{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 使用 Callback 自定义你的训练过程" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- 什么是 Callback\n", "- 使用 Callback \n", "- 一些常用的 Callback\n", "- 自定义实现 Callback" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "什么是Callback\n", "------\n", "\n", "Callback 是与 Trainer 紧密结合的模块,利用 Callback 可以在 Trainer 训练时,加入自定义的操作,比如梯度裁剪,学习率调节,测试模型的性能等。定义的 Callback 会在训练的特定阶段被调用。\n", "\n", "fastNLP 中提供了很多常用的 Callback ,开箱即用。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "使用 Callback\n", " ------\n", "\n", "使用 Callback 很简单,将需要的 callback 按 list 存储,以对应参数 ``callbacks`` 传入对应的 Trainer。Trainer 在训练时就会自动执行这些 Callback 指定的操作了。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2019-09-17T07:34:46.465871Z", "start_time": "2019-09-17T07:34:30.648758Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "In total 3 datasets:\n", "\ttest has 1200 instances.\n", "\ttrain has 9600 instances.\n", "\tdev has 1200 instances.\n", "In total 2 vocabs:\n", "\tchars has 4409 entries.\n", "\ttarget has 2 entries.\n", "\n", "training epochs started 2019-09-17-03-34-34\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.1 seconds!\n", "Evaluation on dev at Epoch 1/3. Step:300/900: \n", "AccuracyMetric: acc=0.863333\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.11 seconds!\n", "Evaluation on dev at Epoch 2/3. Step:600/900: \n", "AccuracyMetric: acc=0.886667\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.1 seconds!\n", "Evaluation on dev at Epoch 3/3. Step:900/900: \n", "AccuracyMetric: acc=0.890833\n", "\n", "\r\n", "In Epoch:3/Step:900, got best dev performance:\n", "AccuracyMetric: acc=0.890833\n", "Reloaded the best model.\n" ] } ], "source": [ "from fastNLP import (Callback, EarlyStopCallback,\n", " Trainer, CrossEntropyLoss, AccuracyMetric)\n", "from fastNLP.models import CNNText\n", "import torch.cuda\n", "\n", "# prepare data\n", "def get_data():\n", " from fastNLP.io import ChnSentiCorpPipe as pipe\n", " data = pipe().process_from_file()\n", " print(data)\n", " data.rename_field('chars', 'words')\n", " train_data = data.datasets['train']\n", " dev_data = data.datasets['dev']\n", " test_data = data.datasets['test']\n", " vocab = data.vocabs['words']\n", " tgt_vocab = data.vocabs['target']\n", " return train_data, dev_data, test_data, vocab, tgt_vocab\n", "\n", "# prepare model\n", "train_data, dev_data, _, vocab, tgt_vocab = get_data()\n", "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n", "model = CNNText((len(vocab),50), num_classes=len(tgt_vocab))\n", "\n", "# define callback\n", "callbacks=[EarlyStopCallback(5)]\n", "\n", "# pass callbacks to Trainer\n", "def train_with_callback(cb_list):\n", " trainer = Trainer(\n", " device=device,\n", " n_epochs=3,\n", " model=model, \n", " train_data=train_data, \n", " dev_data=dev_data, \n", " loss=CrossEntropyLoss(), \n", " metrics=AccuracyMetric(), \n", " callbacks=cb_list, \n", " check_code_level=-1\n", " )\n", " trainer.train()\n", "\n", "train_with_callback(callbacks)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "fastNLP 中的 Callback\n", "-------\n", "fastNLP 中提供了很多常用的 Callback,如梯度裁剪,训练时早停和测试验证集,fitlog 等等。具体 Callback 请参考 fastNLP.core.callbacks" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2019-09-17T07:35:02.182727Z", "start_time": "2019-09-17T07:34:49.443863Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training epochs started 2019-09-17-03-34-49\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.13 seconds!\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.12 seconds!\n", "Evaluation on data-test:\n", "AccuracyMetric: acc=0.890833\n", "Evaluation on dev at Epoch 1/3. Step:300/900: \n", "AccuracyMetric: acc=0.890833\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.09 seconds!\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.09 seconds!\n", "Evaluation on data-test:\n", "AccuracyMetric: acc=0.8875\n", "Evaluation on dev at Epoch 2/3. Step:600/900: \n", "AccuracyMetric: acc=0.8875\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.11 seconds!\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.1 seconds!\n", "Evaluation on data-test:\n", "AccuracyMetric: acc=0.885\n", "Evaluation on dev at Epoch 3/3. Step:900/900: \n", "AccuracyMetric: acc=0.885\n", "\n", "\r\n", "In Epoch:1/Step:300, got best dev performance:\n", "AccuracyMetric: acc=0.890833\n", "Reloaded the best model.\n" ] } ], "source": [ "from fastNLP import EarlyStopCallback, GradientClipCallback, EvaluateCallback\n", "callbacks = [\n", " EarlyStopCallback(5),\n", " GradientClipCallback(clip_value=5, clip_type='value'),\n", " EvaluateCallback(dev_data)\n", "]\n", "\n", "train_with_callback(callbacks)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "自定义 Callback\n", "------\n", "\n", "这里我们以一个简单的 Callback作为例子,它的作用是打印每一个 Epoch 平均训练 loss。\n", "\n", "#### 创建 Callback\n", " \n", "要自定义 Callback,我们要实现一个类,继承 fastNLP.Callback。\n", "\n", "这里我们定义 MyCallBack ,继承 fastNLP.Callback 。\n", "\n", "#### 指定 Callback 调用的阶段\n", " \n", "Callback 中所有以 on_ 开头的类方法会在 Trainer 的训练中在特定阶段调用。 如 on_train_begin() 会在训练开始时被调用,on_epoch_end() 会在每个 epoch 结束时调用。 具体有哪些类方法,参见 Callback 文档。\n", "\n", "这里, MyCallBack 在求得loss时调用 on_backward_begin() 记录当前 loss ,在每一个 epoch 结束时调用 on_epoch_end() ,求当前 epoch 平均loss并输出。\n", "\n", "#### 使用 Callback 的属性访问 Trainer 的内部信息\n", " \n", "为了方便使用,可以使用 Callback 的属性,访问 Trainer 中的对应信息,如 optimizer, epoch, n_epochs,分别对应训练时的优化器,当前 epoch 数,和总 epoch 数。 具体可访问的属性,参见文档 Callback 。\n", "\n", "这里, MyCallBack 为了求平均 loss ,需要知道当前 epoch 的总步数,可以通过 self.step 属性得到当前训练了多少步。\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2019-09-17T07:43:10.907139Z", "start_time": "2019-09-17T07:42:58.488177Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training epochs started 2019-09-17-03-42-58\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=900), HTML(value='')), layout=Layout(display=…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.11 seconds!\n", "Evaluation on dev at Epoch 1/3. Step:300/900: \n", "AccuracyMetric: acc=0.883333\n", "\n", "Avg loss at epoch 1, 0.100254\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.1 seconds!\n", "Evaluation on dev at Epoch 2/3. Step:600/900: \n", "AccuracyMetric: acc=0.8775\n", "\n", "Avg loss at epoch 2, 0.183511\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluate data in 0.13 seconds!\n", "Evaluation on dev at Epoch 3/3. Step:900/900: \n", "AccuracyMetric: acc=0.875833\n", "\n", "Avg loss at epoch 3, 0.257103\n", "\r\n", "In Epoch:1/Step:300, got best dev performance:\n", "AccuracyMetric: acc=0.883333\n", "Reloaded the best model.\n" ] } ], "source": [ "from fastNLP import Callback\n", "from fastNLP import logger\n", "\n", "class MyCallBack(Callback):\n", " \"\"\"Print average loss in each epoch\"\"\"\n", " def __init__(self):\n", " super().__init__()\n", " self.total_loss = 0\n", " self.start_step = 0\n", " \n", " def on_backward_begin(self, loss):\n", " self.total_loss += loss.item()\n", " \n", " def on_epoch_end(self):\n", " n_steps = self.step - self.start_step\n", " avg_loss = self.total_loss / n_steps\n", " logger.info('Avg loss at epoch %d, %.6f', self.epoch, avg_loss)\n", " self.start_step = self.step\n", "\n", "callbacks = [MyCallBack()]\n", "train_with_callback(callbacks)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }