{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 使用Metric快速评测你的模型\n", "\n", "和上一篇教程一样的实验准备代码" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from fastNLP.io import SST2Pipe\n", "from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric\n", "from fastNLP.models import CNNText\n", "import torch\n", "\n", "databundle = SST2Pipe().process_from_file()\n", "vocab = databundle.get_vocab('words')\n", "train_data = databundle.get_dataset('train')[:5000]\n", "train_data, test_data = train_data.split(0.015)\n", "dev_data = databundle.get_dataset('dev')\n", "\n", "model = CNNText((len(vocab),100), num_classes=2, dropout=0.1)\n", "loss = CrossEntropyLoss()\n", "metric = AccuracyMetric()\n", "device = 0 if torch.cuda.is_available() else 'cpu'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "进行训练时,fastNLP提供了各种各样的 metrics 。 如前面的教程中所介绍,AccuracyMetric 类的对象被直接传到 Trainer 中用于训练" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input fields after batch(if batch size is 2):\n", "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 4]) \n", "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "target fields after batch(if batch size is 2):\n", "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "\n", "training epochs started 2020-02-28-00-37-08\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=1540.0), HTML(value='')), layout=Layout(d…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.28 seconds!\n", "\r", "Evaluation on dev at Epoch 1/10. Step:154/1540: \n", "\r", "AccuracyMetric: acc=0.747706\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.17 seconds!\n", "\r", "Evaluation on dev at Epoch 2/10. Step:308/1540: \n", "\r", "AccuracyMetric: acc=0.745413\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.19 seconds!\n", "\r", "Evaluation on dev at Epoch 3/10. Step:462/1540: \n", "\r", "AccuracyMetric: acc=0.74656\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.15 seconds!\n", "\r", "Evaluation on dev at Epoch 4/10. Step:616/1540: \n", "\r", "AccuracyMetric: acc=0.762615\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.42 seconds!\n", "\r", "Evaluation on dev at Epoch 5/10. Step:770/1540: \n", "\r", "AccuracyMetric: acc=0.736239\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.16 seconds!\n", "\r", "Evaluation on dev at Epoch 6/10. Step:924/1540: \n", "\r", "AccuracyMetric: acc=0.761468\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.42 seconds!\n", "\r", "Evaluation on dev at Epoch 7/10. Step:1078/1540: \n", "\r", "AccuracyMetric: acc=0.727064\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.21 seconds!\n", "\r", "Evaluation on dev at Epoch 8/10. Step:1232/1540: \n", "\r", "AccuracyMetric: acc=0.731651\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.52 seconds!\n", "\r", "Evaluation on dev at Epoch 9/10. Step:1386/1540: \n", "\r", "AccuracyMetric: acc=0.752294\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.44 seconds!\n", "\r", "Evaluation on dev at Epoch 10/10. Step:1540/1540: \n", "\r", "AccuracyMetric: acc=0.760321\n", "\n", "\r\n", "In Epoch:4/Step:616, got best dev performance:\n", "AccuracyMetric: acc=0.762615\n", "Reloaded the best model.\n" ] }, { "data": { "text/plain": [ "{'best_eval': {'AccuracyMetric': {'acc': 0.762615}},\n", " 'best_epoch': 4,\n", " 'best_step': 616,\n", " 'seconds': 32.63}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trainer = Trainer(train_data=train_data, dev_data=dev_data, model=model,\n", " loss=loss, device=device, metrics=metric)\n", "trainer.train()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "除了 AccuracyMetric 之外,SpanFPreRecMetric 也是一种非常见的评价指标, 例如在序列标注问题中,常以span的方式计算 F-measure, precision, recall。\n", "\n", "另外,fastNLP 还实现了用于抽取式QA(如SQuAD)的metric ExtractiveQAMetric。 用户可以参考下面这个表格。\n", "\n", "| 名称 | 介绍 |\n", "| -------------------- | ------------------------------------------------- |\n", "| `MetricBase` | 自定义metrics需继承的基类 |\n", "| `AccuracyMetric` | 简单的正确率metric |\n", "| `SpanFPreRecMetric` | 同时计算 F-measure, precision, recall 值的 metric |\n", "| `ExtractiveQAMetric` | 用于抽取式QA任务 的metric |\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 定义自己的metrics\n", "\n", "在定义自己的metrics类时需继承 fastNLP 的 MetricBase, 并覆盖写入 evaluate 和 get_metric 方法。\n", "\n", "- evaluate(xxx) 中传入一个批次的数据,将针对一个批次的预测结果做评价指标的累计\n", "\n", "- get_metric(xxx) 当所有数据处理完毕时调用该方法,它将根据 evaluate函数累计的评价指标统计量来计算最终的评价结果\n", "\n", "以分类问题中,Accuracy计算为例,假设model的forward返回dict中包含 pred 这个key, 并且该key需要用于Accuracy:\n", "\n", "```python\n", "class Model(nn.Module):\n", " def __init__(xxx):\n", " # do something\n", " def forward(self, xxx):\n", " # do something\n", " return {'pred': pred, 'other_keys':xxx} # pred's shape: batch_size x num_classes\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Version 1\n", "\n", "假设dataset中 `target` 这个 field 是需要预测的值,并且该 field 被设置为了 target 对应的 `AccMetric` 可以按如下的定义" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from fastNLP import MetricBase\n", "\n", "class AccMetric(MetricBase):\n", "\n", " def __init__(self):\n", " super().__init__()\n", " # 根据你的情况自定义指标\n", " self.total = 0\n", " self.acc_count = 0\n", "\n", " # evaluate的参数需要和DataSet 中 field 名以及模型输出的结果 field 名一致,不然找不到对应的value\n", " # pred, target 的参数是 fastNLP 的默认配置\n", " def evaluate(self, pred, target):\n", " # dev或test时,每个batch结束会调用一次该方法,需要实现如何根据每个batch累加metric\n", " self.total += target.size(0)\n", " self.acc_count += target.eq(pred).sum().item()\n", "\n", " def get_metric(self, reset=True): # 在这里定义如何计算metric\n", " acc = self.acc_count/self.total\n", " if reset: # 是否清零以便重新计算\n", " self.acc_count = 0\n", " self.total = 0\n", " return {'acc': acc}\n", " # 需要返回一个dict,key为该metric的名称,该名称会显示到Trainer的progress bar中" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input fields after batch(if batch size is 2):\n", "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 4]) \n", "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "target fields after batch(if batch size is 2):\n", "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "\n", "training epochs started 2020-02-28-00-37-41\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=1540.0), HTML(value='')), layout=Layout(d…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.27 seconds!\n", "\r", "Evaluation on dev at Epoch 1/10. Step:154/1540: \n", "\r", "AccMetric: acc=0.7431192660550459\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.42 seconds!\n", "\r", "Evaluation on dev at Epoch 2/10. Step:308/1540: \n", "\r", "AccMetric: acc=0.7522935779816514\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.51 seconds!\n", "\r", "Evaluation on dev at Epoch 3/10. Step:462/1540: \n", "\r", "AccMetric: acc=0.7477064220183486\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.48 seconds!\n", "\r", "Evaluation on dev at Epoch 4/10. Step:616/1540: \n", "\r", "AccMetric: acc=0.7442660550458715\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.5 seconds!\n", "\r", "Evaluation on dev at Epoch 5/10. Step:770/1540: \n", "\r", "AccMetric: acc=0.7362385321100917\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.45 seconds!\n", "\r", "Evaluation on dev at Epoch 6/10. Step:924/1540: \n", "\r", "AccMetric: acc=0.7293577981651376\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.33 seconds!\n", "\r", "Evaluation on dev at Epoch 7/10. Step:1078/1540: \n", "\r", "AccMetric: acc=0.7190366972477065\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.29 seconds!\n", "\r", "Evaluation on dev at Epoch 8/10. Step:1232/1540: \n", "\r", "AccMetric: acc=0.7419724770642202\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.34 seconds!\n", "\r", "Evaluation on dev at Epoch 9/10. Step:1386/1540: \n", "\r", "AccMetric: acc=0.7350917431192661\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.18 seconds!\n", "\r", "Evaluation on dev at Epoch 10/10. Step:1540/1540: \n", "\r", "AccMetric: acc=0.6846330275229358\n", "\n", "\r\n", "In Epoch:2/Step:308, got best dev performance:\n", "AccMetric: acc=0.7522935779816514\n", "Reloaded the best model.\n" ] }, { "data": { "text/plain": [ "{'best_eval': {'AccMetric': {'acc': 0.7522935779816514}},\n", " 'best_epoch': 2,\n", " 'best_step': 308,\n", " 'seconds': 42.7}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trainer = Trainer(train_data=train_data, dev_data=dev_data, model=model,\n", " loss=loss, device=device, metrics=AccMetric())\n", "trainer.train()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Version 2\n", "\n", "如果需要复用 metric,比如下一次使用 `AccMetric` 时,dataset中目标field不叫 `target` 而叫 `y` ,或者model的输出不是 `pred`\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "class AccMetric(MetricBase):\n", " def __init__(self, pred=None, target=None):\n", " \"\"\"\n", " 假设在另一场景使用时,目标field叫y,model给出的key为pred_y。则只需要在初始化AccMetric时,\n", " acc_metric = AccMetric(pred='pred_y', target='y')即可。\n", " 当初始化为acc_metric = AccMetric() 时,fastNLP会直接使用 'pred', 'target' 作为key去索取对应的的值\n", " \"\"\"\n", "\n", " super().__init__()\n", "\n", " # 如果没有注册该则效果与 Version 1 就是一样的\n", " self._init_param_map(pred=pred, target=target) # 该方法会注册label和pred. 仅需要注册evaluate()方法会用到的参数名即可\n", "\n", " # 根据你的情况自定义指标\n", " self.total = 0\n", " self.acc_count = 0\n", "\n", " # evaluate的参数需要和DataSet 中 field 名以及模型输出的结果 field 名一致,不然找不到对应的value\n", " # pred, target 的参数是 fastNLP 的默认配置\n", " def evaluate(self, pred, target):\n", " # dev或test时,每个batch结束会调用一次该方法,需要实现如何根据每个batch累加metric\n", " self.total += target.size(0)\n", " self.acc_count += target.eq(pred).sum().item()\n", "\n", " def get_metric(self, reset=True): # 在这里定义如何计算metric\n", " acc = self.acc_count/self.total\n", " if reset: # 是否清零以便重新计算\n", " self.acc_count = 0\n", " self.total = 0\n", " return {'acc': acc}\n", " # 需要返回一个dict,key为该metric的名称,该名称会显示到Trainer的progress bar中" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input fields after batch(if batch size is 2):\n", "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 4]) \n", "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "target fields after batch(if batch size is 2):\n", "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", "\n", "training epochs started 2020-02-28-00-38-24\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=1540.0), HTML(value='')), layout=Layout(d…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.32 seconds!\n", "\r", "Evaluation on dev at Epoch 1/10. Step:154/1540: \n", "\r", "AccMetric: acc=0.7511467889908257\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.29 seconds!\n", "\r", "Evaluation on dev at Epoch 2/10. Step:308/1540: \n", "\r", "AccMetric: acc=0.7454128440366973\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.42 seconds!\n", "\r", "Evaluation on dev at Epoch 3/10. Step:462/1540: \n", "\r", "AccMetric: acc=0.7224770642201835\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.4 seconds!\n", "\r", "Evaluation on dev at Epoch 4/10. Step:616/1540: \n", "\r", "AccMetric: acc=0.7534403669724771\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.41 seconds!\n", "\r", "Evaluation on dev at Epoch 5/10. Step:770/1540: \n", "\r", "AccMetric: acc=0.7396788990825688\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.22 seconds!\n", "\r", "Evaluation on dev at Epoch 6/10. Step:924/1540: \n", "\r", "AccMetric: acc=0.7442660550458715\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.45 seconds!\n", "\r", "Evaluation on dev at Epoch 7/10. Step:1078/1540: \n", "\r", "AccMetric: acc=0.6903669724770642\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.25 seconds!\n", "\r", "Evaluation on dev at Epoch 8/10. Step:1232/1540: \n", "\r", "AccMetric: acc=0.7293577981651376\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.4 seconds!\n", "\r", "Evaluation on dev at Epoch 9/10. Step:1386/1540: \n", "\r", "AccMetric: acc=0.7006880733944955\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "Evaluate data in 0.48 seconds!\n", "\r", "Evaluation on dev at Epoch 10/10. Step:1540/1540: \n", "\r", "AccMetric: acc=0.7339449541284404\n", "\n", "\r\n", "In Epoch:4/Step:616, got best dev performance:\n", "AccMetric: acc=0.7534403669724771\n", "Reloaded the best model.\n" ] }, { "data": { "text/plain": [ "{'best_eval': {'AccMetric': {'acc': 0.7534403669724771}},\n", " 'best_epoch': 4,\n", " 'best_step': 616,\n", " 'seconds': 34.74}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trainer = Trainer(train_data=train_data, dev_data=dev_data, model=model,\n", " loss=loss, device=device, metrics=AccMetric())\n", "trainer.train()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "``MetricBase`` 将会在输入的字典 ``pred_dict`` 和 ``target_dict`` 中进行检查.\n", "``pred_dict`` 是模型当中 ``forward()`` 函数或者 ``predict()`` 函数的返回值.\n", "``target_dict`` 是DataSet当中的ground truth, 判定ground truth的条件是field的 ``is_target`` 被设置为True.\n", "\n", "``MetricBase`` 会进行以下的类型检测:\n", "\n", "1. self.evaluate当中是否有 varargs, 这是不支持的.\n", "2. self.evaluate当中所需要的参数是否既不在 ``pred_dict`` 也不在 ``target_dict`` .\n", "3. self.evaluate当中所需要的参数是否既在 ``pred_dict`` 也在 ``target_dict`` .\n", "\n", "除此以外,在参数被传入self.evaluate以前,这个函数会检测 ``pred_dict`` 和 ``target_dict`` 当中没有被用到的参数\n", "如果kwargs是self.evaluate的参数,则不会检测\n", "\n", "self.evaluate将计算一个批次(batch)的评价指标,并累计。 没有返回值\n", "self.get_metric将统计当前的评价指标并返回评价结果, 返回值需要是一个dict, key是指标名称,value是指标的值\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python Now", "language": "python", "name": "now" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.0" } }, "nbformat": 4, "nbformat_minor": 2 }