{ "cells": [ { "cell_type": "markdown", "id": "213d538c", "metadata": {}, "source": [ "# T3. dataloader 的内部结构和基本使用\n", "\n", "  1   fastNLP 中的 dataloader\n", " \n", "    1.1   dataloader 的职责描述\n", "\n", "    1.2   dataloader 的基本使用\n", "\n", "  2   fastNLP 中 dataloader 的延伸\n", "\n", "    2.1   collator 的概念与使用\n", "\n", "    2.2   sampler 的概念与使用" ] }, { "cell_type": "markdown", "id": "85857115", "metadata": {}, "source": [ "## 1. fastNLP 中的 dataloader\n", "\n", "### 1.1 dataloader 的职责描述\n", "\n", "在`fastNLP 0.8`中,在数据加载模块`DataLoader`之前" ] }, { "cell_type": "markdown", "id": "eb8fb51c", "metadata": {}, "source": [ "### 1.2 dataloader 的基本使用\n", "\n", "在`fastNLP 0.8`中,在数据加载模块`DataLoader`之前," ] }, { "cell_type": "code", "execution_count": null, "id": "aca72b49", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import pandas as pd\n", "from functools import partial\n", "from fastNLP.transformers.torch import BertTokenizer\n", "\n", "from fastNLP import DataSet\n", "from fastNLP import Vocabulary\n", "from fastNLP.io import DataBundle\n", "\n", "\n", "class PipeDemo:\n", " def __init__(self, tokenizer='bert-base-uncased', num_proc=1):\n", " self.tokenizer = BertTokenizer.from_pretrained(tokenizer)\n", " self.num_proc = num_proc\n", "\n", " def process_from_file(self, path='./data/test4dataset.tsv'):\n", " datasets = DataSet.from_pandas(pd.read_csv(path))\n", " train_ds, test_ds = datasets.split(ratio=0.7)\n", " train_ds, dev_ds = datasets.split(ratio=0.8)\n", " data_bundle = DataBundle(datasets={'train': train_ds, 'dev': dev_ds, 'test': test_ds})\n", "\n", " encode = partial(self.tokenizer.encode_plus, max_length=100, truncation=True,\n", " return_attention_mask=True)\n", " data_bundle.apply_field_more(encode, field_name='text', num_proc=self.num_proc)\n", "\n", " target_vocab = Vocabulary(padding=None, unknown=None)\n", "\n", " target_vocab.from_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='label')\n", " target_vocab.index_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='label',\n", " new_field_name='target')\n", "\n", " data_bundle.set_pad('input_ids', pad_val=self.tokenizer.pad_token_id)\n", " data_bundle.set_ignore('label', 'text') \n", " return data_bundle" ] }, { "cell_type": "markdown", "id": "de53bff4", "metadata": {}, "source": [ "  " ] }, { "cell_type": "code", "execution_count": null, "id": "57a29cb9", "metadata": {}, "outputs": [], "source": [ "pipe = PipeDemo(tokenizer='bert-base-uncased', num_proc=4)\n", "\n", "data_bundle = pipe.process_from_file('./data/test4dataset.tsv')" ] }, { "cell_type": "markdown", "id": "226bb081", "metadata": {}, "source": [ "  " ] }, { "cell_type": "code", "execution_count": null, "id": "7827557d", "metadata": {}, "outputs": [], "source": [ "from fastNLP import prepare_torch_dataloader\n", "\n", "dl_bundle = prepare_torch_dataloader(data_bundle, batch_size=arg.batch_size)" ] }, { "cell_type": "markdown", "id": "d898cf40", "metadata": {}, "source": [ "  \n", "\n", "```python\n", "trainer = Trainer(\n", " model=model,\n", " train_dataloader=dl_bundle['train'],\n", " optimizers=optimizer,\n", "\t...\n", "\tdriver=\"torch\",\n", "\tdevice='cuda',\n", "\t...\n", " evaluate_dataloaders={'dev': dl_bundle['dev'], 'test': dl_bundle['test']}, \n", " metrics={'acc': Accuracy()},\n", "\t...\n", ")\n", "```" ] }, { "cell_type": "markdown", "id": "d74d0523", "metadata": {}, "source": [ "## 2. fastNLP 中 dataloader 的延伸\n", "\n", "### 2.1 collator 的概念与使用\n", "\n", "在`fastNLP 0.8`中,在数据加载模块`DataLoader`之前,还存在其他的一些模块,负责例如对文本数据\n", "\n", "  进行补零对齐,即 **核对器`collator`模块**,进行分词标注,即 **分词器`tokenizer`模块**\n", "\n", "  本节将对`fastNLP`中的核对器`collator`等展开介绍,分词器`tokenizer`将在下一节中详细介绍\n", "\n", "在`fastNLP 0.8`中,**核对器`collator`模块负责文本序列的补零对齐**,通过" ] }, { "cell_type": "code", "execution_count": null, "id": "651baef6", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from fastNLP import prepare_torch_dataloader\n", "\n", "dl_bundle = prepare_torch_dataloader(data_bundle, train_batch_size=2)\n", "\n", "print(type(dl_bundle), type(dl_bundle['train']))" ] }, { "cell_type": "code", "execution_count": null, "id": "726ba357", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "dataloader = prepare_torch_dataloader(datasets['train'], train_batch_size=2)\n", "print(type(dataloader))\n", "print(dir(dataloader))" ] }, { "cell_type": "code", "execution_count": null, "id": "d0795b3e", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "dataloader.collate_fn" ] }, { "cell_type": "markdown", "id": "f9bbd9a7", "metadata": {}, "source": [ "### 2.2 sampler 的概念与使用" ] }, { "cell_type": "code", "execution_count": null, "id": "b0c3c58d", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "dataloader.batch_sampler" ] }, { "cell_type": "markdown", "id": "51bf0878", "metadata": {}, "source": [ "  " ] }, { "cell_type": "code", "execution_count": null, "id": "3fd2486f", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 5 }