You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tensor_value.h 3.0 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_HYBRID_COMMON_TENSOR_VALUE_H_
  17. #define GE_HYBRID_COMMON_TENSOR_VALUE_H_
  18. #include <atomic>
  19. #include <cstddef>
  20. #include <memory>
  21. #include "framework/memory/memory_api.h"
  22. #include "framework/common/util.h"
  23. namespace ge {
  24. namespace hybrid {
  25. class NpuMemoryAllocator;
  26. class AllocationAttr;
  27. class TensorBuffer {
  28. public:
  29. static std::unique_ptr<TensorBuffer> Create(NpuMemoryAllocator *allocator,
  30. size_t size,
  31. AllocationAttr *attr = nullptr);
  32. static std::unique_ptr<TensorBuffer> Create(void *buffer, size_t size);
  33. TensorBuffer(const TensorBuffer &) = delete;
  34. TensorBuffer &operator = (const TensorBuffer &) = delete;
  35. ~TensorBuffer();
  36. void* Release() {
  37. auto ret = buffer_;
  38. buffer_ = nullptr;
  39. return ret;
  40. }
  41. void *GetData() {
  42. return buffer_;
  43. }
  44. size_t GetSize() const {
  45. return size_;
  46. }
  47. MemStorageType GetMemType() const {
  48. return mem_type_;
  49. }
  50. private:
  51. TensorBuffer(NpuMemoryAllocator *allocator, void *buffer, size_t size, MemStorageType mem_type = HBM);
  52. NpuMemoryAllocator *allocator_ = nullptr;
  53. void *buffer_ = nullptr;
  54. size_t size_ = 0;
  55. MemStorageType mem_type_;
  56. };
  57. class TensorValue {
  58. public:
  59. TensorValue() = default;
  60. explicit TensorValue(std::shared_ptr<TensorBuffer> buffer);
  61. TensorValue(void *buffer, size_t size);
  62. ~TensorValue();
  63. void Destroy();
  64. void *Release() {
  65. return buffer_->Release();
  66. }
  67. bool IsEmpty() {
  68. return ref_buffer_ == nullptr && buffer_ == nullptr;
  69. }
  70. const void *GetData() const;
  71. std::string DebugString() const;
  72. void SetName(const std::string &name) {
  73. name_ = name;
  74. }
  75. Status GetMemType(MemStorageType &mem_type) const {
  76. GE_CHECK_NOTNULL(buffer_);
  77. return buffer_->GetMemType();
  78. }
  79. void *MutableData();
  80. size_t GetSize() const;
  81. template<typename T>
  82. Status CopyScalarValueToHost(T &value) const {
  83. GE_CHECK_GE(this->GetSize(), sizeof(value));
  84. return rtMemcpy(&value, sizeof(value), this->GetData(), sizeof(value), RT_MEMCPY_DEVICE_TO_HOST);
  85. }
  86. private:
  87. std::shared_ptr<TensorBuffer> buffer_;
  88. std::string name_;
  89. // for weights and variables
  90. void *ref_buffer_ = nullptr;
  91. size_t ref_size_ = 0;
  92. // shape
  93. };
  94. } // namespace hybrid
  95. } // namespace ge
  96. #endif // GE_HYBRID_COMMON_TENSOR_VALUE_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示