from fastNLP.envs.imports import _NEED_IMPORT_ONEFLOW if _NEED_IMPORT_ONEFLOW: import oneflow from oneflow.nn import Module import oneflow.nn as nn else: from fastNLP.core.utils.dummy_class import DummyClass as Module # 1. 最为基础的分类模型 class OneflowNormalModel_Classification_1(Module): """ 单独实现 train_step 和 evaluate_step; """ def __init__(self, num_labels, feature_dimension): super(OneflowNormalModel_Classification_1, self).__init__() self.num_labels = num_labels self.linear1 = nn.Linear(in_features=feature_dimension, out_features=10) self.ac1 = nn.ReLU() self.linear2 = nn.Linear(in_features=10, out_features=10) self.ac2 = nn.ReLU() self.output = nn.Linear(in_features=10, out_features=num_labels) self.loss_fn = nn.CrossEntropyLoss() def forward(self, x): x = self.ac1(self.linear1(x)) x = self.ac2(self.linear2(x)) x = self.output(x) return x def train_step(self, x, y): x = self(x) return {"loss": self.loss_fn(x, y)} def evaluate_step(self, x, y): """ 如果不加参数 y,那么应该在 trainer 中设置 output_mapping = {"y": "target"}; """ x = self(x) x = oneflow.max(x, dim=-1)[1] return {"pred": x, "target": y}