|
- """
- .. todo::
- doc
- """
-
- __all__ = [
- "Vocabulary",
- "VocabularyOption",
- ]
-
- from collections import Counter
- from functools import partial
- from functools import wraps
-
- from ._logger import logger
- from .dataset import DataSet
- from .utils import Option
- from .utils import _is_iterable
-
-
- class VocabularyOption(Option):
- def __init__(self,
- max_size=None,
- min_freq=None,
- padding='<pad>',
- unknown='<unk>'):
- super().__init__(
- max_size=max_size,
- min_freq=min_freq,
- padding=padding,
- unknown=unknown
- )
-
-
- def _check_build_vocab(func):
- """A decorator to make sure the indexing is built before used.
-
- """
-
- @wraps(func) # to solve missing docstring
- def _wrapper(self, *args, **kwargs):
- if self._word2idx is None or self.rebuild is True:
- self.build_vocab()
- return func(self, *args, **kwargs)
-
- return _wrapper
-
-
- def _check_build_status(func):
- """A decorator to check whether the vocabulary updates after the last build.
-
- """
-
- @wraps(func) # to solve missing docstring
- def _wrapper(self, *args, **kwargs):
- if self.rebuild is False:
- self.rebuild = True
- if self.max_size is not None and len(self.word_count) >= self.max_size:
- logger.info("[Warning] Vocabulary has reached the max size {} when calling {} method. "
- "Adding more words may cause unexpected behaviour of Vocabulary. ".format(
- self.max_size, func.__name__))
- return func(self, *args, **kwargs)
-
- return _wrapper
-
-
- class Vocabulary(object):
- """
- 用于构建, 存储和使用 `str` 到 `int` 的一一映射::
-
- vocab = Vocabulary()
- word_list = "this is a word list".split()
- vocab.update(word_list)
- vocab["word"] # str to int
- vocab.to_word(5) # int to str
- """
-
- def __init__(self, max_size=None, min_freq=None, padding='<pad>', unknown='<unk>'):
- """
-
- :param int max_size: `Vocabulary` 的最大大小, 即能存储词的最大数量
- 若为 ``None`` , 则不限制大小. Default: ``None``
- :param int min_freq: 能被记录下的词在文本中的最小出现频率, 应大于或等于 1.
- 若小于该频率, 词语将被视为 `unknown`. 若为 ``None`` , 所有文本中的词都被记录. Default: ``None``
- :param str optional padding: padding的字符. 如果设置为 ``None`` ,
- 则vocabulary中不考虑padding, 也不计入词表大小,为 ``None`` 的情况多在为label建立Vocabulary的情况.
- Default: '<pad>'
- :param str optional unknown: unknown的字符,所有未被记录的词在转为 `int` 时将被视为unknown.
- 如果设置为 ``None`` ,则vocabulary中不考虑unknow, 也不计入词表大小.
- 为 ``None`` 的情况多在为label建立Vocabulary的情况.
- Default: '<unk>'
- """
- self.max_size = max_size
- self.min_freq = min_freq
- self.word_count = Counter()
- self.unknown = unknown
- self.padding = padding
- self._word2idx = None
- self._idx2word = None
- self.rebuild = True
- # 用于承载不需要单独创建entry的词语,具体见from_dataset()方法
- self._no_create_word = Counter()
-
- @property
- @_check_build_vocab
- def word2idx(self):
- return self._word2idx
-
- @word2idx.setter
- def word2idx(self, value):
- self._word2idx = value
-
- @property
- @_check_build_vocab
- def idx2word(self):
- return self._idx2word
-
- @idx2word.setter
- def idx2word(self, value):
- self._word2idx = value
-
- @_check_build_status
- def update(self, word_lst, no_create_entry=False):
- """依次增加序列中词在词典中的出现频率
-
- :param list word_lst: a list of strings
- :param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
- 如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
- 的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
- 加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
- 个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
- 则这个词将认为是需要创建单独的vector的。
- """
- self._add_no_create_entry(word_lst, no_create_entry)
- self.word_count.update(word_lst)
- return self
-
- @_check_build_status
- def add(self, word, no_create_entry=False):
- """
- 增加一个新词在词典中的出现频率
-
- :param str word: 新词
- :param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
- 如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
- 的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
- 加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
- 个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
- 则这个词将认为是需要创建单独的vector的。
- """
- self._add_no_create_entry(word, no_create_entry)
- self.word_count[word] += 1
- return self
-
- def _add_no_create_entry(self, word, no_create_entry):
- """
- 在新加入word时,检查_no_create_word的设置。
-
- :param str List[str] word:
- :param bool no_create_entry:
- :return:
- """
- if isinstance(word, str) or not _is_iterable(word):
- word = [word]
- for w in word:
- if no_create_entry and self.word_count.get(w, 0) == self._no_create_word.get(w, 0):
- self._no_create_word[w] += 1
- elif not no_create_entry and w in self._no_create_word:
- self._no_create_word.pop(w)
-
- @_check_build_status
- def add_word(self, word, no_create_entry=False):
- """
- 增加一个新词在词典中的出现频率
-
- :param str word: 新词
- :param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
- 如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
- 的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
- 加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
- 个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
- 则这个词将认为是需要创建单独的vector的。
- """
- self.add(word, no_create_entry=no_create_entry)
-
- @_check_build_status
- def add_word_lst(self, word_lst, no_create_entry=False):
- """
- 依次增加序列中词在词典中的出现频率
-
- :param list[str] word_lst: 词的序列
- :param bool no_create_entry: 在使用fastNLP.TokenEmbedding加载预训练模型时,没有从预训练词表中找到这个词的处理方式。
- 如果为True,则不会有这个词语创建一个单独的entry,它将一直被指向unk的表示; 如果为False,则为这个词创建一个单独
- 的entry。如果这个word来自于dev或者test,一般设置为True,如果来自与train一般设置为False。以下两种情况: 如果新
- 加入一个word,且no_create_entry为True,但这个词之前已经在Vocabulary中且并不是no_create_entry的,则还是会为这
- 个词创建一个单独的vector; 如果no_create_entry为False,但这个词之前已经在Vocabulary中且并不是no_create_entry的,
- 则这个词将认为是需要创建单独的vector的。
- """
- self.update(word_lst, no_create_entry=no_create_entry)
- return self
-
- def build_vocab(self):
- """
- 根据已经出现的词和出现频率构建词典. 注意: 重复构建可能会改变词典的大小,
- 但已经记录在词典中的词, 不会改变对应的 `int`
-
- """
- if self._word2idx is None:
- self._word2idx = {}
- if self.padding is not None:
- self._word2idx[self.padding] = len(self._word2idx)
- if self.unknown is not None:
- self._word2idx[self.unknown] = len(self._word2idx)
-
- max_size = min(self.max_size, len(self.word_count)) if self.max_size else None
- words = self.word_count.most_common(max_size)
- if self.min_freq is not None:
- words = filter(lambda kv: kv[1] >= self.min_freq, words)
- if self._word2idx is not None:
- words = filter(lambda kv: kv[0] not in self._word2idx, words)
- start_idx = len(self._word2idx)
- self._word2idx.update({w: i + start_idx for i, (w, _) in enumerate(words)})
- self.build_reverse_vocab()
- self.rebuild = False
- return self
-
- def build_reverse_vocab(self):
- """
- 基于 `word to index` dict, 构建 `index to word` dict.
-
- """
- self._idx2word = {i: w for w, i in self._word2idx.items()}
- return self
-
- @_check_build_vocab
- def __len__(self):
- return len(self._word2idx)
-
- @_check_build_vocab
- def __contains__(self, item):
- """
- 检查词是否被记录
-
- :param item: the word
- :return: True or False
- """
- return item in self._word2idx
-
- def has_word(self, w):
- """
- 检查词是否被记录::
-
- has_abc = vocab.has_word('abc')
- # equals to
- has_abc = 'abc' in vocab
-
- :param item: the word
- :return: ``True`` or ``False``
- """
- return self.__contains__(w)
-
- @_check_build_vocab
- def __getitem__(self, w):
- """
- To support usage like::
-
- vocab[w]
- """
- if w in self._word2idx:
- return self._word2idx[w]
- if self.unknown is not None:
- return self._word2idx[self.unknown]
- else:
- raise ValueError("word `{}` not in vocabulary".format(w))
-
- @_check_build_vocab
- def index_dataset(self, *datasets, field_name, new_field_name=None):
- """
- 将DataSet中对应field的词转为数字,Example::
-
- # remember to use `field_name`
- vocab.index_dataset(train_data, dev_data, test_data, field_name='words')
-
- :param ~fastNLP.DataSet,List[~fastNLP.DataSet] datasets: 需要转index的一个或多个数据集
- :param list,str field_name: 需要转index的field, 若有多个 DataSet, 每个DataSet都必须有此 field.
- 目前支持 ``str`` , ``List[str]``
- :param list,str new_field_name: 保存结果的field_name. 若为 ``None`` , 将覆盖原field.
- Default: ``None``.
- """
-
- def index_instance(field):
- """
- 有几种情况, str, 1d-list, 2d-list
- :param ins:
- :return:
- """
- if isinstance(field, str) or not _is_iterable(field):
- return self.to_index(field)
- else:
- if isinstance(field[0], str) or not _is_iterable(field[0]):
- return [self.to_index(w) for w in field]
- else:
- if not isinstance(field[0][0], str) and _is_iterable(field[0][0]):
- raise RuntimeError("Only support field with 2 dimensions.")
- return [[self.to_index(c) for c in w] for w in field]
-
- new_field_name = new_field_name or field_name
-
- if type(new_field_name) == type(field_name):
- if isinstance(new_field_name, list):
- assert len(new_field_name) == len(field_name), "new_field_name should have same number elements with " \
- "field_name."
- elif isinstance(new_field_name, str):
- field_name = [field_name]
- new_field_name = [new_field_name]
- else:
- raise TypeError("field_name and new_field_name can only be str or List[str].")
-
- for idx, dataset in enumerate(datasets):
- if isinstance(dataset, DataSet):
- try:
- for f_n, n_f_n in zip(field_name, new_field_name):
- dataset.apply_field(index_instance, field_name=f_n, new_field_name=n_f_n)
- except Exception as e:
- logger.info("When processing the `{}` dataset, the following error occurred.".format(idx))
- raise e
- else:
- raise RuntimeError("Only DataSet type is allowed.")
- return self
-
- @property
- def _no_create_word_length(self):
- return len(self._no_create_word)
-
- def from_dataset(self, *datasets, field_name, no_create_entry_dataset=None):
- """
- 使用dataset的对应field中词构建词典::
-
- # remember to use `field_name`
- vocab.from_dataset(train_data1, train_data2, field_name='words')
-
- :param ~fastNLP.DataSet,List[~fastNLP.DataSet] datasets: 需要转index的一个或多个数据集
- :param str,List[str] field_name: 可为 ``str`` 或 ``List[str]`` .
- 构建词典所使用的 field(s), 支持一个或多个field,若有多个 DataSet, 每个DataSet都必须有这些field. 目前支持的field结构
- : ``str`` , ``List[str]``
- :param no_create_entry_dataset: 可以传入DataSet, List[DataSet]或者None(默认),该选项用在接下来的模型会使用pretrain
- 的embedding(包括glove, word2vec, elmo与bert)且会finetune的情况。如果仅使用来自于train的数据建立vocabulary,会导致test与dev
- 中的数据无法充分利用到来自于预训练embedding的信息,所以在建立词表的时候将test与dev考虑进来会使得最终的结果更好。
- 如果一个词出现在了train中,但是没在预训练模型中,embedding会为它用unk初始化,但它是单独的一个vector,如果
- finetune embedding的话,这个词在更新之后可能会有更好的表示; 而如果这个词仅出现在了dev或test中,那么就不能为它们单独建立vector,
- 而应该让它指向unk这个vector的值。所以只位于no_create_entry_dataset中的token,将首先从预训练的词表中寻找它的表示,
- 如果找到了,就使用该表示; 如果没有找到,则认为该词的表示应该为unk的表示。
- :return self:
- """
- if isinstance(field_name, str):
- field_name = [field_name]
- elif not isinstance(field_name, list):
- raise TypeError('invalid argument field_name: {}'.format(field_name))
-
- def construct_vocab(ins, no_create_entry=False):
- for fn in field_name:
- field = ins[fn]
- if isinstance(field, str) or not _is_iterable(field):
- self.add_word(field, no_create_entry=no_create_entry)
- else:
- if isinstance(field[0], str) or not _is_iterable(field[0]):
- for word in field:
- self.add_word(word, no_create_entry=no_create_entry)
- else:
- if not isinstance(field[0][0], str) and _is_iterable(field[0][0]):
- raise RuntimeError("Only support field with 2 dimensions.")
- for words in field:
- for word in words:
- self.add_word(word, no_create_entry=no_create_entry)
-
- for idx, dataset in enumerate(datasets):
- if isinstance(dataset, DataSet):
- try:
- dataset.apply(construct_vocab)
- except BaseException as e:
- logger.error("When processing the `{}` dataset, the following error occurred:".format(idx))
- raise e
- else:
- raise TypeError("Only DataSet type is allowed.")
-
- if no_create_entry_dataset is not None:
- partial_construct_vocab = partial(construct_vocab, no_create_entry=True)
- if isinstance(no_create_entry_dataset, DataSet):
- no_create_entry_dataset.apply(partial_construct_vocab)
- elif isinstance(no_create_entry_dataset, list):
- for dataset in no_create_entry_dataset:
- if not isinstance(dataset, DataSet):
- raise TypeError("Only DataSet type is allowed.")
- dataset.apply(partial_construct_vocab)
- return self
-
- def _is_word_no_create_entry(self, word):
- """
- 判断当前的word是否是不需要创建entry的,具体参见from_dataset的说明
- :param word: str
- :return: bool
- """
- return word in self._no_create_word
-
- def to_index(self, w):
- """
- 将词转为数字. 若词不再词典中被记录, 将视为 unknown, 若 ``unknown=None`` , 将抛出 ``ValueError`` ::
-
- index = vocab.to_index('abc')
- # equals to
- index = vocab['abc']
-
- :param str w: a word
- :return int index: the number
- """
- return self.__getitem__(w)
-
- @property
- @_check_build_vocab
- def unknown_idx(self):
- """
- unknown 对应的数字.
- """
- if self.unknown is None:
- return None
- return self._word2idx[self.unknown]
-
- @property
- @_check_build_vocab
- def padding_idx(self):
- """
- padding 对应的数字
- """
- if self.padding is None:
- return None
- return self._word2idx[self.padding]
-
- @_check_build_vocab
- def to_word(self, idx):
- """
- 给定一个数字, 将其转为对应的词.
-
- :param int idx: the index
- :return str word: the word
- """
- return self._idx2word[idx]
-
- def clear(self):
- """
- 删除Vocabulary中的词表数据。相当于重新初始化一下。
-
- :return:
- """
- self.word_count.clear()
- self._word2idx = None
- self._idx2word = None
- self.rebuild = True
- self._no_create_word.clear()
- return self
-
- def __getstate__(self):
- """Use to prepare data for pickle.
-
- """
- len(self) # make sure vocab has been built
- state = self.__dict__.copy()
- # no need to pickle _idx2word as it can be constructed from _word2idx
- del state['_idx2word']
- return state
-
- def __setstate__(self, state):
- """Use to restore state from pickle.
-
- """
- self.__dict__.update(state)
- self.build_reverse_vocab()
-
- def __repr__(self):
- return "Vocabulary({}...)".format(list(self.word_count.keys())[:5])
-
- @_check_build_vocab
- def __iter__(self):
- for word, index in self._word2idx.items():
- yield word, index
|