasattr(ip.kernel, '_parent_header'):\n", "\n" ], "text/plain": [ "/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:111: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " if ip and hasattr(ip, 'kernel') and hasattr(ip.kernel, '_parent_header'):\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:112: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " self.msg_id = ip.kernel._parent_header['header']['msg_id']\n", "\n" ], "text/plain": [ "/remote-home/xrliu/anaconda3/envs/demo/lib/python3.7/site-packages/ipywidgets/widgets/widget_\n", "output.py:112: DeprecationWarning: Kernel._parent_header is deprecated in ipykernel 6. Use \n", ".get_parent()\n", " self.msg_id = ip.kernel._parent_header['header']['msg_id']\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:1, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.6875\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.6875\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:2, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.8125\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.8125\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:3, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.80625\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.80625\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:4, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.825\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.825\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:5, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.8125\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.8125\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:6, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.80625\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.80625\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:7, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.80625\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.80625\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:8, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.8\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.8\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
----------------------------- Eval. results on Epoch:9, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.80625\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.80625\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
---------------------------- Eval. results on Epoch:10, Batch:0 -----------------------------\n", "\n" ], "text/plain": [ "---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{\n", " \"prefix#suffix\": 0.80625\n", "}\n", "\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[1;34m\"prefix#suffix\"\u001b[0m: \u001b[1;36m0.80625\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trainer.run(num_eval_batch_per_dl=10)" ] }, { "cell_type": "code", "execution_count": null, "id": "f1abfa0a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 5 }