import os import pickle import matplotlib.pyplot as plt import matplotlib.ticker as ticker import nltk import numpy as np import torch from model import * class SampleIter: def __init__(self, dirname): self.dirname = dirname def __iter__(self): for f in os.listdir(self.dirname): for y, x in pickle.load(open(os.path.join(self.dirname, f), 'rb')): yield x, y class SentIter: def __init__(self, dirname, count): self.dirname = dirname self.count = int(count) def __iter__(self): for f in os.listdir(self.dirname)[:self.count]: for y, x in pickle.load(open(os.path.join(self.dirname, f), 'rb')): for sent in x: yield sent def train_word_vec(): # load data dirname = 'reviews' sents = SentIter(dirname, 238) # define model and train model = models.Word2Vec(sentences=sents, size=200, sg=0, workers=4, min_count=5) model.save('yelp.word2vec') class Embedding_layer: def __init__(self, wv, vector_size): self.wv = wv self.vector_size = vector_size def get_vec(self, w): try: v = self.wv[w] except KeyError as e: v = np.zeros(self.vector_size) return v from torch.utils.data import DataLoader, Dataset class YelpDocSet(Dataset): def __init__(self, dirname, num_files, embedding): self.dirname = dirname self.num_files = num_files self._len = num_files*5000 self._files = os.listdir(dirname)[:num_files] self.embedding = embedding def __len__(self): return self._len def __getitem__(self, n): file_id = n // 5000 sample_list = pickle.load(open( os.path.join(self.dirname, self._files[file_id]), 'rb')) y, x = sample_list[n % 5000] return x, y-1 def collate(iterable): y_list = [] x_list = [] for x, y in iterable: y_list.append(y) x_list.append(x) return x_list, torch.LongTensor(y_list) def train(net, num_epoch, batch_size, print_size=10, use_cuda=False): from gensim.models import Word2Vec import torch import gensim from gensim import models embed_model = Word2Vec.load('yelp.word2vec') embedding = Embedding_layer(embed_model.wv, embed_model.wv.vector_size) del embed_model optimizer = torch.optim.SGD(net.parameters(), lr=0.01) criterion = nn.NLLLoss() dirname = 'reviews' dataloader = DataLoader(YelpDocSet(dirname, 238, embedding), batch_size=batch_size, collate_fn=collate, num_workers=4) running_loss = 0.0 if use_cuda: net.cuda() for epoch in range(num_epoch): for i, batch_samples in enumerate(dataloader): x, y = batch_samples doc_list = [] for sample in x: doc = [] for sent in sample: sent_vec = [] for word in sent: vec = embedding.get_vec(word) vec = torch.Tensor(vec.reshape((1, -1))) if use_cuda: vec = vec.cuda() sent_vec.append(vec) sent_vec = torch.cat(sent_vec, dim=0) # print(sent_vec.size()) doc.append(Variable(sent_vec)) doc_list.append(doc) if use_cuda: y = y.cuda() y = Variable(y) predict = net(doc_list) loss = criterion(predict, y) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.data[0] if i % print_size == print_size-1: print(running_loss/print_size) running_loss = 0.0 torch.save(net.state_dict(), 'model.dict') torch.save(net.state_dict(), 'model.dict') if __name__ == '__main__': ''' Train process ''' net = HAN(input_size=200, output_size=5, word_hidden_size=50, word_num_layers=1, word_context_size=100, sent_hidden_size=50, sent_num_layers=1, sent_context_size=100) train(net, num_epoch=1, batch_size=64, use_cuda=True)