import unittest from fastNLP import DataSet from fastNLP import Instance from fastNLP import Vocabulary from fastNLP.core.losses import CrossEntropyLoss from fastNLP.core.metrics import AccuracyMetric class TestTutorial(unittest.TestCase): def test_fastnlp_10min_tutorial(self): # 从csv读取数据到DataSet sample_path = "test/data_for_tests/tutorial_sample_dataset.csv" dataset = DataSet.read_csv(sample_path, headers=('raw_sentence', 'label'), sep='\t') print(len(dataset)) print(dataset[0]) print(dataset[-3]) dataset.append(Instance(raw_sentence='fake data', label='0')) # 将所有数字转为小写 dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence') # label转int dataset.apply(lambda x: int(x['label']), new_field_name='label') # 使用空格分割句子 def split_sent(ins): return ins['raw_sentence'].split() dataset.apply(split_sent, new_field_name='words') # 增加长度信息 dataset.apply(lambda x: len(x['words']), new_field_name='seq_len') print(len(dataset)) print(dataset[0]) # DataSet.drop(func)筛除数据 dataset.drop(lambda x: x['seq_len'] <= 3, inplace=True) print(len(dataset)) # 设置DataSet中,哪些field要转为tensor # set target,loss或evaluate中的golden,计算loss,模型评估时使用 dataset.set_target("label") # set input,模型forward时使用 dataset.set_input("words", "seq_len") # 分出测试集、训练集 test_data, train_data = dataset.split(0.5) print(len(test_data)) print(len(train_data)) # 构建词表, Vocabulary.add(word) vocab = Vocabulary(min_freq=2) train_data.apply(lambda x: [vocab.add(word) for word in x['words']]) vocab.build_vocab() # index句子, Vocabulary.to_index(word) train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words') test_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words') print(test_data[0]) # 如果你们需要做强化学习或者GAN之类的项目,你们也可以使用这些数据预处理的工具 from fastNLP.core.batch import Batch from fastNLP.core.sampler import RandomSampler batch_iterator = Batch(dataset=train_data, batch_size=2, sampler=RandomSampler()) for batch_x, batch_y in batch_iterator: print("batch_x has: ", batch_x) print("batch_y has: ", batch_y) break from fastNLP.models import CNNText model = CNNText((len(vocab), 50), num_classes=5, padding=2, dropout=0.1) from fastNLP import Trainer from copy import deepcopy # 更改DataSet中对应field的名称,要以模型的forward等参数名一致 train_data.rename_field('label', 'label_seq') test_data.rename_field('label', 'label_seq') loss = CrossEntropyLoss(pred="output", target="label_seq") metric = AccuracyMetric(pred="predict", target="label_seq") # 实例化Trainer,传入模型和数据,进行训练 # 先在test_data拟合(确保模型的实现是正确的) copy_model = deepcopy(model) overfit_trainer = Trainer(model=copy_model, train_data=test_data, dev_data=test_data, loss=loss, metrics=metric, save_path=None, batch_size=32, n_epochs=5) overfit_trainer.train() # 用train_data训练,在test_data验证 trainer = Trainer(model=model, train_data=train_data, dev_data=test_data, loss=CrossEntropyLoss(pred="output", target="label_seq"), metrics=AccuracyMetric(pred="predict", target="label_seq"), save_path=None, batch_size=32, n_epochs=5) trainer.train() print('Train finished!') # 调用Tester在test_data上评价效果 from fastNLP import Tester tester = Tester(data=test_data, model=model, metrics=AccuracyMetric(pred="predict", target="label_seq"), batch_size=4) acc = tester.test() print(acc) def test_fastnlp_1min_tutorial(self): # tutorials/fastnlp_1min_tutorial.ipynb data_path = "test/data_for_tests/tutorial_sample_dataset.csv" ds = DataSet.read_csv(data_path, headers=('raw_sentence', 'label'), sep='\t') print(ds[1]) # 将所有数字转为小写 ds.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence') # label转int ds.apply(lambda x: int(x['label']), new_field_name='target', is_target=True) def split_sent(ins): return ins['raw_sentence'].split() ds.apply(split_sent, new_field_name='words', is_input=True) # 分割训练集/验证集 train_data, dev_data = ds.split(0.3) print("Train size: ", len(train_data)) print("Test size: ", len(dev_data)) from fastNLP import Vocabulary vocab = Vocabulary(min_freq=2) train_data.apply(lambda x: [vocab.add(word) for word in x['words']]) # index句子, Vocabulary.to_index(word) train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words', is_input=True) dev_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words', is_input=True) from fastNLP.models import CNNText model = CNNText((len(vocab), 50), num_classes=5, padding=2, dropout=0.1) from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric, Adam trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data, loss=CrossEntropyLoss(), optimizer= Adam(), metrics=AccuracyMetric(target='target') ) trainer.train() print('Train finished!') def setUp(self): import os self._init_wd = os.path.abspath(os.curdir) def tearDown(self): import os os.chdir(self._init_wd)