You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

infer_value_range_pass.h 2.4 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. /**
  2. * Copyright 2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_GRAPH_PASSES_INFER_VALUE_RANGE_PASS_H_
  17. #define GE_GRAPH_PASSES_INFER_VALUE_RANGE_PASS_H_
  18. #include "graph/passes/infer_base_pass.h"
  19. namespace ge {
  20. class InferValueRangePass : public InferBasePass {
  21. public:
  22. graphStatus Infer(NodePtr &node) override;
  23. private:
  24. std::string SerialTensorInfo(const GeTensorDescPtr &tensor_desc) const override;
  25. graphStatus UpdateTensorDesc(const GeTensorDescPtr &src, GeTensorDescPtr &dst, bool &changed) override;
  26. graphStatus UpdateOutputFromSubgraphs(const std::vector<GeTensorDescPtr> &src, GeTensorDescPtr &dst) override;
  27. graphStatus UpdateOutputFromSubgraphsForMultiDims(const std::vector<GeTensorDescPtr> &src,
  28. GeTensorDescPtr &dst) override;
  29. bool NeedInfer(const NodePtr &node) const override;
  30. bool InputIsDynamic(const NodePtr &node) const;
  31. bool InputIsConstOrHasValueRange(const NodePtr &node) const;
  32. void CheckInputValueRange(const NodePtr &node, bool &has_unknown_value_range, bool &has_zero_in_value_range) const;
  33. graphStatus GenerateWorstValueRange(NodePtr &node);
  34. template <typename T>
  35. graphStatus ConstructData(const GeTensorDesc &tensor_desc, bool use_floor_value, GeTensorPtr &output_ptr);
  36. graphStatus ConstructDataByType(const GeTensorDesc &tensor_desc, bool use_floor_value, GeTensorPtr &output_ptr);
  37. vector<ConstGeTensorPtr> ConstructInputTensors(const NodePtr &node, bool use_floor_value);
  38. template <typename T>
  39. void ConstructValueRange(const GeTensorPtr &left_tensor, const GeTensorPtr &right_tensor,
  40. std::vector<std::pair<int64_t, int64_t>> &value_range);
  41. graphStatus ConstructInputAndInferValueRange(NodePtr &node);
  42. };
  43. } // namespace ge
  44. #endif // GE_GRAPH_PASSES_INFER_VALUE_RANGE_PASS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示