
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

SUPPLEMENTARY MATERIALS

APPENDIX A
PSEUDO CODES

Algorithm 1 Build Relation Mention Dictionary
Input: A relation mention set T = {rel1, ..., reln} and each
mention reli, has a support set Sup(reli) = { (v1i , v

′1
i), ..., (vmi ,

v′mi)} and an RDF graph G.
Output: Each relation mention reli has the top-k possible
predicate paths {Li1 , ..., Lik} with the same semantic equiva-
lence.

1: for each relation mention reli, i = 1, ..., n in T do
2: for each entity pair (vji , v

′j
i) in Sup(reli) do

3: Find all simple predicate path patterns (with length less
than a predefined parameter θ) between vji and v′ji ,
denoted as Path(vji , v

′j
i).

4: PS(ti) =
⋃

j=1,....m Path(vji , v
′j
i)

5: for each relation mention reli do
6: for each predicate path pattern L in PS(ti) do
7: Compute tf-idf value of L (according to Definition 6)
8: for relation mention reli, record the k predicate path

patterns with the top-k highest tf-idf values.

Algorithm 2 Finding Relation Mentions Occurring in a Natural
Language Question N
Input: A dependency tree Y and an inverted index over the
relation mention set T .
Output: All embeddings of relation mentions (in T) occurring in
Y .

1: for each node wi in Y do
2: Find a list of relation mentions PLi occurring in T by the

inverted list.
3: for each node wi in Y do
4: Set PL = PLi

5: for each relation mention rel ∈ PL do
6: Set rel[wi] = 1 // indicating the appearance of word wi

in rel.
7: Call Probe(wi, PL)
8: for each relation mention rel in PLi do
9: if all words w of rel have rel[w] = 1 then

10: rel is an occurring relation mention in Y
11: Return rel and a subtree rooted at wi includes (and

only includes) all words in rel.
Probe(w, PL′)

1: for each child w′ of w do
2: PL′′ = PL′ ∩ PLi.
3: if PL′′ == φ then
4: return
5: else
6: for each relation mention rel ∈ PL′′ do
7: Set rel[w′] = 1 // indicating the appearance of word

w′ in t.
8: Call Probe(w′, PL′′)

Algorithm 3 Generating Top-k SPARQL Queries

Input: A semantic query graph QS and a RDF graph G.
Output: Top-k SPARQL Queries, i.e., the top-k matches from QS

to G.
1: Sorting all candidates in a non-ascending order
2: n = |E(QS)|+ |V (QS)|
3: Initialize n bit vector Γ with zero
4: Initialize maximum heap H with one element (Γ, score(Γ))
5: while (Γ, s)← H.pop() do
6: Q∗ = BuildQueryGraph(QS , Γ)
7: SubgraphMatching(G, Q∗) // Any subgraph isomorphism

algorithm such as VF2
8: for Each candidate list Li do
9: Γ = Γ plus one at the i-th bit

10: H.push(Γ, score(Γ))
11: if already find k matches then
12: Break
13: Output the top-k matches

Algorithm 4 Building Hyper Semantic Query Graph
Input: question sentence N , Nodes set V , dependency tree Y
Output: a super semantic query graph

1: for each u ∈ V do
2: Initialize visit as an empty set
3: Expand(u, u)

Expand(head, u)
1: visit← u
2: if u ∈ V then
3: connect head and u
4: return
5: for each vetex v connected with u in Y do
6: if v /∈ visit then
7: Expand(head,v)

Algorithm 5 Bottom-up Algorithm

Input: A super semantic query graph QU and a RDF graph G.
Output: The top-k approximate matches from QU to
G.

1: Q← start node s
2: que.push(s)
3: while x = que.pop() do
4: /*Try to expand current query graph*/
5: for each vix ∈ E(QU) ∧ vix /∈ E(Q) do
6: Q = Q ∪ vix
7: if GraphExplore(G, Q) find matches then
8: if Q is a spanning subgraph of QU then
9: Insert matches of Q into answer set RS.

10: Only keep the matches in RS with the top-k match
scores

11: else
12: Q = Backtrack(Q, vix)
13: if vix ∈ Q then
14: que.push(vi)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

TABLE 1
A Sample of Textual Patterns and Predicates/Predicate Paths in

DBpedia

TABLE 2
Running Time of Offline Processing

θ = 2 θ = 4
wordnet-wikipedia 17 mins 3.88 hrs
freebase-wikipedia 119 mins 30.33 hrs

APPENDIX B
EXPERIMENTS OF OFFLINE PERFORMANCE

Exp 1. Precision of Relation Mention Dictionary. In this exper-
iment, we evaluate the accuracy of our building relation mention
dictionary method. For each relation mention, we output a list of
predicates/predicate paths. They are ranked in the non-descending
order of confidence probabilities. Table 1 shows a sample of
outputs in DBpedia. Note that the confidence probabilities in
Tables 1 are normalized.

In order to measure the accuracy, we perform the following
experiments. We randomly select 1000 relation mentions from
wordnet-wikipedia and freebase-wikipedia datasets, respectively.
For each relation mention, we output top-3 corresponding predi-
cates/predicate paths. These results are shown to human judges.
For each relation mention and its corresponding predicate/predi-
cate path, the judge has to decide a scale from 2 to 0. The result
is correct and highly relevant (2), correct but less relevant (1), or
irrelevant (0). We find the precision (P@3) is about 50% when the
path length is 1. However, while increasing of path length (from 2
to 4), the precision goes down greatly. To guarantee the precision
of the relation mention dictionary for online process, the top-3
predicate paths (for each relation mention) should go through a
human verification process.

Exp 2. Running Time of Building Relation Mention Dic-
tionary. In this experiment, we evaluate the efficiency of our
approach. Table 2 shows the total time. For example, when the
path length threshold θ = 2, the running time is 17 minutes
using wordnet-wikipedia relation mention dataset and DBpedia
RDF graph. Obviously, with the increasing of path length, the
running time is increasing as well. On the other hand, with the
increasing of path length, the precision of the results is decreasing.
As default, we set θ = 4. The predicate paths with length longer
than 4 will not be considered in our method.

APPENDIX C
EXAMPLES

In Section 4.1.2, to find associated nodes of recognized relations,
we introduce several heuristic rules as following.
• Rule 1: Extend the embedding t with some light words,

such as prepositions, auxiliaries.
• Rule 2: If the root node of t has subject/object-like

relations with its parent node in Y , add the parent node
to arg1.

• Rule 3: If the parent of the root node of t has subject-like
relations with its neighbors, add the child to arg1.

• Rule 4: If one of arg1/arg2 is empty, add the nearest wh-
word or the first noun phrase in t to arg1/arg2.

Now we give the examples of the four heuristic rules.

Fig. 1. Finding associated nodes in Y (N2)

Example 1. Let us consider the dependency tree Y (N2) in Figure
1. For the relation embedding t1=“budget of”, we use Rule
1 to extend t1 with the word “is”. Then the Rule 4 can
be used for t1 to get the wh-word “What” as the arg1. For
the relation embedding t2=“directed by”, as the root node of
t2 (“directed”) has subject-like relation with its parent node
(“film”), we use Rule 2 to add “film” to arg1. We get “what” as
the first node of relation mention “budget of” by applying Rule
4. For the relation embedding t3=“starred by”, as the parent of
the root node of t3 (“directed”) has subject-like relations with
its neighbors (“film”), we use Rule 3 to add “film” to arg1.

	Appendix A: Pseudo Codes
	Appendix B: Experiments of Offline Performance
	Appendix C: Examples

