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Abstract—RDF question/answering (Q/A) allows users to ask questions in natural languages over a knowledge base represented by

RDF. To answer a natural language question, the existing work takes a two-stage approach: question understanding and query

evaluation. Their focus is on question understanding to deal with the disambiguation of the natural language phrases. The most

common technique is the joint disambiguation, which has the exponential search space. In this paper, we propose a systematic

framework to answer natural language questions over RDF repository (RDF Q/A) from a graph data-driven perspective. We propose a

semantic query graph to model the query intention in the natural language question in a structural way, based on which, RDF Q/A is

reduced to subgraph matching problem. More importantly, we resolve the ambiguity of natural language questions at the time when

matches of query are found. The cost of disambiguation is saved if there are no matching found. More specifically, we propose two

different frameworks to build the semantic query graph, one is relation (edge)-first and the other one is node-first. We compare our

method with some state-of-the-art RDF Q/A systems in the benchmark dataset. Extensive experiments confirm that our method not

only improves the precision but also speeds up query performance greatly.

Index Terms—RDF, graph database, question answering
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1 INTRODUCTION

AS more and more structured data become available on
the web, the question of how end users can access this

body of knowledge becomes of crucial importance. As a de
facto standard of a knowledge base, Resource Description
Framework(RDF) repository is a collection of triples, denoted
as hsubject, predicate, objecti, and can be represented as a
graph, where subjects and objects are vertices and predicates
are edge labels. Although SPARQL is a standard way to
access RDFdata, it remains tedious anddifficult for end users
because of the complexity of the SPARQL syntax and the RDF
schema. An ideal system should allow end users to profit
from the expressive power of Semantic Web standards (such
as RDF and SPARQLs) while at the same time hiding their
complexity behind an intuitive and easy-to-use interface [1].
Therefore, RDF question/answering (Q/A) systems have
received wide attention in both natural language processing
(NLP) [2], [3] and database areas [4].

Generally, there are two stages in RDF Q/A systems:
question understanding and query evaluation. Existing systems
in the first stage translate a natural language question N
into SPARQLs [1], and in the second stage evaluate all
SPARQLs translated in the first stage. The focus of the

existing solutions is on question understanding. Let us con-
sider a running example in Fig. 1. The RDF dataset is given
in Fig. 1a. Given a natural language question N1 ¼ “What is
the budget of the film directed by Paul Anderson?”, it is first
interpreted as a SPARQL query that is evaluated to get the
answers (as shown in Fig. 1b).

1.1 Motivation
The inherent hardness of RDF Q/A lies in the ambiguity of
un-structured natural language question sentences. Gener-
ally, there are two main challenges.

Phrase Linking. A natural language phrase wsi may have
several meanings, i.e., wsi correspond to several semantic
items in RDF graphG. As shown in Fig. 1b, the entity phrase
“Paul Anderson” canmap to three persons hPaul_Anderson_
(actor)i, hPaul_S._Andersoni and hPaul_W._S._Andersoni.
For a relation phrase, “directed by” also refers to two possible
predicates hdirectori and hwriteri. Sometimes a phrase needs
to be mapped to a non-atomic structure in knowledge graph.
For example, “uncle of” refers to a predicate path (see
Table 4). In RDF Q/A systems, we should eliminate “the
ambiguity of phrase linking”.

Composition. The task of composition is to construct cor-
responding query or query graph by assembling the identi-
fied phrases. In the running example, we know the
predicate hdirectori is to connect subject hfilmi and object
hPaul_W._S._Andersoni; consequently, we generate a triple
h?film, director, Paul_W._S._Andersoni. However, in some
cases, it is difficult to determine the correct subject and
object for a given predicate, or there may exist several possi-
ble query graph structures for a given question sentence.
We call it “the ambiguity of query graph structure”.

In this paper, we focus on how to address the two chal-
lenges. Different from existing solutions that try to solve
ambiguity in the question understanding stage, we propose
to combine disambiguation (for both phrase linking and
query graph construction) and query evaluation together.
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Specifically, we resolve the ambiguity of natural language
questions at the time when matches of query are found. The
cost of disambiguation is saved if there is no match found.
We call this as the graph data-driven approach for RDF Q/A.
We illustrate the intuition of our method by an example.

Example 1. Consider a subgraph of graph G in Fig. 1a (the
subgraph induced by vertices u1, u2, u3 and c1). Edge u2c1

��!
says that “Resident Evil: Retribution is a film”. Edge u2u1

��!
says that “The budget of Resident Evil: Retribution is $ 65
million”. Edge u2u3

��! says that “PaulW. S. Anderson directed
the film Resident Evil: Retribution”. The natural language
question N1 is “What is the budget of the film directed by
Paul Anderson”. Obviously, the subgraph formed by edges
u2c1
��!, u2u1

��! and u2u3
��! is a match of N1. “6.5E7” is a correct

answer. On the other hand, we cannot find a match (of N1)
containing h Paul_Anderson_(actor)i inc G, i.e., the phrase
“Paul Anderson” (in N1) cannot map to hPaul_Anderson_
(actor)i. Therefore, we address the ambiguity issue of
phrase linking when the matches are found. We can also
resolve the ambiguity of query graph structure following
the same idea.More details will be discussed in Section 5.

The above example illustrates the intuition of our graph
data-driven approach. A fundamental issue in our method
is how to define a “match” between a subgraph of G and a
natural language question N . Because N is unstructured
data and G is graph structure data, we should fill the gap
between them. Therefore, we propose a semantic query
graph QS (defined in Definition 1) to represent the question
semantics of N . An example of QS is given in Fig. 1c, which
represents the semantic of the question N . Answering natu-
ral language question equals to finding matches of QS over
the underlying RDF graph G. To build QS , we propose two
different frameworks: relation (edge)-first and node-first.

1.2 Our Approach
Although there are still two stages “question under-
standing” and “query evaluation” in our method, we do not

generate SPARQL at the question understanding step as
existing solutions do. As we know, a SPARQL query can
also be represented as a query graph, which does not
include any ambiguity. Instead, our method builds a query
graph that represents users’ query intention, but it allows
for the ambiguity at the question understanding stage, such
as the ambiguity of phrase linking and query graph struc-
ture. We resolve the ambiguity when the matches are found
at the query evaluation.

In the first framework, we first extract semantic relations
based on the dependency tree structure of question senten-
ces to build a semantic query graph QS . A semantic relation
is a triple hrel; arg1; arg2i, where rel is a relation phrase, and
arg1 and arg2 are its associated node phrases. For instance,
h“directed by”,“film”,“Paul Anderson”i is a semantic rela-
tion. In QS , two edges share one common endpoint if the
two corresponding relations share one common node
phrase. Each node (entity/class mention) and edge (relation
mention) in QS may have multiple candidates. The first
framework addresses the ambiguity of phrase linking when
the matches (see Definition 2) of QS are found. Note that the
first framework does not address the ambiguity of query
graph’s structure and assumes that the query graph can be
uniquely fixed at the question understanding step.

The second framework takes another perspective. When
there exist some implicit or uncertain relations in N , the
relation-first framework often fails to extract such relations.
Therefore, the second framework starts with extracting
nodes from the question sentence N and connects these
nodes to form a query graph. Furthermore, different from
the relation-first framework, the node-first framework
allows for the ambiguity of query graph structure at the
beginning. It does not intend to build QS in the question
understanding step. Instead, it builds a super graph QU of
QS that includes uncertain edges. To match QU over the
underlying RDF graph G, we allow for mismatching some
edges in QU , i.e., approximate match (Definition 5). We

Fig. 1. Question answering over RDF dataset.
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resolve the ambiguity of phrase linking and query graph
structure together when the approximate matches are
found. Actually, the approximate matching position (in
RDF graph G) defines the semantic query graph QS that we
aim to build. In other words, we push down resolving the
ambiguity of QS’s structure to the query evaluation stage.

In a nutshell, we make the following contribution.

(1) We propose two graph data-driven frameworks for
RDF Q/A task, different from exiting solutions, in
which the disambiguation and query evaluation are
combined together. In the first framework, we
address ambiguity of phrase linking at the query
evaluation; while in the second framework, the
ambiguity of phrase linking and query graph’s struc-
ture are both resolved. The graph data-driven frame-
works not only improve the precision but also speed
up query processing time greatly.

(2) In the offline processing, we propose a graph mining
algorithm to build a relation mention dictionary, i.e.,
mapping natural language phrases to possible predi-
cates, which is used for question understanding in
RDF Q/A.

(3) In the online processing, in order to speed up query
evaluation, we propose efficient top-k (approximate)
graph matching algorithms of matching QS and QU

over RDF graph.
(4) We conduct extensive experiments over several real

RDF datasets (including QALD benchmark and
WebQuestions benchmark) and compare our system
with some state-of-the-art systems. The performance
of our approach beat the other systems on QALD
benchmark while close to the best on the WebQues-
tions benchmark.

2 OVERVIEW

The problem of this paper is to find the answers to a natural
language question N over a RDF graph G. Table 1 lists the
notations used throughout this paper.

There are two key issues in RDF Q/A problem. The first
one is how to represent the query intention of the natural lan-
guage questionN in a structural way. The second one is how
to address the ambiguity of natural languageN . In this paper,
we focus on the ambiguity of phrase linking and query graph
structure (composition) that arementioned in Section 1.1.

2.1 Semantic Query Graph
We define a semantic query graph (Definition 1) to repre-
sent the query intention of the question N in a graph struc-
tured way.

Definition 1 (Semantic Query Graph). A semantic query
graph (denoted as QS) is a graph, in which each vertex vi is
associated with an entity phrase, class phrase or wild-cards in
the question sentence N ; and each edge vivj is associated with a
relation phrase in the question sentence N , 1 � i; j � jV ðQSÞj.
Given the question sentences N1, the corresponding

semantic query graphs QS
1 is given in Fig. 2b. In QS

1 , nodes
v1, v2 and v3 are associated with “what” (wild-card), “film”
(a class phrase) and “Paul Anderson” (an entity phrase),
respectively. The relation phrase “(be) budget of ” denotes
the relation between v1 and v2, as well as the relation phrase
“directed by” between v2 and v3.

As mentioned in the introduction, we want to find a
“match” of the semantic query graph QS over RDF graph G.
When the matches are found, we resolve the ambiguity of
natural language question sentence; meanwhile we find the
answers to the question. Generally, a “match” is defined
based on subgraph isomorphism. Given a node vi in a
semantic query graph QS , if vi is an entity phrase or a class
phrase, we can use entity linking algorithm [5] to retrieve all
entity/class (in RDF graphG) that possibly correspond to vi,
denoted as CðviÞ; if vi is a wild-card (such as wh-word), we
assume thatCðviÞ contains all vertices in RDF graphG. Anal-
ogously, each edge vivj inQS also maps to a list of candidate
predicates, denoted as Cvivj . Consider the semantic query
graph QS in Fig. 2b. We also visualizes the candidates
for each vertex and edge in QS in Fig. 2c. For example, v3
(“Paul Anderson”) corresponds to hPaul_Anderson_(actor)i,
hPaul_S._Andersoni and hPaul_W._S._Andersoni; and edge
“v2v3” maps to hdirectori, hwriteri and hproduceri. Formally,
we define thematch as follows.

Definition 2 (Match). Consider a semantic query graph QS

with n nodes fv1; . . . ; vng. Each node vi has a candidate list
Cvi , i ¼ 1; . . . ; n. Each edge vivj also has a candidate list Cvivj ,
where 1 � i 6¼ j � n. A subgraph M containing n vertices
fu1; . . . ; ung in RDF graph G is a match of QS if and only if
the following conditions hold:

(1) If vi is mapping to an entity ui, i ¼ 1; . . . ; n, ui must
be in list Cvi ; and

(2) If vi is mapping to a class ci, i ¼ 1; . . . ; n, ui is an
entity whose type is ci (i.e., there is a triple hui rdf:type
cii in RDF graph) and ci must be in Cvi ; and

(3) 8vivj 2 QS , uiuj
��! 2 M _ ujui

��! 2 M. Furthermore,
the predicate Pij associated with uiuj

��! (or ujui
��!) is in

Cvivj , 1 � i; j � n.

Let us see Fig. 2. The subgraph included by vertices c1, u1,
u2 and u3 (in RDF graphG) denotes amatch of semantic query
graph QS in Fig. 2b. When the matches are found, we resolve
the ambiguity, e.g., “Paul Anderson” should refer to hPaul_W.
_S._Andersoni rather than others., meanwhile that we find the
answers to the question, i.e., “6.5E7”1 is the film budget.

The core of our graph data-driven solution lies in two
aspects: one is how to build a semantic query graphQS accu-
rately and the other one is how to find matches efficiently. In
order to address the above issues, we propose two different
frameworks. The first one is called “relation (edge)-first”. It
means that we always extract relations from the natural lan-
guage question sentence N and represent them as edges.
Then, we assemble these edges to form a semantic query

TABLE 1
Notations

Notation Definition and Description

GðV;EÞ RDF graph and vertex and edge sets
N A natural language question
Q A SPARQL query (of N)
QS The Semantic Query Graph (of N)
QU The Super Semantic Query Graph (of N)
Y The dependency tree (of N)
DE=DR The entity/relation mention dictionary
vi/ui A vertex in query graph / RDF graph
Cvi/Cvivj Candidate mappings of vertex vi / edge vivj

1. Sixty-five million
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graph. The second framework takes another perspective,
called “node-first”. It starts with finding nodes (entity/class
phrases and wild-cards) and try to introduce edges to con-
nect them to form a semantic query graph QS . Furthermore,
another major difference between the two frameworks is
that the node-first framework defines a super graph (called
QU ) of QS when there exist some implicit or uncertain rela-
tions in the question sentence. In other words, the node-first
framework is not to fix the QS’s structure before subgraph
matching evaluation as the relation-first framework does.

2.2 Relation-First Framework
Given a natural language question sentence N , the relation-
first framework begins with extracting semantic relations
(edge together with two end points) from N .

Definition 3 (Semantic Relation). A semantic relation is a
triple hrel; arg1; arg2i, where rel is a relation mention, arg1
and arg2 are the two node phrases.

In the running example, h“directed by”, “film”,“Paul
Anderson”i is a semantic relation, in which “directed by” is a
relation mention (phrase), “who” and “actor” are its associ-
ated node phrases.We can also find another semantic relation
h“budget of”, “what”,“film”i from the question sentenceN1.

2.2.1 Question Understanding

The goal of the question understanding in the first frame-
work is to build a semantic query graph QS for representing
users’ query intention in N . Specifically, we first extract all
semantic relations in N , each of which corresponds to an
edge in QS . The semantic relation extraction is based on the
dependency tree of users’ question sentence and a relation
mention dictionary (see more details in Section 4.1). If the
two semantic relations have one common node, they share
one endpoint in QS . In the running example, we get two
semantic relations, i.e., h“directed by”, “film”,“Paul Ander-
son”i and h“budget of”, “what”,“film”i, as shown in Fig. 2.
They can be combined through the common node phrase
“film” as showed in Fig. 2c. In addition, if two node phrases

refer to same thing after “coreference resolution” [6], we
also combine the corresponding two semantic relations.

2.2.2 Query Executing

As mentioned earlier, a semantic query graph QS is a
structural representation of N . In order to answer N , we
need to find subgraphs of RDF graph G that match QS . The
match is defined according to the subgraph isomorphism
(see Definition 2)

Each subgraph match has a score, which is derived from
the confidences of each edge and vertex mapping. Definition
8 defines the score, which wewill discuss later. Our goal is to
find all subgraph matches with the top-k scores. A best-first
algorithm is proposed in Section 4.2 to address this issue.
Each subgraph match ofQS implies an answer to the natural
language questionN , meanwhile, the ambiguity is resolved.

2.3 Node-First Framework

The relation-first framework has two main obstacles. The
first is that some relations are difficult to be extracted. If the
relation does not explicitly appeared in the question sen-
tence, it is difficult to extract such semantic relations, since
our relation extraction relies on the relation mention in the
relation mention dictionary. Let us consider two examples
“show me all films started by a Chinese actor”, “show me all
films stared by an actor who was born in China”. Obviously,
the latter question has one explicit relation mention “(be)
born in”, where the relation in the former one is implicitly
mentioned. Therefore, it is difficult to extract these implicit
relations. Second, in the relation-first framework, semantic
relation extraction relies on the syntactic dependency tree of
users’ question sentence and heuristic linguistic rules. If the
syntactic dependency tree has some mistakes, it inevitably
leads to wrong semantic query graph QS’s structure and
wrong answers.

Considering the above two obstacles, we design a robust
framework even in the presence of implicit relations and
mistakes in the dependency parse tree. There are two key
points in the second framework:

Fig. 2. Question answering with semantic query graph in relation-first framework.
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(1) The first step is to extract node phrases (such as
entity phrase, class phrase and wh-words) from the
question sentence N , instead of relation extraction in
the first framework.

(2) We do not intend to build a semantic query graphQS

at the question understanding step. Instead, we build
a super semantic query graphQU , which possibly has
some uncertain or implicit relations (i.e., edges). In
other words, we allows the structure ambiguity of
query graph in the question understanding step,
whichwill be resolved at the query evaluation step.

A super semantic query graphQU is analogue toQS (seeDefi-
nition 4), but allows for explicit or uncertain relations (edges).

Definition 4 (Super Semantic Query Graph). A super
semantic query graph (denoted as QU ) is a graph, in which
each vertex vi is associated with an entity phrase, class phrase or
wild-card in the question sentenceN ; and each edge vivj is asso-
ciated with a relation inN , 1 � i; j � jV ðQUÞj. If the relation is
explicit, the edge label is the relation mention occurring in N ;
otherwise, the edge label is empty when the relation is implicit.

The following example illustrates the intuition of the sec-
ond framework.

Example 2. ConsiderN2 in Fig. 3. “What is the budget of the
film directed by Paul Anderson and starred by a Chinese
actor?”. The correct SPARQL query of N2 has two addi-
tional triples thanN1, which are t1 ¼ h?film,starring, ?actori
and t2 ¼ h?actor, country,Chinai. The relation-first frame-
work cannot generate t2 because the predicate “country”
has no explicit relation mention in N2. In the node-first
framework, we introduce an edge between v4 (“actor”) and
v5 (“Chinese”) in Fig. 3b, whose edge label is empty. For
detected relation mention “starred by”, it is difficult to
determine its corresponding twonodes. There are three can-
didate nodes: “Paul Anderson”, “film”, and “actor”. InQU ,
we introduce two edges between “film” and “actor”; and
“Paul Anderson” and “actor”. In the query evaluation step,
we perform the approximate match (defined in Definition 5)
tomatchQU with RDF graphG, i.e., finding the occurrences
of QU in RDF graph G with (possible) mismatching edges.

In this example, the final match is denoted using bold lines
in Fig. 3, in which the edge between “Paul Anderson” and
“actor” (inQU ) is notmatched.

It is easy to infer that an approximate match ofQU equals to
an exact match of a connected spanning subgraph2 of QU ,
where the spanning subgraph is the semantic query graph
QS that we aim to build. Therefore, in the second framework,
we fix the semantic query graph QS when the matches are
found; meanwhile the answers to the question have been
found. In other words, we resolve the “structure ambiguity”
of query graph at the time the matches are found. We also
briefly discuss the two steps of the node-first framework as
follows.More technical details are given in Section 5.

2.3.1 Question Understanding

Given a natural language question sentence N , we first
extract all constant nodes from N by applying entity extrac-
tion algorithms, which are referred to entities or classes. We
also extract all wh-words (such as who, what and which
et al.) from N as variable nodes. Then, to build QU , we need
to introduce an edge between two nodes if there is a seman-
tic relation between them. A naive solution is to introduce
an edge between any two nodes. Obviously, this method
introduces more noises and ambiguity for the query graph’s
structure. On the other hand, the approximate match in the
node-first framework allows mis-matching one or more
edges in QU . The naive solution leads to Oð2nÞ possible
matching structures in the final evaluation step, where n is
the number of nodes in QU . This is quite costly.

To eliminate more noises and reduce the search space,
we propose a simple yet effective assumption:

Assumption 1. Two nodes v1 and v2 has a semantic relation if
and only if there exists no other node v� that occurs in the sim-
ple path between v1 and v2 of the dependency parse tree of ques-
tion sentence N .

Fig. 3. Question answering with super semantic query graph in node-first framework.

2. A spanning subgraph for graph Q is a subgraph of Q which con-
tains every vertex of Q.
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Although this method also depends on the dependency
parse tree, it is not like the first framework, in which,
extracting semantic relations and node phrases (to build
QS) heavily depend on the parse tree’s structure, POS tag3

and dependency relation (such as subj, obj and et al.)4 In
other words, the node-first framework (i.e., the second
framework) is more robust to dependency errors.

Let us recall Example 2. We first extract five nodes:
“what”, “film”, “Paul Anderson”, “Chinese”, “actor” from
the question N2. Fig. 5 illustrates the dependency parse tree
Y ðN2Þ of question sentenceN2. According to the assumption,
we introduce an edge v1v2 between two nodes v1 and v2 if
there is no other node v� in the simple path between v1 and v2
over Y ðN2Þ. The words along the simple path between v1
and v2 form the edge label of v1v2. For example, the edge
label between nodes “what” and “film” is “ (be) budget of”.
The edge label between nodes “Chinese” and “node” is
empty, which is the implicit relation. For nodes “Paul Ander-
son” and “actor”, there is no other nodes along the simple
path between them. According to Assumption 1, we intro-
duce an edge between them and the edge label is “directed
by started by”. Due to the same reason, there is another edge
between nodes “film” and “actor”. Finally, we obtain the
super semantic query graphQU as shown in Fig. 3b.

2.3.2 Query Executing

First, we find candidates for each node and edge in QU ,
which is analogue to the query evaluation of QS in the first
framework. According to the entity mention dictionary DE ,
for each node, we can obtain a list of candidate entities, clas-
ses. If it is a wh-word, we assume that it can map all vertices
in RDF graph G. For each edge label (i.e., the relation men-
tion relv1v2 ), we also map it to all possible candidate predi-
cates based on the relation mention dictionary DR. If the
edge label relv1v2 is empty, e.g., the edge label between
nodes “Chinese” and “actor” is empty, we generate candi-
date predicates by applying a data mining method on G.
Section 4.1.3 gives more technical details.

Then, based on the data-driven’s idea, we try to match QU

over RDF graph G. Different from the exact match of QS , in
the node-first framework, we define the approximate match
(allowing dis-matching edges) of super semantic query
graph QU as follows:

Definition 5 (Approximate Match). Consider a super
semantic query graph QU with n vertices v1; . . . ; vn. Each ver-
tex vi has a candidate list Cvi , i ¼ 1; . . . ; n. Each edge vivj also
has a candidate list of Cvivj , where 1 � i 6¼ j � n. A subgraph
M containing n vertices u1; . . . ; un in RDF graph G is an
approximate match of QU if and only if the following condi-
tions hold:

1. If vi is mapping to an entity ui, i ¼ 1; . . . ; n; ui must
be in list Cvi ; and

2. If vi is mapping to a class ci, i ¼ 1; . . . ; n; ui is an
entity whose type is ci (i.e., there is a triple

huirdf : typecii in RDF graph) and ci must be in Cvi ;
and

3. 8uiuj
��! 2 M ) vivj 2 QU . Furthermore, the predicate

Pij associated with uiuj
��! is in Cvivj , 1 � i; j � n.

The only difference between the approximate match and
match is item (3) of Definitions 2 and 5: some edges of QU

may not be matched. Let us recall Example 2. The final
approximate match is denoted by the bold lines in Fig. 3d.
The edge between node “Paul Anderson” and “actor” (in
QU ) is not matched. The approximate match is used to
address the ambiguity of the query graph’s structure.

3 OFFLINE PHASE

In the offline phase, we build two dictionaries, which are
entity mention dictionary DE and relation mention dictio-
nary DR. They will be used to extract entities and relations
from users’ question sentences in the online phase. Note
that both DE and DR are used in our two frameworks (rela-
tion-first framework and node-first framework).

3.1 Build Entity Mention Dictionary
An entity mention is a surface string that refers to entities.
For example, “Paul Anderson” could refer to the person
hPaul_W._S._Andersoni or hPaul_S._Andersoni. We need to
build an entity mention dictionary DE , such as Table 2, to
map entity mentions to some candidate entities with
confidence probabilities. There are lots of existing work
about entity-mention dictionary construction [8], [9] and the
dictionary-based entity linking [5], [10]. A popular way to
build such a dictionary DE is by crawling Web pages and
aggregating anchor links that point to Wikipedia entity
pages. The frequency with which a mention (anchor text),
m, links to a particular entity (anchor link), c, allows one to
estimate the conditional probability pðcjmÞ [8]. Entity-men-
tion dictionary construction is not our technical contribu-
tion, in this paper, we adopt CrossWikis dictionary [8],
which was computed from a Google crawler of the Web.
The dictionary contains more than 175 million unique
strings with the entities they may represent.

3.2 Build Relation Mention Dictionary
A relation mention is a surface string that occurs between a
pair of entities in a sentence [11], such as “be directed by” and
“budget of” in the running example. We need to build a rela-
tion mention dictionary DR, such as Table 4, to map relation
mentions to some candidate predicates or predicate paths.

In this paper, we do not discuss how to extract relation
mentions along with their corresponding entity pairs. Lots
of NLP literature about relation extraction study this prob-
lem, such as Patty [12] and ReVerb [13]. For example, Patty
[12] utilizes the dependency structure in sentences and

TABLE 2
Entity Mention DictionaryDE

Entity Mention Referring Entity Confidence
Probability

“Paul Anderson” hPaul_S._Andersoni 0.8
“Paul Anderson” hPaul_W._S._Andersoni 0.6
“USA” hUnited_Statesi 1.0
“America” hUnited_Statesi 1.0
. . .. . . . . .. . . . . .. . .

3. It is called part-of-speech tag, also grammatical tagging or word-
category disambiguation, which is the process of marking up a word in
a text (corpus) as corresponding to a particular part of speech, such as
nouns, verbs, adjectives, adverbs, etc.

4. These grammatical relationships (called dependencies) that are
defined in [7]. For example, “nsubj” refers to a nominal subject. It is a
noun phrase which is the syntactic subject of a clause.
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ReVerb [13] adopts the n-gram to find relation mentions and
the corresponding support set. In this work, we assume that
the relation mentions and their support sets are given. For
example, Table 3 shows two sample relation mentions and
their supporting entity pairs.

Suppose that we have a mention set T ¼ frel1; . . . ; relng,
where each reli is a relation mention, i ¼ 1; . . . ; n. Each reli
has a support set of entity pairs that occur in RDF graph,
i.e., Sup ðreliÞ ¼ f ðv1i ; v01i Þ; . . . ; ðvmi ; v0mi Þg. For each reli,
i ¼ 1; . . . ; n, the goal is to mine top-k possible predicates or
predicate paths formed by consecutive predicate edges in
RDF graph, which have semantic equivalence with relation
mention reli.

Given a relation mention reli, considering each pair
ðvji ; v0ji Þ in Sup ðreliÞ, we find all simple paths between vji
and v0ji in RDF graph G, denoted as Pathsðvji ; v0ji Þ. Let
PSðreliÞ ¼ fPathsðvji ; v0ji Þj1 � j � mg.

For efficiency considerations, we only find simple paths
with no longer than a threshold5. We adopt a bi-directional
BFS (breath-first-search) search from vertices vji and v0ji to
find Pathsðvji ; v0ji Þ. Note that we ignore edge directions (in
RDF graph) in a BFS process.

Intuitively, if a predicate path is frequent in PSðreliÞ, it is
a good candidate that has semantic equivalence with rela-
tion mention reli. However, the above simple intuition may
introduce noises. For example, we find that (hasGender,
hasGender) is the most frequent predicate path in PS
(“uncle of”). Obviously, it is not a good predicate path to
represent the semantic of relation mention “uncle of”. In
order to eliminate noises, we borrow the intuition of tf-idf
measure [14]. Although (hasGender, hasGender) is frequent
in PS (“uncle of”), it is also frequent in the path sets of other
relation mentions, such as PS (“is parent of”), PS (“is advi-
sor of”) and so on. Thus, (hasGender, hasGender) is not an
important feature for PS (“uncle of”). Formally, we define tf-
idf value of a predicate path L in the following definition.
Note that if L is a length-1 predicate path, L is a predicate P .

Definition 6. Given a predicate path L, the tf-value of L in
PSðreliÞ is defined as follows:

tfðL; PSðreliÞÞ ¼jfPathsðvji ; v0ji ÞjL 2 Pathsðvji ; v0ji Þ;
Pathsðvji ; v0ji Þ 2 PSðreliÞgj

The idf-value of L over the whole relation mention set
T ¼ frel1; . . . ; relng is defined as follows:

idfðL; T Þ ¼ log
jT j

jfreli 2 T jL 2 PSðreliÞgj þ 1

The tf-idf value of L is defined as follows:

tf�idfðL; PSðreliÞ; T Þ ¼ tfðL; PSðreliÞÞ � idfðL; T Þ

We define the confidence probability of mapping relation
mention rel to predicate or predicate path L as follows.

dðrel; LÞ ¼ tf�idfðL; PSðreliÞ; T Þ (1)

Algorithm 1 in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2017.2766634,
shows the details of finding top-k predicate paths for
each relation mention. All relation mentions and their corre-
sponding k predicate paths including tf-idf values are col-
lected to form a relationmention dictionaryDR.

4 RELATION-FIRST FRAMEWORK

4.1 Building Semantic Query Graph
This Section discusses how to identify semantic relations
in a natural language question N , based on which, we build
a semantic query graph QS to represent the query intention
inN .

In order to extract the semantic relations inN , we need to
identify the relation mentions in question N . Obviously, we
can simply regard N as a sequence of words. The problem
is to find which relation phrases (also regarded as a
sequence of words) are subsequences of N . However, the
ordering of words in a natural language sentence is not
fixed, such as inverted sentences and preposition fronting. For
example, consider a question “In which movies did Li Bingb-
ing star?”. Obviously, “star in” is a relation mention though
it is not a subsequence of N . The phenomenon is known as
“long-distance dependency”. Some NLP (natural language
processing) literature suggest that the dependency structure
is more stable for the relation extraction [12].

Therefore, in our work, we first apply Stanford Parser [7]
to N to obtain the dependency tree Y . Let us recall the run-
ning example. Fig. 4 shows the dependency tree of N1,
denoted as Y ðN1Þ. The next question is to find relation men-
tions occurring in Y ðN1Þ.
Definition 7. Let us consider a dependency tree Y of a natural

language question N and a relation mention rel. We say that
rel occurs in Y if and only if there exists a connected subtree y
(of Y ) satisfying the following conditions:

(1) Each node in y contains one word in rel and y includes
all words in rel.

(2) We cannot find a subtree y0 of Y , where y0 also satisfies
the first condition and y is a subtree of y0.

TABLE 3
Relation Mentions and Supporting Entity Pairs

Relation Mention Supporting Entity Pairs

“directed by” (hResident_Evili, hPaul_W._S._Andersoni),
(hRoman_Holidayi, hWilliam_Wyleri),. . .. . .

“uncle of” (hTed_Kennedyi, hJohn_F._Kennedy,_Jr.i)
(hPeter_Corri, hJim_Corri),. . .. . .

TABLE 4
Relation Mention DictionaryDR

5. We set the threshold as four in our experiments. More details
about the parameter setting will be discussed in Appendix B, available
in the online supplemental material.
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In this case, y is an embedding of relation mention rel in Y .

Given a dependency tree Y of a natural language question
N and a relation mention set T ¼ frel1; . . . ; relng, we need to
findwhich relationmentions (in T ) are occurring in Y .

4.1.1 Relation Recognition

Given a natural language question N , we propose an algo-
rithm (Algorithm2 inAppendixA, available in the online sup-
plemental material) to identify all relation mentions in N . In
the offline phase, we build an inverted index over all relation
mentions in the relation mention dictionary DR. Specifically,
for each word, it links to a list of relation mentions containing
the word. The basic idea of Algorithm 2 is as follows: For each
node (i.e., a word) wi in Y , we find the candidate pattern list
PLi (Lines 1-2). Then, for each node wi, we check whether
there exists a subtree rooted at wi including all words of some
relation mentions in PLi. In order to address this issue, we
propose a depth-first search strategy. We probe each path
rooted at wi (Line 3). The search branch stops at a node w0,
where there does not exists a relation mention including w0

and all words along the path between w0 and wi (Note that, w0

is a descendant node of wi.)(Lines 3-4 in Probe function.) We
utilize rel½w� to indicate the presence of word w of rel in the
subtree rooted at wi (Line 6). When we finish all search
branches, if rel½w� ¼ 1 for all words w in relation mention rel,
it means that we have found a relation mention rel occurring
in Y and the embedding subtree is rooted at wi (Lines 8-11).
We can find the exact embedding (i.e., the subtree) by probing
the paths rooted at wi. We omit the trivial details due to the
space limit. The time complexity of Algorithm 2 isOðjY j2Þ.

4.1.2 Finding Associated Nodes

After finding a relation mention in Y , we then look for the
two associated nodes. If a phrase was recognized as entity/
class mention, it is regarded as a node. Besides, the nodes
are recognized also based on the grammatical subject-like
and object-like relations around the embedding, which are
listed as follow:

(1) subject-like relations: subj, nsubj, nsubjpass, csubj,
csubjpass, xsubj, poss, partmod;

(2) object-like relations: obj, pobj, dobj, iobj
Assume that we find an embedding subtree y of a rela-

tion mention rel. We recognize arg1 by checking for each
phrase w in y whether w is an entity/class mention or there
exists the above subject-like relations (by checking the edge
labels in the dependency tree) between w and one of its

children (note that, the child is not in the embedding sub-
tree). If a subject-like relationship exists, we add the child to
arg1. Likewise, arg2 is recognized by the object-like rela-
tions. When there are still more than one candidates for
each node, we choose the nearest one to rel.

On the other hand, when arg1/arg2 is empty after this
step, we introduce several heuristic rules (based some
computational linguistics knowledge [3], [7]) to increase the
recall for finding nodes. The heuristic rules are applied until
arg1/arg2 becomes none empty.

� Rule 1: Extend the embedding t with some light
words, such as prepositions, auxiliaries.

� Rule 2: If the root node of t has subject/object-like
relations with its parent node in Y , add the parent
node to arg1.

� Rule 3: If the parent of the root node of t has subject-
like relations with its neighbors, add the child to arg1.

� Rule 4: If one of arg1/arg2 is empty, add the nearest
wh-word or the first noun phrase in t to arg1/arg2.

If we still cannot find node phrases arg1/arg2 after
applying the above heuristical rules, we just discard the
relation mention rel in the further consideration. Finally, we
can find all relation mentions occurring in N together with
their embeddings and their node phrases arg1/arg2.

Example 3. Let us recall dependency tree Y in Fig. 4. We get
“what” as the first node of relation mention “budget of”
by applying Rule 4. And we can find another node “film”
as it is a class mention. Therefore, the first semantic rela-
tion is h“budget of”, “what”, “film”i. Likewise, we can
also find another semantic relation h“direct by”, “film”,
“Paul Anderson”i.
After obtaining all semantic relations in a natural lan-

guage N , we need to build a semantic query graph QS .
Fig. 2b shows an example ofQS . In order to build a semantic
query graph QS , we represent each semantic relation
hrel; arg1; arg2i as an edge. Two edges share one common
endpoint if their corresponding semantic relations have one
common node phrase. The formal definition of a semantic
query graph has been given in Definition 1.

4.1.3 Phrases Mapping

In this Section, we discuss how to map the relation mentions
and node phrases to candidate predicates/predicate paths
and entities/classes, respectively.

Fig. 5. Building super semantic query graph.

Fig. 4. Relationship extraction in Y ðN1Þ.
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Mapping Edges of QS . Each edge vivj in QS has a relation
mention relvivj . According to the relation mention dictionary
DR (see Section 3.2), it is straightforward to map relvivj to
some predicates P or predicate paths L. The list is denoted
as Cvivj . For simplicity of notations, we use L in the follow-
ing discussion. Each mapping is associated with a confi-
dence probability dðrel; LÞ (defined in Equation (1)). For
example, edge v2v3 has a relation mention relv2v3 = “direct
by”. Its candidate list Cv2v3 contains three candidates,
hdirectori, hwriteri, and hproduceri, as shown in Fig. 2c.

Mapping Vertices ofQS . Let us consider any vertex v inQS .
The phrase associated with v is arg. If arg is a wild-card
(such as wh-word), it can be mapped to all vertices in RDF
graph G. Otherwise, given an constant arg (entity/class
mention), we adopt the dictionary-based entity linking
approach [5] to find the candidate entities or classes. We use
notation Cv to denote all candidates with regard to vertex v
in QS . For example, “film” in v2 (in Fig. 2) can be linked to a
class node hfilmi or an entity node hFilmexi. If arg is
mapped to an entity u or a class c, we use dðarg; uÞ or
dðarg; cÞ to denote the confidence probability.

4.2 Query Executing
Given a semantic query graph QS , we discuss how to find
top-k subgraph matches over RDF graph G in this Section.
The formal definition of a subgraph match is given in Defi-
nition 2. We assume that all candidate lists are ranked in the
non-ascending order of the confidence probability. Figs. 2b
and 2c show an example of QS and the candidate lists,
respectively. Each subgraph match of QS has a score. It is
computed from the confidence probabilities of each edge
and vertex mapping. The score is defined as follows.

Definition 8. Given a semantic query graph QS with n nodes
fv1; . . . ; vng, a subgraph M containing n vertices fu1; . . . ; ung
in RDF graph G is a match of QS . The match score is defined
as follows:

ScoreðMÞ ¼ a
X

vi2V ðQSÞ log ðdðargi; uiÞÞ

þ ð1� aÞ
X

vivj2EðQSÞ log ðdðrelvivj ; PijÞÞ (2)

where argi is the phrase of vertex vi, and ui is an entity or a
class in RDF graph G, and relvivj is the relation mention of

edge vivj and Pij is a predicate of edge uiuj
��! or ujui

��!.

The default value ofweight a is 0.5, whichmeans the entity
score and relation score have equivalent status. If we have
enough training data, a can be learned by some rankingmod-
els such as SVM-rank [15]. Details can be found in Section 6.

Given a semantic query graphQS , our goal is to find all sub-
graphmatches ofQS (over RDF graphG) with the top-kmatch
scores.6 To solve this problem, we designed an enumerative
algorithm (Algorithm 3 in Appendix A, available in the online
supplementalmaterial) with twomain pruningmethods.

The first pruning method is to reduce the candidates of
each list (i.e, Cvi and Cvivj ) as many as possible. If a vertex ui

in Cvi cannot be in any subgraph match of QS , ui can be fil-
tered out directly. Let us recall Fig. 2. Vertex u5 is a candi-
date in Cv3 . However, u5 does not have an adjacent
predicate that is mapping to phrase “direct by” in edge v2v3.

It means that there exists no subgraph match of QS contain-
ing u5. Therefore, u5 can be pruned safely. This is called
neighborhood-based pruning. It is often used in subgraph
search problem, such as [16].

The second method is to stop the search process based on
the top-k match score as early as possible. Obviously, enu-
merating all possible combination is inefficient. If we main-
tain an appropriate enumeration order so that the current
matches are always better than undiscovered matches, we
can terminate the search space as early as possible. The
pseudo codes are given in Algorithm 3 in Appendix A, avail-
able in the online supplemental material. For ease of presen-
tation, we use “candidate list” to symbol relation candidate
list and entity/class candidate list together. Once we deter-
mine a candidate for each candidate list in QS , we obtain a
“selection”. The selection is expressed by a n-length vector,
which n is the total number of candidate list (Line 2 in Algo-
rithm 3). Initially the vector value is 0 which means we select
the first candidate for each candidate list (Lines 3-4). Every
timewe get the best selection from the heap top ofH. We can
build a query graphQ� by replacing all vertex/edge labels in
QS using the selected candidates (Lines 5-6). Line 7 applies
an existing subgraph isomorphism algorithm such as VF2 to
find all subgraph matches of Q� over G. Then we maintain
the maximum heap H to guarantee each selection we get
from H has the highest score among all untried selection as
showed in Line 8-10. For each candidate list Li, we add one
at the ith bit in current selection G to get a new selection and
put it intoH. Thus we can early termination when we find k
matches as showed in lines 11-12 in Algorithm 3.

5 NODE-FIRST FRAMEWORK

5.1 Building Super Semantic Query Graph
There are three steps in building Super Semantic Query
graph QU : node recognition, query graph structure con-
struction and phrase mapping.

5.1.1 Node Recognition

The first step is to recognize all nodes from the question sen-
tence N . Generally, we extract entities, classes and wild-
cards as nodes. We adopt the dictionary-based entity linking
approach [5] to find entities and classes. We collect all wh-
words and nouns which could not map to any entities and
classes as wild-cards. For example, given a question sen-
tence N2 = “What is the budget of the film directed by Paul
Anderson and starred by a Chinese actor?”, the node recog-
nition result is illustrated in Fig. 3a, i.e., “what”, “film”,
“Paul Anderson”, “Chinese”, “actor”.

5.1.2 Structure Construction

Given that all nodes have been recognized, the next step is to
build a super semantic query graphQU . Asmentioned in Sec-
tion 2.3, although our method still relies on the dependency
tree of the question sentence, it is more robust to dependency
errors comparedwith the relation-first framework.

Based onAssumption 1 (see Section 2.3.1), we construct the
super semantic query graphQU as follows: Given a node set V
(which has been recognized in the first step) and a depen-
dency tree Y of question sentence, for any two nodes vi and vj
(2 V ), we introduce an edge between vi and vj if and only if
the simple path between vi and vj does not contain other node
in V . We propose a DFS based algorithm (see Algorithm 4 in
Appendix A, available in the online supplemental material,

6. Note that if more than one match have the identical score in the
top-k results, they are only counted once. In other words, we may
return more than kmatches if some matches share the same score
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with time complexity OðjY jÞ) to find neighbors for each node
and build the super semantic query graphQU .

For the question sentence N2, the super semantic query
graph QU is shown in Fig. 5. The node labels are those asso-
ciated entity/class mentions or other phrases. The edge
label of vivj is the words along the simple path between vi
and vj in the dependency tree Y ðN2Þ. For example, the path
between “what” and “film” in the dependency tree contains
three words: “is”, “budget” and “of”, thus, the edge label
between v1 and v2 (in QU ) is “(be) budget of ”. If the simple
path does not contain any word (such at the path between
“actor” and “Chinese”), the edge label is empty.

5.1.3 Phrases Mapping

In this Section, we discuss how to find candidate predicates
and entities/classes for edges andnodes. Themethods ofmap-
ping nodes and labeled edges are the same as phrases map-
ping of QS (see Section 4.1.3). We only concentrate on how to
map the unlabeled edges to predicates in RDF graphG.

Mapping Unlabeled Edges of QU . For an unlabeled edge
vivj, the relation between node vi and vj is implicit in given
question. For example, edge v4v5 denotes an implicit rela-
tion, the correspond word sequence in N2 is “Chinese
actor”. We try to infer the implicit relation between the two
given nodes vi and vj based on underlying knowledge
graph. First, we have the following assumptions:

(1) Since there is an implicit relation between two nodes
vi and vj, we assume that the distance between vi
and vj in RDF graph G is short enough.

(2) Assume that at least one node (vi or vj) is an entity or
a class. It is impossible that two connected nodes are
both wh-words.

Similar with the bridging operation in [17], we generate
the candidate predicates as following. If two nodes are both
constants (i.e., entities or classes), such as v4 and v5 in Fig. 3b
(i.e., “Chinese actor”), we locate the two nodes at RDF graph
G and find the predicate between them. If one node vi is a
wild-card and the other one vj is an entity or class, we locate
vj in RDF graph G and select the most frequent adjacent
predicates as the candidate predicates to match edge vivj.

5.2 Query Executing
Given a super semantic query graph QU , we discuss how to
find approximate matches over RDF graph G with the top-k
match scores, where the approximate match is defined in
Definition 5 and the match score is analogue to Definition 8.
As mentioned in Definition 5, some edges (in QU ) are
allowed dis-matching but all nodes should bematched. Con-
sequently, the approximate match ofQU is the same with the
exact match (see Definition 2) of one connected spanning sub-
graph ofQU . Thus, a straightforward solution is to enumerate
all spanning subgraphs Si of Q

U . For each Si, we call Algo-
rithm 3 to find the top-k matches of Si. Finally, we collect all
top-k matches for each Si to form answer set RS, and report
kmatcheswith the largest match scores inRS.

Obviously, the above solution is not efficient, since there
are lots of common computations if two spanning subgraphs
share common structureswith each other. Therefore, we pro-
pose another bottom-up solution. The pseudo codes are
given in Algorithm 5 in Appendix A, available in the
online supplemental material. Different from the baseline
algorithm, we do not decide the query graph at the begin-
ning. Instead we try to construct the “correct” graph

structure by expanding the current partial structure. Gen-
erally, in each step, we extend the current partial struc-
ture Q by expanding one more edge vix, i.e., Q ¼ Q [ vix
(Line 6 in Algorithm 5). Initially, Q only includes one
starting vertex s in QU . We select the vertex with the
smallest number of candidates as the starting vertex s. If
the new expanded partial structure Q can find matches
over RDF graph G (Lines 7-11), we continue the search
branch. Furthermore, if Q has already been a spanning
subgraph of QU (Lines 9-11), we record the matches of Q
together with the match scores in answer set RS. We only
keep the current top-k matches in RS and the current
threshold d. If Q cannot find matches over RDF graph G
(Lines 12-13), we backtrack the search branch.

To improve the search performance, we can also perform
threshold-based pruning (like A�-style algorithm) and early
terminate some search branches. For example, for a given
partial structure Q, we estimate the upper bound of the
match score if continually expanding Q. We can derive the
upper bound assuming that all un-mached vertices and
edges (of QU ) can match the candidates with the largest
score. If the upper bound is still smaller than the threshold
d, we can terminate the search branch. We do not discuss
this tangential issue any further.

6 EXPERIMENTS

We evaluate our system on DBpedia and Freebase with two
benchmarks separately. For DBpedia, we use QALD7 as the
benchmark. As we know, QALD is a series of open-domain
question answering campaigns, which mainly based on
DBpedia. We compare our method with all systems in
QALD-6 competition as well as DEANNA [18] and Aqqu
[19]. For Freebase, we use WebQuestions [17] as the bench-
mark and compare our method with Sempre [17], Para-
Sempre [20], Aqqu [19], STAGG [21] and Yavuz et al.[22].
To build the relation mention dictionary, we utilize relation
phrases in Patty dataset [12]. We also use the CrossWikis [8]
as the entity mention dictionary. All experiments are imple-
mented in a PC server with Intel Xeon CPU 2 GB Hz, 64 GB
memory running Windows 2008. Our two frameworks (the
relation-first framework and the node-first framework) are
denoted as RFF and NFF, respectively.

6.1 Datasets
DBpedia RDF Repository. (http://blog.dbpedia.org/) is a
comm-unity effort to extract structured information from
Wikipedia and to make this information available on the
Web [23]. We use the version of DBpedia 2014 and the statis-
tics are given in Table 5.

Freebase. (https://developers.google.com/freebase/) is a
collaboratively edited knowledge base. We use the version
of Freebase 2013, which is same with [20]. The statistics are
given in Table 5.

Patty Relation Mention Dataset [12]. contains a large
resource for textual patterns that denote binary relations
between entities. We use two different relation mention
datasets, wordnet-wikipedia and freebase-wikipedia. The
statistics are given in Table 6. The experiments of offline
performance can be found in Appendix B, available in the
online supplemental material.

7. http://qald.sebastianwalter.org/
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6.2 Online Performance
Exp 1. (End-to-End Performance) We evaluate our system
both on QALD benchmark and WebQuestions benchmark.
For QALD dataset, we show the experiment results in the
QALD competition report format to enable the comparison
with all systems in QALD-6 (in Table 7). We also repro-
duced DEANNA [18] and Aqqu [19] using the codes pub-
lished by authors. For WebQuestions dataset, we show the
average F1 to compare with previous works. We repro-
duced Aqqu [19] and report the results of other works in
Table 8. In Table 7, “Processed” denotes the number of test
questions that can be processed and “Right” refers to the
number of questions that were answered correctly.

For WebQuestions dataset, we use SVM-rank [15] to
learn the weight a of aggregation function (see Definition 8)
as there are enough training data in WebQuestions. To train
SVM-rank model, we generate several candidate query
graphs with certain entities and relations for each training
question. After matching these query graphs, we calculate
the F1 score as their ranking score. The final a in our experi-
ment is 0.136. As there are only 350 training questions of
QALD-6, learning a perfect weight is hard. Therefore, we
use the default value a ¼ 0:5 directly.

Effectiveness Evaluation. Our NFF method joined QALD-6
competition and won the second place at F-1 measure.8 NFF
can answer 68 questions correctly, while the relation-first
framework (RFF) can answer 40 questions correctly. Gener-
ally, NFF can beat all systems in QALD-6 campaign in F-1
except for CANaLI [24]. Note that CANaLI aims to answer
controlled natural language questions, in which, users need to
specify the precise entities and predicates (denoted by URIs)
in the question sentences. In otherwords, CANaLI asks users
to do disambiguation task for phrase linking and CANaLI is
not a fully natural language question answering system.

Table 8 shows the results on the test set of WebQuestions,
which contains 2032 questions. Different from QALD
benchmark, WebQuestions has low diversity and most
questions are simple questions. The average F1 of our sys-
tem (49.6 percent) is little less than the state-of-art work [21]
(52.5 percent) and Yavuz et al. [22] (52.6 percent). Compared
by [22] and [21], our approach performs not very well in

relation extraction, which relies on the relation mention dic-
tionary. Actually, the advantage of our approach lies in
answering complex questions (i.e., multi-hop relation ques-
tions), such as some questions in QALD benchmark. As the
codes of [22] and [21] are not available to us, we compare
our method with Aqqu [19] on QALD. Aqqu performs well
on WebQuestions (49.4 percent) but has a poor performance
on QALD benchmark (38 percent in Table 7). It is because
that the questions in WebQuestions are simpler than QALD
and most of them could be translated into a “one-triple”
query, i.e, have only one entity and one relation. Aqqu
defines three query templates and try to match test ques-
tions to predefined templates. These three templates cover
almost all of the questions in the WebQuestions benchmark
[19]. However, when Aqqu meets some other questions
which have different representation and could not be
matched to predefined templates, it would get wrong
answers. For instance, Aqqu could not answer “true-false”
questions such as “Does Trump have any children?”. How-
ever, those questions could be answered correctly by our
system because we do not rely on particular dataset and do
not use any predefined query templates.

Efficiency Evaluation.We compare the running time of our
two frameworks with DEANNA [18] using QALD-6 data-
set. Fig. 6 shows the experiment results. We test all ques-
tions that can be answered correctly by both DEANNA and
our methods. In the question understanding, DEANNA
needs to generate SPARQLs, our systems generates seman-
tic query graph QS or super semantic query graph QU . The
former has the exponential time complexity, but our meth-
ods have the polynomial time complexity in the question
understanding stage, as we reserved the ambiguity. The rea-
son of NFF is faster than RFF is that RFF spends more time
on relation extraction from a whole dependency tree Y .
Actually, RFF spends OðjY j2Þ time to extraction relations
and build QS (see Algorithm 2 in Appendix, available in the
online supplemental material) while NFF costs OðjY jÞ time

TABLE 5
Statistics of RDF Graph

DBpedia Freebase

Number of Entities 5.4 million 41 million
Number of Triples 110 million 596 million
Number of Predicates 9,708 19,456
Size of RDF Graphs (in GB) 8.7 56.9

TABLE 6
Statistics of Relation Mention Dataset

wordnet-
wikipedia

freebase-
wikipedia

# of Textual Patterns 350,568 1,631,530
# of Entity Pairs 3,862,304 15,802,947
Average Entity Pair # for each Pattern 11 9

TABLE 7
Evaluating QALD-6 Testing Questions

(Total Question Number = 100)

Processed Right Recall Precision F-1

NFF 100 68 0.70 0.89 0.78
RFF 100 40 0.43 0.77 0.55
CANaLI 100 83 0.89 0.89 0.89
UTQA 100 63 0.69 0.82 0.75
KWGAnswer 100 52 0.59 0.85 0.70
SemGraphQA 100 20 0.25 0.70 0.37
UIQA1 44 21 0.63 0.54 0.25
UIQA2 36 14 0.53 0.43 0.17
DEANNA 100 20 0.21 0.74 0.33
Aqqu 100 36 0.37 0.39 0.38

TABLE 8
Evaluating WebQuestions Testing Questions

Average F1

NFF 49.6%
RFF 31.2%
Sempre 35.7%
ParaSempre 39.9%
Aqqu 49.4%
STAGG 52.5%
Yavuz et al. (2016) 52.6%

8. The result of QALD-6 campaign is available at http://qald.
sebastianwalter.org/6/documents/qald-6_results.pdf, and our team is
named NbFramework.
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to build QU (see Algorithm 4 in Appendix, available in the
online supplemental material).

Exp 2. (Pipeline Accuracy of Two Frameworks) In this experi-
ment, we evaluate the accuracies of main steps in both RFF
and NFF using 100 test questions of QALD-6. Table 9 shows
the experiment results. QALD-6 competition report released
the gold standard SPARQL statement for each question sen-
tence in QALD-6. For each sentence N , we suppose that the
generated semantic query graph is QS and super semantic
query graph isQU and the correct SPARQL query isQ. In the
relation-first framework (RFF), we say that “relation recog-
nition” is correct if exists a correct one-to-one mapping from
relation mentions (in QS) to predicate edges in SPARQL
query graph Q. Furthermore, we say that QS is correct if QS

is isomorphism to Q. Analogously, if there exists a one-to-
one mapping from nodes in QU to vertices in Q, we say that
the node recognition is correct. QU is correct if exists a con-
nected spanning graph ofQU that is isomorphism toQ.

By comparing the first step (i.e, relation recognition and
node recognition) between RFF and NFF in 100 test ques-
tions, we can see that the node recognition (in NFF) is much
more accurate than relation recognition (in RFF), where the
former’s accuracy is 0.92 and the latter is 0.65. This is the
motivation of NFF framework. Furthermore, the accuracy
of QS is 0.54, which means that 11 questions found wrong
associated argument nodes after recognizing correct rela-
tions. On the contrary, the accuracy of QU is same as the
node recognition (0.92), which means that once all nodes
were recognized correctly, we can build a correct super
semantic query graph QU . In other words, Assumption 1 (in
Section 2.3) of building QU is effective.

The final accuracy of RFF and NFF are 0.40 and 0.68,
respectively, which means 40 and 68 percent of questions
that can be answered correctly in the two frameworks. In
some cases, even if we can generate a correct QS or QU , we
may get the wrong answers. The reason of that is mainly
because of out-of-dictionary entities/relations or complex
aggregation operations that cannot be handled by our frame-
works. The details of error analysis will be given in Exp 4.

Exp 3. (Efficiency of Query Evaluation inNFF Framework)We
evaluate the efficiency of the two approximate subgraph

matching algorithms in Section 5.2 using the 100 test ques-
tions in QALD-6. The results of 10 questions randomly
selected and the average time of 100 questions are showed in
Fig. 7. For half of the cases, the bottom-up algorithm (Algo-
rithm 5) has obvious advantages, which verified our analysis
in Section 5.2. In some cases, the performance gap is not clear,
since QU of these questions is an acyclic graph, which means
the problem of approximate matchingQU is degenerated into
matching QS . Generally, the average time of the bottom-up
algorithm is faster than the baseline solution by twice.

Exp 4. (Failure Analysis)We provide the failure analysis of
our two methods. We consider about QALD benchmark
because it is harder than WebQuestions and more diversi-
fied. The failure analysis will help the improvement of our
RDF Q/A system’s precision.

There are four reasons for the failure of some questions
in RFF. The first reason is the relation recognition problem,
which accounted for 58 percent. That because many rela-
tions could not be captured by mentions, such as the ques-
tion “Who was on the Apollo 11 mission”. Some relations
even be implicit such as “Czech movie”. The second one is
wrong nodes. For example, “In which countries do people
speak Japanese?”, the correct semantic relation is hspeak,
Japanese, countryi, however, we found the semantic rela-
tion hspeak, people, countryi. The latter two reasons are
same as the reasons in NFF. Notice that relation mapping
failure is a part of relation recognition failure. We give the
ratio of each reason with an example in Table 10.

There are three reasons for the failure of some questions in
NFF. The first reason is the node recognition problem. Some
phrases were recognized as nodes by mistake. For example,
“Who composed the soundtrack for Cameron’s Titanic”. We
regarded the noun “soundtrack” as a variable node, however,
it should be ignored. The second one is the failure of phrase
mapping, which means we could not find the correct referred
entity/relation for a given mention. For example, “What is
Batman’s real name”. The correct relation halterEgoi is not
occurred in the candidate list of mention “real name” in our
relation mention dictionary DR. The third one is that our
method cannot answer some complex aggregation questions.
We give the ratio of each reasonwith an example in Table 11.

7 RELATED WORK

Q/A (natural language question answering) has a quite
long history since the seventies of last century [25]. Gener-
ally, the solutions of knowledge base QA can be mainly
divided into two categories.

TABLE 9
Pipeline Accuracy

Step1 Step2 Final

RFF Relation Recognition: 0.65 Building QS : 0.54 0.40
NFF Node Recognition: 0.92 Building QU : 0.92 0.68

Fig. 7. Evaluation methods comparison.
Fig. 6. Online running time comparison.
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The first one is semantic parsing-based, where natural lan-
guage questions are translated into logical forms, such as
simple �-DCS [17], [20], query graph [21], or executable
queries such as SPARQL [18], [19], [26]. [20] defined a set of
logical form templates. DEANNA [18] builds a disambigua-
tion graph and reduces disambiguation as an integer linear
programming problem.

The other category is information retrieval-based, where the
systems are not intended to parse the question to a formal
semantic interpretation. Instead, they select candidate
answers first and then rank them by various methods [2],
[27], [28], [29], [30]. [29] utilizes subgraph embedding to pre-
dict the confidence of candidate answers. [28] maximize the
similarity between the distributed representation of a ques-
tion and its answer candidates using Multi-Column Convo-
lutional Neural Networks (MCCNN), while [2] aims to
predicate the correct relations between topic entity and
answer candidates with text evidence.

Our work belongs to the first category and differs from
existing systems in three points. First, different from tem-
plate-based works such as [17], [19], [20], [31], our method
does not adopt any manually defined templates. To gap the
mismatch between natural language and the knowledge base,
[20] generates canonical utterances for each candidate logical
form of the given questionN , then it ranks the pairs of canoni-
cal utterance and logical form based on a paraphrase model.
However, users should define logical form templates and the
generation rules first. [31] mines millions of operators from
unlabeled data, then learns to compose them to answer ques-
tions using evidence from multiple knowledge bases. It still
uses predefined templates to map questions to queries. Simi-
larly, [19] designs three query templates and try to match the
given questionN to those templates, then generates and ranks
SPARQL queries of each matched template. However, both
the templates and the generation rules are heavily relied on
the particular dataset and could not handle some other ques-
tions. For example, none of above systems could answer true-
false questions like “Does Trump have any children?”. In con-
trast, our systemdoes not rely on templates and could answer
more kinds of questions. We evaluate [19] on the QALD-6
benchmark and the results could be found in Table 7.

Second, different from most semantic parsing based sys-
tems, we push down the disambiguation into the query
evaluation stage. Existing solutions, like [26] and [18], gen-
erate the SPARQLs as the intermediate results in the ques-
tion understanding stage. Obviously, they need to do
disambiguation in this step. For example, DEANNA [18]
proposes an integer linear programming (ILP)-based
method to address the disambiguation issue. As we know,
ILP is a classical NP-hard problem. Then, in the query eval-
uation stage, the existing methods need to answer these
generated SPARQL queries. Answering SPARQL queries

equals to finding subgraph matches of query graphs Q over
RDF graph [32], which is also an NP-hard problem.

Third, our approach have stronger representation power
than most existing solutions. Information retrieval solutions
like [2], find the topic entity and try to predicate the relation-
ship between the answer and the topic entity which can
only solve simple questions with one triple. For the ques-
tions have two entities, they utilize predefined patterns in
dependency parse tree to decompose the complex question
to two simple question. However, the precision of such sys-
tem highly depends on the accuracy of the dependency
parse tree, which is pretty low when the question is com-
plex. In contrast, our work (especially NFF) is more robust
to the errors of dependency parse trees.

Two recent semantic parsing methods [21] and [22]
achieve the state-of-the-art precisions on WebQuestions
benchmark. [21] builds query graphs from question sen-
tence according to a state transition chain. It first recognizes
a topic entity and an inference the relation between the topic
entity and the answer. Further it allows other entities to
restrict the answer node. The representation power of [21] is
limited because the final query graph structure must be a
tree with diameter less than 3. [22] improves semantic
parsing via answer type inference. It transforms a question
to a “subject, relation, object” order by dependency parse
tree patterns and proposes a BLSTM model to predict the
answer type. Finally the answer type can be used to prune
the candidate logic forms generated by the semantic parsing
baseline. This approach cannot tackle the questions uncov-
ered by patterns or complex questions. Different from the
above systems, our approach has stronger representation
power as we do not restrict the query graph’s structure.

8 CONCLUSION

In this paper, we propose a graph data-driven framework to
answer natural language questions over RDF graphs. Differ-
ent from existing work, we allow the ambiguity both of
phrases and structure in the question understanding stage.
We push down the disambiguation into the query evalua-
tion stage. Based on the query results over RDF graphs, we
can address the ambiguity issue efficiently. In other words,
we combine the disambiguation and query evaluation in an
uniform process. Consequently, the graph data-driven
framework not only improves the precision but also speeds
up the whole performance of RDF Q/A system.
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